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Warm-Up Example: Centrosymmetry

A matrix A ∈ IRn×n is centrosymmetric if A = AT and A = EnAEn

where
En = In(:, n:−1:1) ∈ IRn×n

E.g.,

E4 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 A =


a b c d
b e f c
c f e b
d c b a

 .

Symmetric about its diagonal and anti-diagonal

A Centrosymmetric Matrix is an example of a matrix that has
multiple symmetries.

Structured Matrix Computations from Structured Tensors Lecture 5. Multiple Symmetries & Low-Rank Approximation 2 / 39



Warm-Up Example: Centrosymmetry

Since

Ax = λx ⇒ EAEx = λx ⇒ A(Ex) = λ(Ex)

we see that the eigenvectors come in two flavors:

x = Ex =



x1

x2

x3

x3

x2

x1

 x = −Ex =



x1

x2

x3

−x3

−x2

−x1


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Warm-Up Example: Centrosymmetry

This means that the left and right halves of the orthogonal matrix

QE =
1√
2

[
Im Im

Em −Em

]
≡

[
Q+ Q−

]

=
1√
2



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 1 0 0 −1
0 1 0 0 −1 0
1 0 0 −1 0 0


define a pair of invariant subspaces.

EQ+ = Q+ EQ− = Q−
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Warm-Up Example: Centrosymmetry

Thus,

QE =
1√
2

[
Im Im

Em −Em

]
≡

[
Q+ Q−

]
should block diagonalize

A =

[
A11 A12

A21 A22

]
if A s centrosymmetric. Indeed

QT
E AQE =

[
A11 + A12Em 0

0 A11 − A12Em

]
≡

[
A+ 0

0 A−

]
.
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Warm-Up Example: Centrosymmetry

If A is positive definite and

QT
E AQE =

[
A11 + A12Em 0

0 A11 − A12Em

]
≡

[
A+ 0

0 A−

]
.

then we could solve a linear system Ax = b with a pair of half-sized
Cholesky factorizations

A+ = G+GT
+ A− = G−GT

−

Total cost = one-fourth the cost if A was just symmetric and positive
definite.
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Warm-Up Example: Centrosymmetry

If A is positive semidefinite definite and

QT
E AQE =

[
A11 + A12Em 0

0 A11 − A12Em

]
≡

[
A+ 0

0 A−

]
.

then we could produce a structured reduce-rank representation of A
with a pair of half-sized LDL factorizations

P+A+PT
+ = L+D+LT

+ P−A−PT
− = L−D−LT

− .

Indeed,

A =
[

Q+ Q−
] [

A+ 0

0 A−

] [
Q+ Q−

]T
= Y+D+Y T

+ + Y−D−Y T
−

where Y+ = Q+PT
+ L+ and Y− = Q−PT

− L−.

Structured Matrix Computations from Structured Tensors Lecture 5. Multiple Symmetries & Low-Rank Approximation 7 / 39



Recall LDL with Diagonal Pivoting

If A was Symmetric and Positive Semidefinite, then we could use LDL
(Cholesky) with diagonal pivoting...

PAPT = LDLT


P is a permutation

L ∈ IRn2×r is unit lower triangular

D = diag(di ), d1 ≥ d2 ≥ · · · ≥ dr > 0

PAPT =



× 0 0
× × 0
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×



 d1 0 0
0 d2 0
0 0 d3

  × × × × × × × × ×
0 × × × × × × × ×
0 0 × × × × × × ×


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If we want to produce a reduced rank approximation to a
matrix that has multiple symmetries, then we would like
the approximation to inherit those multiple symmetries.
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Perfect-Shuffle Symmetry
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The Two-Electron Integral Tensor (TEI)

Given a basis {φi (r)}ni=1 of atomic orbital functions, we consider the
following order-4 tensor:

A(p, q, r , s) =

∫
R3

∫
R3

φp(r1)φq(r1)φr (r2)φs(r2)

‖r1 − r2‖
dr1dr2.

The TEI tensor plays an important role in electronic structure theory
and ab initio quantum chemistry.

The TEI tensor has these symmetries:

A(p, q, r , s) =


A(q, p, r , s) (i)

A(p, q, s, r) (ii)

A(r , s, p, q) (iii)

We say that A is “((12)(34))-symmetric”.
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Atomic Orbital Basis −→ Molecular Orbital Basis

If the molecular orbital basis functions {ψi (r)}ni=1 are defined by

ψi (r) =
n∑

k=1

X (i , k)φk(r) i = 1, 2, . . . , n

then the molecular orbital basis tensor

B(p, q, r , s) =

∫
R3

∫
R3

ψp(r1)ψq(r1)ψr (r2)ψs(r2)

‖r1 − r2‖
dr1dr2.

is given by...

