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Università degli studi di Padova

Exploiting Hidden Structure in Matrix Computation.
Algorithms and Applications

Cetraro
June 22–26, 2015

1
Department of Mathematics, University of Padova, Via Trieste 63, 35121, Padova, Italy. E-mail:

spozza@math.unipd.it.
2

Department of Mathematics and Informatics, University of Banja Luka, Faculty of Science, M. Stojanovića 2,
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Introduction
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Measure and Quadrature

Let µ be a non-decreasing distribution function defined on the real
axis such that∫

R
x idµ(x) = mi <∞ for all i = 0, 1, 2, . . . .

the moments of every order are finite

Given a real function f we are interested in the approximation of a
Riemann-Stieltjes integral obtained by quadrature rules, that is∫

R
f (x) dµ(x) ≈

n∑
j=1

f (λj)ωj ,

given certain nodes λj and weights ωj .
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Gauss quadrature rule

If for every polynomial p of degree ≤ 2n − 1∫
R
p(t) dµ(t) =

n∑
j=1

p(λj)ωj ,

then the rule is called Gauss quadrature rule.
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Gauss quadrature properies

G1: The n-node Gauss quadrature attains the maximum
possible algebraic degree of exactness which is 2n − 1.

G2: If n-node Gauss quadrature exists it is unique, and j-node
Gauss quadratures for j = 1, . . . , n − 1 exist and are unique.

G3: The Gauss quadrature can be written in the form
eT1 f (Jn) e1, where Jn is a real symmetric tridiagonal matrix
determined by the first 2n moments of the integral.
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Our goal is to give a formula with the same properties, for the
approximation of a class of linear functionals.
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Linear Functionals

Let L be a linear functional on the space of (complex) polynomials,

L : P → C.

L has finite complex moments

L(xk) = mk , k = 0, 1, . . . .

mk is the moment of order k of the functional.
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Orthogonal Polynomials

We say that a sequence of polynomials {pj}∞j=0 is a sequence of
orthogonal polynomials with respect to the linear functional L if:

1 deg(pj) = j (pj is of degree j),

2 L(pi pj) = 0, for i 6= j ,

3 L(p2
j ) 6= 0.

(We refer to T.S. Chihara, An introduction to orthogonal
polynomials)
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Existence of Orthogonal Polynomials

Hankel determinants

∆j =

∣∣∣∣∣∣∣∣∣
m0 m1 . . . mj

m1 m2 . . . mj+1
...

...
. . .

...
mj mj+1 . . . m2j

∣∣∣∣∣∣∣∣∣ .

Quasi-definite linear functional

A linear functional L for which the first k Hankel determinants are
nonzero, i.e. ∆j 6= 0 for j = 0, 1, . . . , k , is called quasi-definite on
Pk the space of polynomials of degree at most k.

There exists a (unique up to nonzero multiplicative factors)
sequence {pj}kj=0 of orthogonal polynomials with respect to L if

and only if L is quasi-definite on Pk .
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Positive definite functionals

Positive definite linear functional

The linear functional L is said to be positive definite on Pk if
∆j > 0 and mj ∈ R, for j = 0, . . . , k .

The positive definite case is equivalent to the classical theory
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Three-term recurrence relation

If p0, p1, . . . , pn exist, then for k = 1, 2, . . . , n,

βkpk(x) = (x − αk−1)pk−1(x)− γk−1pk−2(x),

with p−1(x) = 0, p0(x) = c 6= 0 given and αk−1, βk , γk−1 nonzero
scalars.
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Tn =


α0 γ1

β1 α1 γ2

. . .
. . .

. . .

βn−2 αn−2 γn−1

βn−1 αn−1

 p =


p0(ξ)
p1(ξ)

...
pn−2(ξ)
pn−1(ξ)



ξp = Tn p + γnpn(ξ) en

Theorem: the eigenvalues of Tn are the zeros of pn.

Remark 1: The matrix Tn is fully determined by the orthogonal
polynomials p0, . . . , pn−1 and by the moments m0, . . . ,m2n−1.

Remark 2: If we rescale the orthogonal family p0, . . . , pn−1 we obtained a
different tridiagonal matrix T n.
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Jacobi matrices

We say an Orthonormal family of polynomials an orthogonal family
of polynomials such that

L(p2
i ) = 1.

The tridiagonal matrix associated with this family is symmetric.

Jacobi matrix

A square complex matrix is called Jacobi matrix if it is tridiagonal,
symmetric and has no zero elements on its sub- and super-diagonal.

(Beckermann [1])
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Moments Matching Property
an extension
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We proved the following theorem

Theorem

Let L be a quasi-definite linear functional on Pn and let Jn be a
Jacobi matrix determined by the firs 2n moments of L. Then we
have that

L(x i ) = eT1 (Jn)i e1, i = 0, . . . , 2n − 1. (1)

Remark: In the case of positive definite linear functional this
property is well known and it is part of the classical theory on the
Gauss quadrature.
Moreover, it was proved also in the case of discrete linear functional

L(f ) = u∗f (A) v

(see Strakoš [5])
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n-weight Gauss Quadrature
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Positive definite case (classical)

We recall that in the classical theory (L positive definite) we get

L(f ) =

∫
R
f (t)dµ(t) = eT1 f (Jn)e1 =

n∑
i=1

ωi f (λi )

for deg(f ) ≤ 2n − 1.

