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Warm-Up Example: Centrosymmetry

A matrix A € R™" is centrosymmetric if A= AT and A = E,AE,

where
E, = I,(:,m:—1:1) e R™"
Eg.,
0 001 a b c d
0010 b e f ¢
Ee=1010 0 A=l e ¢ o b
1 000 d ¢ b a

Symmetric about its diagonal and anti-diagonal

A Centrosymmetric Matrix is an example of a matrix that has
multiple symmetries.

Structured Matrix Computations from Structured Tensors = Lecture 5. Multiple Symmetries & Low-Rank Approximation 2 / 39



Warm-Up Example: Centrosymmetry

Since
Ax = Ax = EAEx = Ax = A(Ex) = A\(Ex)

we see that the eigenvectors come in two flavors:

e P
X2 X2
x = Ex = S x=—Ex = e
X3 —X3
X2 —X2

| X1 ] L —X1 |
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Warm-Up Example: Centrosymmetry

This means that the left and right halves of the orthogonal matrix

QE:

_',":.’m]zmo]

Sl
o

il =
N
H O O OO~

OO, P OO
= O O O o+
OO P OO

O~ OO RO
|

O OO+ O

define a pair of invariant subspaces.

EQ =Q, EQ =Q
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Warm-Up Example: Centrosymmetry

Thus,

should block diagonalize

A A
A =
[ A1 Ax }

if A's centrosymmetric. Indeed

Ai1 + A2En 0 ] B [A+ 0 ]

QFAQe =
£ 0 Al — AEn
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Warm-Up Example: Centrosymmetry

If Ais positive definite and

A1l + AEn 0 ] _ [A+ 0 ]

QI AQ: =
EOE 0 A11 — A12Em 0 A

then we could solve a linear system Ax = b with a pair of half-sized
Cholesky factorizations

A =GGT A =G6GT

Total cost = one-fourth the cost if A was just symmetric and positive
definite.
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Warm-Up Example: Centrosymmetry

If A is positive semidefinite definite and

TAQ. — A1 + AEn 0 _ A, 0 ‘
£ 0 A11 — AoEn 0 A

then we could produce a structured reduce-rank representation of A
with a pair of half-sized LDL factorizations

P.APT = L,D,LT PAP =L DL
Indeed,
A0
A—[QQ][ 0 A [Q.|@ " =vDY  +YDYT

where Y. = Q P'L,and Y = Q PTL .
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Recall LDL with Diagonal Pivoting

If A was Symmetric and Positive Semidefinite, then we could use LDL
(Cholesky) with diagonal pivoting...

P is a permutation
PAPT = LDLT L € R™*" is unit lower triangular
D:dlag(dl)7 dl 2d222dr>0

[x 0 07 d 0 0 X X X X X X X X X
x x 0 0 d O 0 X X X X X X X X
X R R 0 0 ds 0 0 X X X X X X X
X X X

PAPT = | x x x
X X X
X X X
X X X
| X X x|
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If we want to produce a reduced rank approximation to a
matrix that has multiple symmetries, then we would like
the approximation to inherit those multiple symmetries.
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Perfect-Shuffle Symmetry
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The Two-Electron Integral Tensor (TEI)

Given a basis {¢;(r)}"_; of atomic orbital functions, we consider the
following order-4 tensor:

dl’ldl’z.

A(p,q,r,s) = / $p(r1)q(r1)er(r2)ds(r2)

R3 JR3 [r1 — ro]

The TEI tensor plays an important role in electronic structure theory
and ab initio quantum chemistry.

The TEI tensor has these symmetries:

Alg,p,r,s) (i)
A(p,q,r,s) = A(p,q,s,r) (i)
A(r,s,p,q) (iii)

We say that A is “((12)(34))-symmetric”.
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Atomic Orbital Basis — Molecular Orbital Basis

If the molecular orbital basis functions {#;(r)}"_; are defined by

Yi(r) =Y X(i,K)ge(r) i=1,2,....n
k=1

then the molecular orbital basis tensor

drldrg.

B(p,q,r,s) = / Vp(r1)vg(ri)r(r2)vs(r2)

R3 JR3 [r1 —r2|

is given by...
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The ((12)(34))-Symmetric Multilinear Product

B(j17j27j37j4)

SO Al iy isy i) - X(ins 1) - X iz 2) - X (i3, Js) - X (i ja)

i1=1 =1 i3=1 iz=1

and the tensor B has these symmetries...

B(q,p,r,s)
B(p7q7r7s): B(p?q7s7r)
B(r,s,p,q)

In other words 5 is also ((12)(34))-symmetric.
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The Block Matrix Product Formulation

If A= (As) and B = (Bs) are n-by-n block matrices with n-by-n
blocks and

-A(pa q, r75) - [A”S ]pq
B(p,q,r.s) < [Brslpy,
then the ((12)(34))-symmetric multilinear product is equivalent to

B =(X®X)TAX® X)

The matrix A (and B) is special...