Structured Matrix Computations from Structured Tensors Lecture 5. Multiple Symmetries & Low-Rank Approximation 12 / 39



The ((12)(34))-Symmetric Multilinear Product

B(j1, j2, j3, j4)

=
n∑

i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

A(i1, i2, i3, i4) · X (i1, j1) · X (i2, j2) · X (i3, j3) · X (i4, j4)

and the tensor B has these symmetries...

B(p, q, r , s) =


B(q, p, r , s)

B(p, q, s, r)

B(r , s, p, q)

In other words B is also ((12)(34))-symmetric.
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The Block Matrix Product Formulation

If A = (Ars) and B = (Brs) are n-by-n block matrices with n-by-n
blocks and

A(p, q, r , s) ↔ [ Ars ]pq

B(p, q, r , s) ↔ [ Brs ]pq

then the ((12)(34))-symmetric multilinear product is equivalent to

B = (X ⊗ X )TA(X ⊗ X )

The matrix A (and B) is special...
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A “Inherits” A’s Structure

Since
A(p, q, r , s) ↔ [ Ars ]pq

and

A(p, q, r , s) =


A(q, p, r , s) (i)

A(p, q, s, r) (ii)

A(r , s, p, q) (iii)

it follows that

(i) The blocks of A are symmetric (AT
rs = Ars) because of (i).

(ii) A is symmetric as a block matrix (Ars = Asr ) because (ii).
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Time to Talk About Unfoldings

The tensor A ∈ IRn×n×n×n can be unfolded several ways.

We have depicted the [1, 3]× [2, 4] unfolding A = A[1,3]×[2,4]

defined by

A(i1, i2, i3, i4) → A(i1 + (i3 − 1)n, i2 + (i4 − 1)n)

Also of interest is the [1, 2]× [3, 4] unfolding A = A[1,2]×[3,4]

defined by

A(i1, i2, i3, i4) → A(i1 + (i2 − 1)n, i3 + (i4 − 1)n)

If A is ((12)(34))-symmetric, these two unfoldings display different
multiple symmetries...
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The [1, 3]× [2, 4] Unfolding a ((12)(34))-Symmetric A

If A = A[1,3]×[2,4], then (as we have seen) A is block symmetric with
symmetric blocks.

A =



11 12 13 12 17 18 13 18 22
12 14 15 17 19 20 18 23 24
13 15 16 18 20 21 22 24 25

12 17 18 14 19 23 15 20 24
17 19 20 19 26 27 20 27 29
18 20 21 23 27 28 24 29 30

13 18 22 15 20 24 16 21 25
18 23 24 20 27 29 21 28 30
22 24 25 24 29 30 25 30 31


.
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The [1, 2]× [3, 4] Unfolding of a ((12)(34)) Symmetric A

If A = A[1,2]×[3,4], then A is symmetric and (among other things) is
“perfect shuffle” symmetric.

A =



11 12 13 12 14 15 13 15 16
12 17 18 17 19 20 18 20 21
13 18 22 18 23 24 22 24 25

12 17 18 17 19 20 18 20 21
14 19 23 19 26 27 23 27 28
15 20 24 20 27 29 24 29 30

13 18 22 18 23 24 22 24 25
15 20 24 20 27 29 24 29 30
16 21 25 21 28 30 25 30 31



Each column
reshapes into
a 3x3 symmetric
matrix, e.g., A(:, )
reshapes to 11 12 13

12 14 15
13 15 16



What is perfect shuffle symmetry?
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Perfect Shuffle Symmetry

An n2-by-n2 matrix A has perfect shuffle symmetry if

A = Πn,nAΠn,n

where

Πn,n = In2(:, v), v = [ 1:n:n2 | 2:n:n2 | · · · | n:n:n2 ].

e.g.,

Π3,3 =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


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The Perfect Shuffle Πnn

Because Πn,n is symmetric it has just two eigenvalues: +1 and −1.

Π3,3 =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1





x11

x21

x31

x12

x22

x32

x13

x23

x33


= ±



x11

x12

x13

x21

x22

x23

x31

x32

x33


If Πn,nx = x , then reshape(x , n, n) is symmetric.

If Πn,nx = −x , then reshape(x , n, n) is skew-symmetric.

Structured Matrix Computations from Structured Tensors Lecture 5. Multiple Symmetries & Low-Rank Approximation 20 / 39



Low-Rank PS-Symmetric Approximation
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PS-Symmetry

Definition

The n2-by-n2 matrix A is PS-symmetric if A = AT = Πn,nAΠn,n.

PS Fact 1

If A is PS-Symmetric, then so is B = (X ⊗ X )TA(X ⊗ X ).