Jn is real, hence it is Hermitian and has n distinct eigenvalues
(diagonalizable)

Jn can be compute by the (Hermitian) Lanczos algorithm for
L discrete

the nodes λi are the eigenvalues of Jn

(every weight ωi can be obtained by the eigenvector
associated with λi )
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Diagonalizable case

Now, let L quasi definite on Pn and let Jn diagonalizable. Then we
can easily extend the classical Gauss Quadrature (see Saylor and
Smolarski [4]).

L(f ) = eT1 f (Jn)e1 =
n∑

i=1

ωi f (λi )

for deg(f ) ≤ 2n − 1.
The nodes λi are the n complex eigenvalues of Jn.

S. Pozza, M. Pranić, and Z. Strakoš. 18 / 31



Diagonalizable case

The quadrature rule have the properties G1 and G2 if and only if:

1 L is quasi-definite on Pn
2 Jn is diagonalizable

Or equivalently

1 There exists a sequence of orthogonal polynomials p0, . . . , pn
with respect to L

2 Zeros of pj , j = 1, . . . , n, are distinct.
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Complex Jacobi matrices

Remark: Jn is Hermitian ⇔ it is real.

A complex Jacobi matrix may not always be diagonalizable

What happen when Jn is not diagonalizable?
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Complex tridiagonal matrices

Theorem (Wilkinson [7])

Every tridiagonal matrix T ∈ Cn×n with nonzero elements on its
super-diagonal (and sub-diagonal) is non-derogatory, i.e. each one
of its eigenvalues has geometric multiplicity 1.

Corollary

Every complex tridiagonal matrix without any zero entry on
super-diagonal (and sub-diagonal) is diagonalizable if and only if it
has distinct eigenvalues.

S. Pozza, M. Pranić, and Z. Strakoš. 21 / 31
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Non-derogatory matrices

If a matrix is non-derogatory

every eigenvalue λ has geometric multiplicity 1.

That means that the eigenspace of λ has dimension 1

Hence, there exists only one eigenvector for λ.

Moreover, there exist only one Jordan block corresponding to
λ.
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G1, G2 and G3 properties

However, the moments matching property still holds both for Jn
diagonalizable or nondiagonalizable.

If we want a quadrature rule satisfying G1 and G2 whenever L is
quasi-definite, we have to define a quadrature in the form

n-weight quadrature rule (P., Pranić, Strakoš, submitted)

L(f ) =
∑̀
i=1

si−1∑
j=0

ωi ,j f
(j)(λi ) + Rn(f ),

where s1 + · · ·+ s` = n.
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Algebraic exactness

Theorem (P., Pranić, Strakoš, submitted)

The n-weight quadrature is exact for every f from P2n−1 if and
only if it is exact on Pn−1 and the polynomial

ϕn(x) = (x − λ1)s1(x − λ2)s2 . . . (x − λ`)s`

satisfies L(ϕn p) = 0 for every p ∈ Pn−1.

G1 and G2 hold if and only if

ϕ0, . . . , ϕn are orthogonal polynomials (L is quasi-definite on
Pn);

λ1, . . . , λ` are the zeros of the n-th orthogonal polynomial and
s1, . . . , s` are the corresponding multiplicity.
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Degree of exactness (P., Pranić, Strakoš, submitted)

The n-weight quadrature is unique and of degree of exactness
at least 2n − 1 if and only if ∆n−1 6= 0.

If the n-weight quadrature has degree of exactness at least
2n − 1 then its degree of exactness is (exactly) 2n − 1 if and
only if ∆n 6= 0.

Hence, for the existence of the formula we only need ∆n−1 6= 0
while, to have degree of exactness 2n − 1 we need ∆n 6= 0.
Otherwise, we can have a grater degree of exactness.
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Example

Let linear functional L defined by the sequence of moments

1, 3, 8, 20, 52, 156, i , . . . ,

The 2-node quadrature of degree of exactness 3 does not exist
since the zeros of π2 are x1 = x2 = 2.
We can use 2-weight quadrature of the form ω1,1f (2) + ω1,2f

′(2).

ω1,1 · 1 + ω1,2 · 0 = 1

ω1,1λ1 + ω1,2 · 1 = 3

ω1,1λ
2
1 + ω1,2(2λ1) = 8

ω1,1λ
3
1 + ω1,2(3λ2

1) = 20

has unique solution (in C): ω1,1 = 1, ω1,2 = 1, λ1 = 2.

f (2) + f ′(2) has degree of exactness 3.
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Example

Notice that its degree of exactness would be higher if and only if

m4 = 24 + 4 · 23 = 48.

In this case we would have ∆2 = 0, i.e. L would not be
quasi-definite on P2. If

m5 = 25 + 5 · 24 = 112

then the quadrature f (2) + f ′(2) would have degree of exactness
at least 5. And so on...
We cannot determined the degree of exactness of the formula just
knowing m1,m2,m3.
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Summarizing, the n-weight quadrature formula

∑̀
i=1

si−1∑
j=0

ωi ,j f
(j)(λi )

satisfies G1, G2 and G3 if and only if L is quasi-definite on Pn.
That is why we think that such a quadrature should be referred to
as n-weight Gauss quadrature.

Moreover,

Jn can be compute by the (non-Hermitian) Lanczos algorithm
for L discrete

the nodes λi are the eigenvalues of Jn with algebraic
multiplicity si

(every weight ωi ,j can be obtained by the generalized
eigenvectors associated with λi )
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Thank you for your attention!
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