Structured Matrix Computations from Structured Tensors | Lecture 5. Multiple Symmetries & Low-Rank Approximation 14 / 39



A “Inherits” ’'s Structure

Since
A(p,q,r,s) < [Ars ]pq

and
A(q,p,r,s) (i)

A(p,q,r,s) = { Alp,q,s,r) (i)
A(r,s,p,q) (i)
it follows that

(i) The blocks of A are symmetric (AL = A,s) because of (i).

(i) A is symmetric as a block matrix (A,s = As) because (ii).
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Time to Talk About Unfoldings

The tensor A € IR"*™ ™" can be unfolded several ways.

@ We have depicted the [1,3] x [2,4] unfolding A = Ap 3.4
defined by

A, i2, i3, ia) — A + (i3 = 1)n, iz + (ia — 1)n)
@ Also of interest is the [1,2] x [3,4] unfolding A = Ay s34
defined by
A(il, I, I3, i4) — A(il + (iz = 1)”, i3+ (i4 = l)n)

If Ais ((12)(34))-symmetric, these two unfoldings display different
multiple symmetries...
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The [1,3] X [2,4] Unfolding a ((12)(34))-Symmetric

If A= A} 30,4, then (as we have seen) A is block symmetric with
symmetric blocks.

12 14 15|17 19 20|18 23 24
13 15 16|18 20 21|22 24 25
12 17 18|14 19 23|15 20 24
17 19 20|19 26 27|20 27 29
18 20 21|23 27 28|24 29 30
13 18 22|15 20 24|16 21 25
18 23 24120 27 29|21 28 30
22 24 25|24 29 30|25 30 31

>
I
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The [1,2] x [3,4] Unfolding of a ((12)(34)) Symmetric

If A= Apxp.a. then Ais symmetric and (among other things) is
“perfect shuffle” symmetric.

f11 12 13|12 14 15]13 15 16 ]
12 17 18|17 19 20|18 20 21 | 20 tTh

13 18 22|18 23 2422 24 25 | aaon
12 17 18|17 19 20|18 20 21 | matrix eg., A()
A= |14 19 23|19 26 27|23 27 28 reshapes to

15 20 24 (20 27 29|24 29 30
13 18 22|18 23 24|22 24 25 [11 12 13]

Each column

15 20 2420 27 29|24 29 30 g 1‘5‘ 12
16 21 25|21 28 30|25 30 31

What is perfect shuffle symmetry?
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Perfect Shuffle Symmetry

An n’-by-n® matrix A has perfect shuffle symmetry if

A=1nN,,AN,,
where
M., = 12(:,v), v = [Lnn? | 2:n:0% | - | nnin?].
€8 10 0/0 0 0[0 0 07
00 0|1 0 0|0 O O
00 0|0 O 0|1 O O
01 0/{0 O 0|0 O O
Mz = |00 0[0 1 0[0 0 0
0 0 0|0 O 0|0 1 O
00 1|/{0 0 0/{0 O O
00 0|0 O 1|/0 0 O
LO 0O 0|0 O 0|0 O 1 |
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The Perfect Shuffle M,

Because [1,, is symmetric it has just two eigenvalues: +1 and —1.

M33 =

O O OO OO O o

O O OO O+ O oo

O O RO OO O oo

O O OO OO o~ O

O O OO~ OO o o

O R OO OO O o o

O O OO O o+~ OO

O O O|lr OO O o o

= O OO O O O o o

X11
X21
X31
X12
X22
X32
X13
X23
X33

If M, ,x = x, then reshape(x, n, n) is symmetric.

If M,,x = —x, then reshape(x, n, n) is skew-symmetric.

X11
X12
X13
X21
X22
X23
X31
X32
X33
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Low-Rank PS-Symmetric Approximation
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PS-Symmetry

Definition

The n2—by—n2 matrix A is PS-symmetric if A = AT = n,,Af,,.

PS Fact 1
If Ais PS-Symmetric, then sois B = (X ® X)TA(X ® X).

PS Fact 2
If Ais ((12)(34))-symmetric and A = A} 3.4 then

n,,A=A All,, =A

and so (of course) A is PS-symmetric.
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The Challenge

What we have:

A (cheap) positive definite PS-symmetric matrix A € R™*" where
rank(A) ~ nand X € R™".

