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Graph notation

o A graph G is the pair G = (V, E)
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Graph notation

A graph G is the pair G = (V, E)
V ={1,...,n} < the vertex set, E C V x V < the edge set.

Any graph considered throughout this presentation is assumed
undirected, unweighted, connected, finite and simple

The complement of A C V is denoted by A. Its cardinality is |A|.

Any A C V induces a subgraph G(A) with edge set E(A). Thus
G(A) = (A E(A)).

The set of edges joining two subsets A, B is denoted by E(A, B).
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Graph clustering

Graph clustering is a relevant problem in graph theory and network science

Locate a number of groups of nodes which are densely connected inside
but have little connections inbetween
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Graph clustering

Graph clustering is a relevant problem in graph theory and network science

Locate a number of groups of nodes which are densely connected inside
but have little connections inbetween

Many applications:

Image analysis, Social networks, Bioinformatics, IT security, ....
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Graph clustering

For a given integer k, consider the k-order Cheeger constant of G

E(Ai A7)
he(k) = Lk A A
disjoint
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Graph clustering

For a given integer k, consider the k-order Cheeger constant of G

E(Ai A7)
he(k) = Lk A A
disjoint

Goal: Determine hg(k) and find disjoint subsets A}, ..., A} of V solving
the above optimization problem

NP-hard!
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Graph clustering

For a given integer k, consider the k-order Cheeger constant of G

E(Ai A7)
he(k) = Lk A A
disjoint

Goal: Determine hg(k) and find disjoint subsets A}, ..., A} of V solving
the above optimization problem

NP-hard! — Relaxation
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Spectral-based approach

Introduce the Laplacian matrix of the graph

L,: R" — R"
foo= (Laf)i=3ee(fi— 1)
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Spectral-based approach

Introduce the Laplacian matrix of the graph

L,: R" — R"
foo= (Laf)i=3ee(fi— 1)

Associated Rayleigh quotient

Yjeelfi — i

R2(f): Z'ev|fi‘2
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Spectral-based approach

Introduce the Laplacian matrix of the graph

L,: R" — R"
foo= (Laf)i=3ee(fi— 1)

Associated Rayleigh quotient

e |f = f)?
Rz(f):EU€E|I 2J|
Ziev |f,‘
Ly is real symmetric and positive semi-definite
eigenvalues 0= < <o <A,
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Spectral-based approach

Introduce the Laplacian matrix of the graph

L,: R" — R"
foo= (Laf)i=3ee(fi— 1)

Associated Rayleigh quotient

Yjee Ifi = 2
Ziev|fi‘2

Ly is real symmetric and positive semi-definite

Ry(f) =

eigenvalues 0= < <o <A,

Select the disjoint subsets Ay, ..., Ak inside V using the
eigenvalues/vectors of Ly and the associated nodal domains
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Nodal domains

Number of Nodal Domains of a vector g € R™:

v(g) = overall number of maximal connected components in

G({i:g >0})and G({i: g <0})
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Spectral-based approach (k = 2)

When k = 2 we proceed as follows (sketch)
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e compute the eigenvector f, € R" associated to
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o select AT and A~ in V, defined by
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Spectral-based approach (k = 2)

When k = 2 we proceed as follows (sketch)

e compute the eigenvector f, € R" associated to

A2 = smallest nonzero eigenvalue of L,

o select AT and A~ in V, defined by
At ={i:(h); >0} A= ={i:(h); <0}

o approximate hg(2) with A,.

Two main theoretical results in support of these choices:

Fiedler theorem: v(f) =2 Cheeger inequality:
i.e. G(AT) and G(A™) are connected A2/2 < hg(2) < /2 dmax A2
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Nodal domains and Cheeger inequality for k > 2

When k > 2 the clustering technique is inspired by the previous one
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Nodal domains and Cheeger inequality for k > 2

When k > 2 the clustering technique is inspired by the previous one

The two theorems have been generalized into

Nodal domain theorem [Davies, Gladwell, Duval, Reiner, ... 1998-2001]

Let fy € R" be an eigenvector corresponding to Ax. Then
v(fx) < k
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Nodal domains and Cheeger inequality for k > 2

When k > 2 the clustering technique is inspired by the previous one

The two theorems have been generalized into

Nodal domain theorem [Davies, Gladwell, Duval, Reiner, ... 1998-2001]

Let fy € R" be an eigenvector corresponding to Ax. Then
I/(fk) < k

k-way Cheeger inequalities [Lee, Gharan, Trevisan, Miclo, ..., 2010-13]
Let Ay be the k-th smallest eigenvalue of Ly. Then

