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Complex networks. . . ?

A complex network is a graph that exhibits non-trivial topological
features.✞✝ ☎✆A complex network is not a regular, nor a random graph.

They are used to model interactions of various types:

• social networks: collaboration, friendship,. . . ;

• biological networks: PPI, food webs,. . . ;

• technological networks: www, internet,. . . ;

• transportation network: air routes, road maps,. . .

and of course they are used to describe

• Facebook, Twitter, Instagram, . . .
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Motivation

We aim at making (minimal) modifications to an existing network
so as to maximize its ability to propagate “information” along its
edges.

Total communicability (TC):

quantifies the ease of spreading
information across the network
and how well connected a
network is.✓
✒

✏
✑

We want to manipulate the
edges in the network in order to
tune the TC.



Background

Let G = (W ,E ) be a complex network with n = |W | nodes and
m = |E | edges.
Suppose that:

• G is unweighted;

• G has no multiple edges nor self loops;

• m = O(n).



Adjacency matrix

G can be represented using an adjacency matrix A ∈ R
n×n

(A)ij = aij =

{

ωij if (i , j) ∈ E
0 otherwise

where ωij ∈ R are weights for the elements in E .

In our framework A = (aij) ∈ R
n×n will be:

• binary and aii = 0 for all i ∈ V ;

• symmetric, if G is undirected;

• sparse.



A few useful definitions when A
T = A

• walk of length k :
{i1, i2, . . . , ik+1 ∈ V |(il , il+1) ∈ E for all 1 ≤ l ≤ k}

• closed walk of length k : a walk for which i1 = ik+1.

Remark
The quantities

(

Ak
)

ii
,
(

Ak
)

ij
count closed (resp., open) walks of

length k.

• degree of node i :

di = |{j ∈ V : (i , j) ∈ E}| =
(

A2
)

ii
.

• total communicability of an undirected network

TC (A) = 1T eA1 =
∑

∞

k=0 1
T Ak

k! 1
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Problem setting

We develop techniques aimed at tackling the following problems.

• Downdate: select K edges that can be downdated from the
network that cause the smallest drop in TC (A);

• Update: select K virtual edges to be added to the network so
as to increase as much as possible the total communicability
of the graph;

✤

✣

✜

✢

Edges connecting important nodes are themselves important:

eC (i , j) = C (i) · C (j), ∀i , j ∈ V

where C (·) : V → R is a centrality measure for nodes.



Node centrality measures

The centrality measures we use are all walk–based:

1. eigenvector centrality:

EC (i) = q1(i);

2. subgraph centrality:

SC (i) = (eA)ii =
∞
∑

k=0

(Ak)ii
k!

;

3. total communicability:

TC (i) = (eA1)i =
∞
∑

k=0

(Ak1)i
k!

.



UP: Results & Timings (in sec.)
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eigenvector eigenvector.no nodeTC nodeTC.no subgraph.no degree

ca–HepTh as–22july06 usroad–48

eigenvector 192.8 436.9 1599.5

nodeTC 561.94 1218.77 2932.01

degree 11.1 12.4 175.8

eigenvector.no 0.19 0.33 5.85

nodeTC.no 0.30 0.55 1.59

subgraph.no 10.6 74.1 651.6



The directed case: AT 6= A

Nodes play two different roles in digraphs:✓
✒

✏
✑

broadcasters of
information

(hubs)

✎
✍

☞
✌receivers of information

(authorities)

We need to define two quantities that describe the overall ability of
the nodes in the digraph to play these roles and that reflect the
following ideas:

✓
✒

✏
✑

good hubs are nodes that
point to many good au-
thorities.

✓
✒

✏
✑

good authorities are
nodes that are pointed
to by many good hubs.



Alternating walks

As for the symmetric case, we want to “count walks”, respecting
the recursive definition that relates hubs and authorities.

Definition
Alternating walk of length k starting with and out-edge

{i1, i2, . . . , ik+1|(iℓ, iℓ+1) ∈ E iff ℓ ≡2 1; (iℓ+1, iℓ) ∈ E iff ℓ ≡2 0} .

i1 → i2 ← i3 → . . . .

•
[

(AAT )k
]

ij
counts alternating walks of length 2k starting with

an out-edge between i and j .

• AAT in called HUB MATRIX.



Alternating walks (cont.)

As for the symmetric case, we want to “count walks”, respecting
the recursive definition that relates hubs and authorities.

Definition
Alternating walk of length k starting with and in-edge

{i1, i2, . . . , ik+1|(iℓ, iℓ+1) ∈ E iff ℓ ≡2 0; (iℓ+1, iℓ) ∈ E iff ℓ ≡2 1} .

i1 ← i2 → i3 ← . . . .

•
[

(ATA)k
]

ij
counts alternating walks of length 2k starting with

an in-edge between i and j .

• ATA in called AUTHORITY MATRIX.



Total hub/authority communicability

To quantify the ability of the network to broadcast information
when all the nodes are acting as hubs we use the
total hub communicability:

ThC (A) := 1T

(

∞
∑

k=0

(AAT )k

(2k)!

)

1 = 1T cosh(
√
AAT )1.

To quantify the ability of the network to receive information when
all the nodes are acting as authorities we use the
total authority communicability:

TaC (A) := 1T

(

∞
∑

k=0

(ATA)k

(2k)!

)

1 = 1T cosh(
√
ATA)1.



Digraphs as bipartite networks
Let G = (W, E) be a graph such that

W = W ∪W ′

W ′ = {1′ = n + 1, 2′ = n + 2, . . . , n′ = 2n}
= set of copies of the nodes

E = {(i , j ′) : (i , j) ∈ E}.

The associate adjacency matrix is A =

(

0 A
AT 0

)

.



Digraphs as bipartite networks (cont.)

The matrix exponential of the adjacency matrix A is:

eA =

(

cosh(
√
AAT ) gsinh(A)

[gsinh(A)]T cosh(
√
ATA)

)

,

where

gsinh(A) := U sinh(Σ)V T ,

and A = UΣV T is the SVD of the adjacency matrix.



Heuristics

To tune the indices of interest we can select the modification (i , j)
to be performed by working:

(1) on the symmetric matrix A using the techniques previously
introduced;

(2) on the original matrix A.✬

✫

✩

✪

Edges connecting important nodes are themselves important:

eC (i , j) = Ch(i) · Ca(j), ∀i , j ∈ V

where Ch(i) and Ca(i) are the centrality as hub and authority
of node i , respectively.

Remark
The set where we search for the modifications is the same,
regardless of whether we are working on A or A.



An example: UPDATE (K = 200)

Network: n m σ1 σ2 σ1 − σ2

cit-HepTh 27770 352807 85.16 69.31 15.85
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Conclusions

• We have developed efficient and effective heuristics for
optimizing the network communicability, for both directed and
undirected networks;

• the leading eigenvalue λ1 (resp., singular value σ1) and the
spectral gap λ1 − λ2 (resp., σ1 − σ2) play a major role in the
evolution of the indices and give insights on the “agreement”
of the methods;

• in the undirected case, our methods scale linearly in practice;

• it is fundamental to use edge centrality measures;

• in the undirected case, the TC can be used as a measure of
network connectivity.

We still need to assess the scalability of our methods in the
directed case!

- -Thank you!
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Dataset

NAME n m λ1 λ2 λ1 − λ2

ca–HepTh 8638 24806 31.034 23.004 8.031
as–22july06 22963 48436 71.613 53.166 18.447
usroad–48 126146 161950 3.911 3.840 0.071
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