What we Want

A low rank positive semidefinite approximation B to
B =(X®X)TAX® X)

that is also PS-Symmetric
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Solution Framework:

@ Closed-form block diagonalization with a special
highly-structured orthogonal Q@ = [Q1 Q2]

A 0
0 A

@ Compute half-sized rank-revealing LDL factorizations:

RTAQ =

PAPT ~ LiDil], i=1,2
O Set
A= YiD1Y] + YoDoY,'

where Y; = Q,-P,-TL,-.
Q@ Br B=X3X)TAX®X)
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The Block Diagonalization

Recall that if S is a symmetric matrix and v =reshape(S, n?,1) then
Mn,.v = v.

A basis for the invariant subspace:

O OO OO OO o+
OO OO OO Oo o
O O O OO oOmrH oo
OO OO OH+Hr O~ OoO
OO+ OOOoOMFOoOOo
O, O O OO OO

The span of these vectors is invariant for a PS-symmetric matrix A:

MN.wv=v = Av=(N,,AN,)v="0,.,(AN,,v)=1",,.(Av)
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The Block Diagonalization

Recall that if S is a skew-symmetric matrix and v =reshape(S, n?,1)
then I, ,v = —v.

A basis for the invariant subspace:

OO O OO OF O
OO+ OOOoOH+rH oo
O O OOOOOo

The span of these vectors is invariant for a PS-symmetric matrix A:

MN.wv=v = Av=(N,,AN,)v="0,.,(AN,,v)=1",,.(Av)
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The Orthogonal Matrix Q,,

V2.0 0 0 0 0| 0O 0 O

0o 0 0 1 0 0] 1 0 O

0 0 0 0 1 0| 0 1 0O

|0 0 0 1.0 0/-1 0 0

Q3’3:% 0 v2 0 0 0 0] 0 0 0 |=[Qum|Qudl

0 0 0 0 0 1] 0 0 1

0 0 0 0 1 0| 0 0 O

0 0 0 0 0 1| 0 -1 -1

0 0 v2 0 0 0] 0 0 O]
010 0 -1 0
Q373(Z,4-) = [1 0 O] Q3,3(:,7) = |:1 0 0]
000 0 00
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Block Diagonalization

If A€ R™*" is PS-symmetric then

A 0
T sym
A n.n pu— p—
Q"a" Q , [ O Askew ]

X X X|O O o o o o
X X X|O O o o o o
X X X|O©O O o o o o

O O Ol X X X X X X
O O OlX X X X X X
O O OlX X X X X X
O O Ol X X X X X X
O O Ol X X X X X X
O O Ol X X X X X X

But there is more...
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Suppose A is ((12)(34)) symmetric and A = Ap ap3.4-

Recall that the rows of A are reshaped symmetric matrices, i.e.,
A=Al,,.

Thus
A = QL AQ.
= Qu.(AN,,)Que
= QLAM,, Q)
= —QLAQw = —Asen

SO Askew = 0
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More on B

Since

r
A=YDYT = dyy

where Y =1[y1 | --- | y, ], it follows that
B =X3X)TAX® X) dewkwk
where wy = (X & X))y, k = 1:r.

The rank-1 matrices WkaT are PS-symmetric.

O(rn3) instead of O(n®)
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We have shown this:

r
2 T
B[l,2]><[3,4] = E deka
k=1

It is not hard to show this

.
Buapa = Y deWi ® Wi
k=1

where W), = reshape(wg, n, n) is symmetric.

The Kronecker product expansion is an LDL-based version of a truncated
Kronecker Product SVD of B:

n2
B=)Y oiU®V, Vi=U=UT
k=1
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A Comment On LDL

The integrals that define the entries in ((12)(34))-symmetric A may
be expensive to evaluate.

If A= Apyupa has rank r then LDL costs O(n?r?).

It would be unfortunate if we had to compute all the entries in A:
O(n*) integrals.

Solution: Lazy LDL.
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—

(Lazy Evaluation Version

LDLT

PAPT

At the start of step 4:

0 1 x{x x x X X

0 0 1|x x x x x

0 001 00O0TO
0 00l01TO0O0O

0 00f0 0100

0 00f0O0OTI1OWO

0000 O0O0TO0T1

X
X

X
X

X
X

X
X

X

X
X
X

X

X

X
X

X
X

X

X

0d 0|0 0O 0 0 O

00 d/0O 0 0 0 O

000

0 0 0]x
000

0 0 0|x x

000

1 0 0j]0 0 00 07fd O 0[O0 O O O 071 x x|x x x x x]

x 1 00 0 0 0 O
x x 10 0 0 0 O
x x x[1 0 0 00
x x x|0 1 0 00
x x x[0 0 1 00
x x x|0 0 0 10
x x x[0 0 0 0 1