M /2 < hg (k) < O(K*)v/ Ak
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Can we do better? — Spectral approach based on p-Laplacian
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Can we do better? — Spectral approach based on p-Laplacian

Fix p > 1. Introduce a nonlinear version of the Laplacian

p-Laplacian Lp:f—(Lpf)i= Z |fi — 6.|P—2(f,. —f)
JiijeE

The linear L, is achieved if and only if p =2
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Can we do better? — Spectral approach based on p-Laplacian

Fix p > 1. Introduce a nonlinear version of the Laplacian

p-Laplacian Lp:f—(Lpf)i= Z |fi — 6.|P—2(f,. —f)
JiijeE

The linear L, is achieved if and only if p =2

Associated Rayleigh quotient

e |fi — 61 " .
Rp(f) = S fP Critical values/points of R, : R" — R
iev i

Eigenvalues/vectors of L, : R” — R”

Select the disjoint subsets Aj, ..., Ak inside V using the
eigenvalues/vectors of L, and the associated nodal domains
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Variational spectrum of L,

Part of our contribution:
extend nodal domain and Cheeger theorems to L, for a general p > 1
(the case p =1 is not considered in this presentation)

Francesco Tudisco p-Laplacian graph clustering June 23, 2015 9/13



Variational spectrum of L,

Part of our contribution:
extend nodal domain and Cheeger theorems to L, for a general p > 1
(the case p =1 is not considered in this presentation)

L is linear, symmetric,
positive semi-definite

Francesco Tudisco p-Laplacian graph clustering June 23, 2015 9/13



Variational spectrum of L,

Part of our contribution:
extend nodal domain and Cheeger theorems to L, for a general p > 1
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L is linear, symmetric,
positive semi-definite

4

n real nonnegative eigenvalues
n real orthogonal eigenvectors
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Variational spectrum of L,

Part of our contribution:
extend nodal domain and Cheeger theorems to L, for a general p > 1
(the case p =1 is not considered in this presentation)

L is linear, symmetric, L, is positive semi-definite, but
positive semi-definite not linear, not symmetric
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n real nonnegative eigenvalues
n real orthogonal eigenvectors
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Variational spectrum of L,

Part of our contribution:
extend nodal domain and Cheeger theorems to L, for a general p > 1
(the case p =1 is not considered in this presentation)

Ly is linear, symmetric, L, is positive semi-definite, but
positive semi-definite not linear, not symmetric
n real nonnegative eigenvalues unknown number of eigenvalues
n real orthogonal eigenvectors no properties on the eigenvectors

Many spectral characterizations:
Courant-Fischer, Ky-Fan, ...
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Variational spectrum of L,

Part of our contribution:
extend nodal domain and Cheeger theorems to L, for a general p > 1
(the case p =1 is not considered in this presentation)

L is linear, symmetric, L, is positive semi-definite, but
positive semi-definite not linear, not symmetric
4 4
n real nonnegative eigenvalues unknown number of eigenvalues
n real orthogonal eigenvectors no properties on the eigenvectors
4 4
Many spectral characterizations: characterize a set of n
Courant-Fischer, Ky-Fan, ... eigenvalues
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Variational spectrum of L,

Theorem [Hein & T. 2015]

)\E(p) = min max Rp(f)
Blpocog gk €ER” fespan{gi,....gk }
linearly independent

are eigenvalues of L, such that 0 < )\gp) < )\gp) <... < ASJ’) and the
corresponding eigenvectors can be chosen to be pairwise independent.
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linearly independent

are eigenvalues of L, such that 0 < )\gp) < )\gp) <... < ASJ’) and the
corresponding eigenvectors can be chosen to be pairwise independent.

Moreover

o /\S(p) = 0 if and only if G has exactly k connected components
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Variational spectrum of L,

Theorem [Hein & T. 2015]

)\E(p) = min max Rp(f)
Blpocog gk €ER” fespan{gi,....gk }
linearly independent

are eigenvalues of L, such that 0 < )\gp) < )\gp) <... < ASJ’) and the
corresponding eigenvectors can be chosen to be pairwise independent.

Moreover

o /\S(p) = 0 if and only if G has exactly k connected components

» Each eigenvector f of L, has zero p-mean:
Siev |filP2f; =0, forany p>1
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A p-Laplacian nodal domain theorem

The nodal domain theorem for the linear case

fx = eigenvector associated to the k-th eigenvalue of L;. Then
V(fk) S k

extends to L, for any p > 1, but restricted to variational spectrum.
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A p-Laplacian nodal domain theorem

The nodal domain theorem for the linear case

fx = eigenvector associated to the k-th eigenvalue of L;. Then
V(fk) S k

extends to L, for any p > 1, but restricted to variational spectrum.