PS Fact 2

If A is ((12)(34))-symmetric and A = A[1,2]×[3,4] then

Πn,nA = A AΠn,n = A

and so (of course) A is PS-symmetric.
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The Challenge

What we have:

A (cheap) positive definite PS-symmetric matrix A ∈ IRn2×n2
where

rank(A) ≈ n and X ∈ IRn×n.

What we Want

A low rank positive semidefinite approximation B̃ to

B = (X ⊗ X )TA(X ⊗ X )

that is also PS-Symmetric

Structured Matrix Computations from Structured Tensors Lecture 5. Multiple Symmetries & Low-Rank Approximation 23 / 39



Solution Framework:

1 Closed-form block diagonalization with a special
highly-structured orthogonal Q = [Q1 Q2]:

QTAQ =

[
A1 0

0 A2

]
2 Compute half-sized rank-revealing LDL factorizations:

PiAiP
T
i ≈ LiDiL

T
i , i = 1, 2

3 Set
Ã = Y1D1Y

T
1 + Y2D2Y

T
2

where Yi = QiP
T
i Li .

4 B ≈ B̃ = (X ⊗ X )T Ã(X ⊗ X )
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The Block Diagonalization

Recall that if S is a symmetric matrix and v =reshape(S , n2, 1) then
Πn,nv = v .

A basis for the invariant subspace:



1
0
0
0
0
0
0
0
0


,



0
1
0
0
0
0
0
0
0


,



0
0
1
0
0
0
0
0
0


,



0
1
0
1
0
0
0
0
0


,



0
0
1
0
0
0
1
0
0


,



0
0
0
0
0
1
0
1
0




The span of these vectors is invariant for a PS-symmetric matrix A:

Πn,nv = v ⇒ Av = (Πn,nAΠn,n)v = Πn,n(AΠn,nv) = Πn,n(Av)
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The Block Diagonalization

Recall that if S is a skew-symmetric matrix and v =reshape(S , n2, 1)
then Πn,nv = −v .

A basis for the invariant subspace:



0
1
0

−1
0
0
0
0
0


,



0
0
1
0
0
0

−1
0
0


,



0
0
0
0
0
1
0

−1
0




The span of these vectors is invariant for a PS-symmetric matrix A:

Πn,nv = v ⇒ Av = (Πn,nAΠn,n)v = Πn,n(AΠn,nv) = Πn,n(Av)
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The Orthogonal Matrix Qn,n

Q3,3 =
1√
2



√
2 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 −1 0 0

0
√

2 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 −1 −1

0 0
√

2 0 0 0 0 0 0


= [ Qsym | Qskew ]

Q3,3(:, 4) ≡

 0 1 0
1 0 0
0 0 0

 Q3,3(:, 7) ≡

 0 −1 0
1 0 0
0 0 0


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Block Diagonalization

If A ∈ IRn2×n2
is PS-symmetric then

QT
n,nAQn,n =



× × × × × × 0 0 0
× × × × × × 0 0 0
× × × × × × 0 0 0
× × × × × × 0 0 0
× × × × × × 0 0 0
× × × × × × 0 0 0

0 0 0 0 0 0 × × ×
0 0 0 0 0 0 × × ×
0 0 0 0 0 0 × × ×


=

[
Asym 0

0 Askew

]

But there is more...
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Askew = 0!

Suppose A is ((12)(34)) symmetric and A = A[1,2]×[3,4].

Recall that the rows of A are reshaped symmetric matrices, i.e.,
A = AΠn,n.

Thus

Askew = QT
skewAQskew

= QT
skew(AΠn,n)Qskew

= QT
skewA(Πn,nQskew)

= −QT
skewAQskew = −Askew

So Askew = 0.
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More on B̃

Since

Ã = YDY T =
r∑

k=1

dkykyT
k

where Y = [y1 | · · · | yr ], it follows that

B̃ = (X ⊗ X )T Ã(X ⊗ X ) =
r∑

k=1

dkwkwT
k

where wk = (X ⊗ X )yk , k = 1:r .

The rank-1 matrices wkwT
k are PS-symmetric.

O(rn3) instead of O(n5)
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Representing B̃
We have shown this:

B̃[1,2]×[3,4] =
r∑

k=1

dkwkwT
k

It is not hard to show this

B̃[1,3]×[2,4] =
r∑

k=1

dkWk ⊗Wk

where Wk = reshape(wk , n, n) is symmetric.

The Kronecker product expansion is an LDL-based version of a truncated
Kronecker Product SVD of B:

B =
n2∑

k=1

σiUi ⊗ Vi Vi = Ui = UT
i
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A Comment On LDL

The integrals that define the entries in ((12)(34))-symmetric A may
be expensive to evaluate.

If A = A[1,2]×[3,4] has rank r then LDL costs O(n2r2).