PAPT

(=2}
(2]
S~
(2]
™
s
S
=
g
£
X
o
o
o
o
<
<
S
©
g
2
o
-
=~
7
[}
=
=
®
£
£
>
(2]
o
3
=
=
=
w
[
@
=
E
Q
Q
-
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—

(Lazy Evaluation Version

LDLT

PAPT

Find the largest remaining diagonal entry:

T
X X XOo oo™
X X X|ooom™o
X X X OO = O O
X X X|om o0 oo
X X X O O OO
X X = ooooo
X ™= OO O O OO
- o oloo o oo
L )
T |
O o Oo|X X X X %
O o Oo|X X X X X
coo|lx XM X X
OO Oo|lX X X X X
o oOo|lxXx X X X X
O O TO O O O o
O T OO o oo
T OOojloo oo o
L )
T ]
OO OO0 OO ™
cooclooomoOo
O O OO0 = O O
coolo- o oo
O OO O O O O
COm|X X X X X
O X|X X X X X
- X X[X X X x X
L )

Il

A

NS

Q

(=2}
(2]
S~
<
2]
s
S
=
g
£
X
o
o
o
o
<
<
S
©
«
2
o
-
=~
7
[}
=
=
®
£
£
>
(2]
o
3
=
=
=
w
[
@
=
E
Q
Q
-
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—

(Lazy Evaluation Version

LDLT

PAPT

Permute into the lead diagonal position:

r
X X XOo oo™
X X X|looom-wo
X X X OO = O O
X X X|lo- o oo
X X X O O OO
X X=|ooooo
X ™= OO O O OO
— o oloo oo o
L )
r 1
OO0 OolX X X X X
OO0 Oo|lX X X X X
O o0 oOoflX X X X X
O o0 OoOflX X X X X
co ol X X X X
O O TO O O O o
O T OO o oo
T oOooloo o oo
L )
r |
OO OO0 OO ™
cooclooco-o
O O OO0 = O O
cooclo-~ o oo
O OO O O O O
OO mH|X X X X X
O X|X X X X X
— X X[X X X X X
L )

Il

A

NS

Q

(=2}
(2]
S~
wn
™
s
S
=
g
£
X
o
o
o
o
<
<
S
©
g
2
o
-
=~
7
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=
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(Lazy Evaluation Version

LDLT

PAPT

Evaluate the entries in the subcolumn:

01 x|x x x x X

0 0 1|x x x x x

0 00|11 0O0O0OTDO

0 00|/010O0TO0

0 00/0O01O0TO0

0 00/0O0O0T1O

0 00/0O0O0TO0T1

X
X
X
X
X

X
X
X

X
X
X

X
X
X
X

X

X

X

X

0dO0j0 0 0 0 O

00 d/0 0O 0 0 O
0 0 O|M x

0 00

0 0 0]x
0 00

0 0 0]x

1t o 00 0 0 007[d O O0]|0 O O O 0771 x x|x x x x x]

x 1 00 0 0 0 O
x x 10 0 0 0 O
x x x[1 0 0 00
x x x|0 1 0 00
x x x[0 0 1 00
x x x|0 0 0 10
x x x[0 0 0 0 1

PAPT

(=2}
(2]
S~
o
(2]
s
S
=
g
£
X
o
o
o
o
<
<
S
©
g
2
=]
-
=~
7
[}
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PAPT = [DL™ (Lazy Evaluation Version)

Get the next L-column and update remaining diagonal entries...

PAPT =

X X X X[X X X =
X X X X[X X = O
X X X X|[X = O O
X X X X|= O O O
O OO O OO o
=N NeNellelNeNe N
O O O oo oa o
O O O OO0 a oo
X X X X|o o oo
X X X X|©Oo o oo
X X X X|oOo o oo
X X X X|o o oo

OO OO0 OO =
O O O OO O == X
O O O OO == X X
O O O O X X X
O O O M|X X X X
O O M O|X X X X
O = O O|X X X X
O O OX X X X

O OO o oo oa
O O O ola O oo

O O = O O O O o
O O O OO OO
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Conclusions

@ Tensor problems with multiple symmetries lead to matrix
problems with multiple symmetries.

@ This talk revolved around an order-4 tensor and matrices with
two symmetries.

@ Current methods do not fully exploit PS-Symmetry.

@ Anticipate more dramatic savings if we pursue this methodology
on higher-order problems with numerous symmetries.
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Optional “Fun” Problems

Problem E5. How would you compute the Schur Decomposition of a
PS-symmetric matrix?

Problem A5. If a matrix is symmetric, the work involved in solving Ax = b
is halved. If a matrix is centrosymmetric, then the work involved is reduced
by a factor of 4. If a matrix has 3 types of symmetry then work should be
reduced by a factor of 7777
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