Theorem [Hein & T. 2015]

Let 0 = )\gp) <... < )\ﬁ,p) be variational eigenvalues of the L, and let
fi,...,f, € R™ be corresponding variational eigenvectors. Then
I/(fk) S k
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fx = eigenvector associated to the k-th eigenvalue of L;. Then
V(fk) S k

extends to L, for any p > 1, but restricted to variational spectrum.

Theorem [Hein & T. 2015]

Let 0 = )\gp) <... < )\ﬁ,p) be variational eigenvalues of the L, and let
fi,...,f, € R™ be corresponding variational eigenvectors. Then
I/(fk) S k

Moreover (as for the linear case):
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A p-Laplacian nodal domain theorem

The nodal domain theorem for the linear case

fx = eigenvector associated to the k-th eigenvalue of L;. Then
V(fk) S k

extends to L, for any p > 1, but restricted to variational spectrum.

Theorem [Hein & T. 2015]

Let 0 = )\gp) <... < )\ﬁ,p) be variational eigenvalues of the L, and let
fi,...,f, € R™ be corresponding variational eigenvectors. Then
I/(fk) S k

Moreover (as for the linear case):
o v(h)=2
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A p-Laplacian nodal domain theorem

The nodal domain theorem for the linear case

fx = eigenvector associated to the k-th eigenvalue of L;. Then
V(fk) S k

extends to L, for any p > 1, but restricted to variational spectrum.

Theorem [Hein & T. 2015]

Let 0 = )\gp) <... < Aﬁ,p) be variational eigenvalues of the L, and let

fi,...,f, € R™ be corresponding variational eigenvectors. Then
I/(fk) S k
Moreover (as for the linear case):
° V(fg) =2
cfG=0—0—0—0" """ O The bound can not

be improved

then v(fy) = k, k=123, ..
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High-order Cheeger inequalities based on L,

The k-way Cheeger inequality for the linear Laplacian

Ak = k-th smallest eigenvalue of Ly. Then
/2 < hg(k) < O(k3)V Ak
extends to L, for any p > 1 and we get a better bound (for small p)
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Ak = k-th smallest eigenvalue of Ly. Then
/2 < hg(k) < O(k3)V Ak
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Francesco Tudisco p-Laplacian graph clustering June 23, 2015



High-order Cheeger inequalities based on L,

The k-way Cheeger inequality for the linear Laplacian

Ak = k-th smallest eigenvalue of Ly. Then
/2 < hg(k) < O(k3)V Ak
extends to L, for any p > 1 and we get a better bound (for small p)

[Hein & T., 2015]

Let )\S(p) be the k-th variational eigenvalue of L,. Then

Lo (P) K20+ 3) (P\1/p
21PN < hg(k) < O (Hll—illogk ()

e When p = 2 we get the previous inequality
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The k-way Cheeger inequality for the linear Laplacian

Ak = k-th smallest eigenvalue of Ly. Then
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High-order Cheeger inequalities based on L,

The k-way Cheeger inequality for the linear Laplacian

Ak = k-th smallest eigenvalue of Ly. Then
/2 < hg(k) < O(k3)V Ak
extends to L, for any p > 1 and we get a better bound (for small p)

[Hein & T., 2015]

Let )\S(p) be the k-th variational eigenvalue of L,. Then

Lo (P) K20+ 3) (P\1/p
21PN < hg(k) < O (Hll—illogk ()

e When p = 2 we get the previous inequality

e When p — 1 we get a linear relation between /\Ef) and hg(k)
e For k = 2 we prove )\gp) LaiN he(2)
e For G = path we prove )\Sf’) LintN hg(k), for any k =1,2,3, ...
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Conclusions

e L, is a “natural” nonnlinear generalization of L;
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Conclusions

e L, is a “natural” nonnlinear generalization of L;

¢ The eigenvalues/vectors of L, can be used in graph clustering to get
tighter estimates

o p-Spectral clustering has a rich theoretical background

Challenges

Efficient techniques for the computation of eigenvalues/vectors of L,

* More properties on variational eigenvectors of L,

Lower bounds on v(f) for f = eigenvector of L,

Propose clustering algorithms based on the eigenvalues/vectors of L,
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