It would be unfortunate if we had to compute all the entries in A:
O(n4) integrals.

Solution: Lazy LDL.
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PAPT = LDLT (Lazy Evaluation Version)

At the start of step 4:

PAPT =



1 0 0 0 0 0 0 0
x 1 0 0 0 0 0 0
x x 1 0 0 0 0 0

x x x 1 0 0 0 0
x x x 0 1 0 0 0
x x x 0 0 1 0 0
x x x 0 0 0 1 0
x x x 0 0 0 0 1





d 0 0 0 0 0 0 0
0 d 0 0 0 0 0 0
0 0 d 0 0 0 0 0

0 0 0 x × × × ×
0 0 0 × x × × ×
0 0 0 × × x × ×
0 0 0 × × × x ×
0 0 0 × × × × x





1 x x x x x x x
0 1 x x x x x x
0 0 1 x x x x x
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


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PAPT = LDLT (Lazy Evaluation Version)

Find the largest remaining diagonal entry:

PAPT =



1 0 0 0 0 0 0 0
x 1 0 0 0 0 0 0
x x 1 0 0 0 0 0

x x x 1 0 0 0 0
x x x 0 1 0 0 0
x x x 0 0 1 0 0
x x x 0 0 0 1 0
x x x 0 0 0 0 1





d 0 0 0 0 0 0 0
0 d 0 0 0 0 0 0
0 0 d 0 0 0 0 0

0 0 0 x × × × ×
0 0 0 × x × × ×
0 0 0 × × × ×
0 0 0 × × × x ×
0 0 0 × × × × x





1 x x x x x x x
0 1 x x x x x x
0 0 1 x x x x x
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


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PAPT = LDLT (Lazy Evaluation Version)

Permute into the lead diagonal position:

PAPT =



1 0 0 0 0 0 0 0
x 1 0 0 0 0 0 0
x x 1 0 0 0 0 0

x x x 1 0 0 0 0
x x x 0 1 0 0 0
x x x 0 0 1 0 0
x x x 0 0 0 1 0
x x x 0 0 0 0 1





d 0 0 0 0 0 0 0
0 d 0 0 0 0 0 0
0 0 d 0 0 0 0 0

0 0 0 × × × ×
0 0 0 × x × × ×
0 0 0 × × x × ×
0 0 0 × × × x ×
0 0 0 × × × × x





1 x x x x x x x
0 1 x x x x x x
0 0 1 x x x x x
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


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PAPT = LDLT (Lazy Evaluation Version)

Evaluate the entries in the subcolumn:

PAPT =



1 0 0 0 0 0 0 0
x 1 0 0 0 0 0 0
x x 1 0 0 0 0 0

x x x 1 0 0 0 0
x x x 0 1 0 0 0
x x x 0 0 1 0 0
x x x 0 0 0 1 0
x x x 0 0 0 0 1





d 0 0 0 0 0 0 0
0 d 0 0 0 0 0 0
0 0 d 0 0 0 0 0

0 0 0 x x x x
0 0 0 x x × × ×
0 0 0 x × x × ×
0 0 0 x × × x ×
0 0 0 x × × × x





1 x x x x x x x
0 1 x x x x x x
0 0 1 x x x x x
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


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PAPT = LDLT (Lazy Evaluation Version)

Get the next L-column and update remaining diagonal entries...

PAPT =



1 0 0 0 0 0 0 0
x 1 0 0 0 0 0 0
x x 1 0 0 0 0 0
x x x 1 0 0 0 0

x x x x 1 0 0 0
x x x x 0 1 0 0
x x x x 0 0 1 0
x x x x 0 0 0 1





d 0 0 0 0 0 0 0
0 d 0 0 0 0 0 0
0 0 d 0 0 0 0 0
0 0 0 d 0 0 0 0

0 0 0 0 x × × ×
0 0 0 0 × x × ×
0 0 0 0 × × x ×
0 0 0 0 × × × x





1 x x x x x x x
0 1 x x x x x x
0 0 1 x x x x x
0 0 0 1 x x x x
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


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Conclusions

Tensor problems with multiple symmetries lead to matrix
problems with multiple symmetries.

This talk revolved around an order-4 tensor and matrices with
two symmetries.

Current methods do not fully exploit PS-Symmetry.

Anticipate more dramatic savings if we pursue this methodology
on higher-order problems with numerous symmetries.
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Optional “Fun” Problems

Problem E5. How would you compute the Schur Decomposition of a
PS-symmetric matrix?

Problem A5. If a matrix is symmetric, the work involved in solving Ax = b
is halved. If a matrix is centrosymmetric, then the work involved is reduced
by a factor of 4. If a matrix has 3 types of symmetry then work should be
reduced by a factor of ????
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