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Graph notation

• A graph G is the pair G = (V ,E )
V = {1, . . . , n} ↔ the vertex set, E ⊆ V × V ↔ the edge set.

• Any graph considered throughout this presentation is assumed
undirected, unweighted, connected, �nite and simple

• The complement of A ⊆ V is denoted by A. Its cardinality is |A|.

• Any A ⊆ V induces a subgraph G (A) with edge set E (A). Thus
G (A) = (A,E (A)).

• The set of edges joining two subsets A,B is denoted by E (A,B).
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Graph clustering

Graph clustering is a relevant problem in graph theory and network science

Locate a number of groups of nodes which are densely connected inside

but have little connections inbetween

Many applications:

Image analysis, Social networks, Bioinformatics, IT security, ....
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Graph clustering

For a given integer k , consider the k-order Cheeger constant of G

hG (k) = min
A1, . . . ,Ak ⊆ V

disjoint

max
i=1,...,k

|E (Ai ,Ai )|
|Ai |

Goal: Determine hG (k) and �nd disjoint subsets A∗1, . . . ,A
∗
k of V solving

the above optimization problem

NP-hard! −→ Relaxation

k = 3
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Spectral-based approach

Introduce the Laplacian matrix of the graph

L2 : Rn → Rn

f 7→ (L2 f )i =
∑

j :ij∈E (fi − fj)

Associated Rayleigh quotient

R2(f ) =

∑
ij∈E |fi − fj |2∑

i∈V |fi |2

L2 is real symmetric and positive semi-de�nite

eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn

Select the disjoint subsets A1, . . . ,Ak inside V using the
eigenvalues/vectors of L2 and the associated nodal domains
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Nodal domains

Number of Nodal Domains of a vector g ∈ Rn:

ν(g) = overall number of maximal connected components in
G ({i : gi > 0}) and G ({i : gi < 0})

ν(g) = 4
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Spectral-based approach (k = 2)

When k = 2 we proceed as follows (sketch)

• compute the eigenvector f2 ∈ Rn associated to

λ2 = smallest nonzero eigenvalue of L2

• select A+ and A− in V , de�ned by

A+ = {i : (f2)i > 0} A− = {i : (f2)i < 0}

• approximate hG (2) with λ2.

Two main theoretical results in support of these choices:

Fiedler theorem: ν(f2) = 2

i.e. G (A+) and G (A−) are connected

Cheeger inequality:

λ2/2 ≤ hG (2) ≤
√
2 dmax λ2
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Nodal domains and Cheeger inequality for k > 2

When k > 2 the clustering technique is inspired by the previous one

The two theorems have been generalized into

Nodal domain theorem [Davies, Gladwell, Duval, Reiner, ... 1998-2001]

Let fk ∈ Rn be an eigenvector corresponding to λk . Then

ν(fk) ≤ k

k-way Cheeger inequalities [Lee, Gharan, Trevisan, Miclo, ..., 2010-13]

Let λk be the k-th smallest eigenvalue of L2. Then

λk/2 ≤ hG (k) ≤ O(k3)
√
λk
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Can we do better? → Spectral approach based on p-Laplacian

Fix p > 1. Introduce a nonlinear version of the Laplacian

p-Laplacian Lp : f 7→ (Lp f )i =
∑
j :ij∈E

|fi − fj |p−2(fi − fj)

The linear L2 is achieved if and only if p = 2

Associated Rayleigh quotient

Rp(f ) =

∑
ij∈E |fi − fj |p∑

i∈V |fi |p
−→

Eigenvalues/vectors of Lp : Rn → Rn

l
Critical values/points of Rp : Rn → R+

Select the disjoint subsets A1, . . . ,Ak inside V using the
eigenvalues/vectors of Lp and the associated nodal domains
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Variational spectrum of Lp

Part of our contribution:

extend nodal domain and Cheeger theorems to Lp, for a general p ≥ 1
(the case p = 1 is not considered in this presentation)
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L2 is linear, symmetric,
positive semi-de�nite

⇓

n real nonnegative eigenvalues
n real orthogonal eigenvectors

⇓

Many spectral characterizations:
Courant-Fischer, Ky-Fan, ...

Lp is positive semi-de�nite, but
not linear, not symmetric

⇓

unknown number of eigenvalues
no properties on the eigenvectors

⇓

characterize a set of n
eigenvalues
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Variational spectrum of Lp

Theorem [Hein & T. 2015]

λ
(p)
k = min

g1, . . . , gk ∈ Rn

linearly independent

max
f ∈ span{g1,...,gk}

Rp(f )

are eigenvalues of Lp such that 0 ≤ λ(p)1 ≤ λ(p)2 ≤ · · · ≤ λ(p)n and the
corresponding eigenvectors can be chosen to be pairwise independent.

Moreover

• λ(p)k = 0 if and only if G has exactly k connected components

• Each eigenvector f of Lp has zero p-mean:∑
i∈V |fi |p−2fi = 0, for any p ≥ 1
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• λ(p)k = 0 if and only if G has exactly k connected components

• Each eigenvector f of Lp has zero p-mean:∑
i∈V |fi |p−2fi = 0, for any p ≥ 1
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A p-Laplacian nodal domain theorem

The nodal domain theorem for the linear case

fk = eigenvector associated to the k-th eigenvalue of L2. Then
ν(fk) ≤ k

extends to Lp, for any p ≥ 1, but restricted to variational spectrum.

Theorem [Hein & T. 2015]

Let 0 = λ
(p)
1 ≤ · · · ≤ λ(p)n be variational eigenvalues of the Lp and let

f1, . . . , fn ∈ Rn be corresponding variational eigenvectors. Then
ν(fk) ≤ k

Moreover (as for the linear case):

• ν(f2) = 2

• If G = · · · · · · · · ·

then ν(fk) = k , k = 1, 2, 3, ...

The bound can not
be improved
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High-order Cheeger inequalities based on Lp

The k-way Cheeger inequality for the linear Laplacian

λk = k-th smallest eigenvalue of L2. Then

λk/2 ≤ hG (k) ≤ O(k3)
√
λk

extends to Lp, for any p ≥ 1 and we get a better bound (for small p)

Theorem [Hein & T., 2015]

Let λ
(p)
k be the k-th variational eigenvalue of Lp. Then

21−pλ
(p)
k ≤ hG (k) ≤ O

(
k
2(1+ 1

p )

1+|1− 2
p
| log k

)(
λ
(p)
k

)1/p

• When p = 2 we get the previous inequality

• When p −→ 1 we get a linear relation between λ
(p)
k and hG (k)

• For k = 2 we prove λ
(p)
2

p→1−−−→ hG (2)

• For G = path we prove λ
(p)
k

p→1−−−→ hG (k), for any k = 1, 2, 3, ...
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Conclusions

• Lp is a �natural� nonnlinear generalization of L2

• The eigenvalues/vectors of Lp can be used in graph clustering to get
tighter estimates

• p-Spectral clustering has a rich theoretical background

Challenges

• E�cient techniques for the computation of eigenvalues/vectors of Lp

• More properties on variational eigenvectors of Lp

• Lower bounds on ν(f ) for f = eigenvector of Lp

• Propose clustering algorithms based on the eigenvalues/vectors of Lp
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