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Locality in physics and in mathematics

In physics, the term localization is often used to describe two types of
situations:

1 A function decays rapidly to zero outside of a small region: the
function is localized in space.

2 The interaction strength between the different parts of a system
extended in space decreases rapidly with the distance: correlations
are short-ranged.

The opposite of localization is delocalization: a function is delocalized if
it’s non-negligible on an extended region.

Similarly, if non-local (long-range) interactions are important, a system is
delocalized.
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Locality in physics and in mathematics (cont.)

In quantum mechanics, the stationary states of a system (e.g., a particle)
are described by wave functions, Ψn(r), n = 0, 1, . . . The probability that
a particle with wave function Ψn is found in a given region Ω ⊆ R3 is
given by

Pr (particle in Ω) =

∫
Ω
|Ψn(r)|2 dr.

As an example, consider the electron in a hydrogen atom. The radial part
of the first atomic orbital, the wave function corresponding to the lowest
energy (ground state), is a decaying exponential:

Ψ0(r) =
1

√
π a

3/2
0

e−r/a0 , r ≥ a0,

where a0 = ~2

me2 = 0.0529 nm is the Bohr radius. Thus, the wave function
is strongly localized in space.
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Locality in physics and in mathematics (cont.)

Localization of the wave function Ψ0 expresses the fact that in the
hydrogen atom at ground state, the electron is bound to a small region
around the nucleus, and the probability of finding the electron at a
distance r decreases rapidly as r increases.

The wave function Ψ0 satisfies the (stationary) Schrödinger equation:

H Ψ0 = E0 Ψ0

where (using atomic units)

H = −1

2
∆− 1

r
(r =

√
x2 + y2 + z2 )

is the Hamiltonian, or energy, operator, and E0 is the ground state energy.

That is, the ground state Ψ0 is the eigenfunction of the Hamiltonian
corresponding to the lowest eigenvalue E0.
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Locality in physics and in mathematics (cont.)
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Electron in a Coulomb field: the wave function is localized in space.
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Locality in physics and in mathematics (cont.)

Note that the Hamiltonian is of the form H = T + V where

T = −1

2
∆ = kinetic energy

and
V = −1

r
= (Coulomb) potential.

What happens if the Coulomb potential is absent? In this case there is no
force binding the electron to the nucleus: the electron is “free".

This implies the delocalization of the corresponding wave function.

Consider for semplicity the 1D case: if we confine the system to the interval [0, L]
(with zero Dirichlet boundary conditions), then the eigenfunction corresponding
to the smallest eigenvalue of the Hamiltonian H = − d2

dx2 is Ψ0(x) = sin
(

2π
L x
)
,

which is delocalized. Similarly in 2D and 3D.
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Locality in physics and in mathematics (cont.)
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Electron in a box: the wave function is delocalized.
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Locality in physics and in mathematics (cont.)

Consider now an extended system consisting of a large number of atoms,
assumed to be in the ground state.

Suppose the system is perturbed at one point space, for example by hitting
it with a small amount of radiation.

If the system is an insulator, then the effect of the perturbation will only
be felt locally: it will not be felt outside of a small region. This “absence
of diffusion" is also known as localization.

W. Kohn called this the “nearsightedness" of electronic matter. In
insulators, and also in semi-conductors under suitable conditions, the
electrons tend to stay put.
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Locality in physics and in mathematics (cont.)

In a metallic system, in contrast, local perturbations can have long-range
effects. The electrons are free to move around, and the system’s electron
density is delocalized.

Localization is a phenomenon of major importance in quantum chemistry
and in solid state physics. We will return on this in our last lecture, on the
electronic structure problem.

Locality (or lack thereof) is also of central importance in quantum
information theory and quantum computing, in connection with the notion
of entanglement of states.

J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the
entanglement entropy, Rev. Modern Phys., 82 (2010), pp. 277–306.
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Locality in physics and in mathematics (cont.)

The study of localization in numerical mathematics is a more recent
phenomenon.

It emerged in the 1980s as a results of various trends in numerical analysis,
in particular in the study of wavelets and in problems of approximation
theory and in numerical linear algebra. Its importance has been rapidly
increasing in recent years.

Locality in numerical linear algebra is related to, but should not be
confused with, sparsity.

For example: a matrix can be localized even if it is not sparse, although it
will be close to a sparse matrix (in a suitable norm).
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Locality in physics and in mathematics (cont.)
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The exponential of a tridiagonal matrix (discrete 1D Laplacian).
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Locality in physics and in mathematics (cont.)
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The square root of a sparse matrix (nos4 from Matrix Market).
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Locality in physics and in mathematics (cont.)
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The spectral projector onto the invariant subspace corresponding to an
isolated eigenvalue of a banded matrix.
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Locality in physics and in mathematics (cont.)

Perhaps less obviously, a (discrete) system could well be described by a
highly sparse matrix but be strongly delocalized.

Think of a small-world network, like Facebook, or an expander graph.

Even if, on average, each component of such a system is directly connected
to only a few other components, the system is strongly delocalized, since
every node is only a few steps away from every other node.

Hence, a “disturbance" at one node propagates quickly to the entire
system. Every short range interaction is also long-range: localization is
impossible in such systems.

This can be a very valuable property in certain cases!
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Locality in physics and in mathematics (cont.)

Exploiting locality can lead to important speed-ups and even make
apparently intractable problems tractable.

This is especially true for problems involving matrix functions, but
localization in eigenvectors and in the solution of sparse linear systems is
also very useful, when present.

The theory extends to matrices whose elements are not scalars but may be
functions, or other matrices, or even operators on an infinite-dimensional
Hilbert space. This has applications in various parts of physics, not just in
numerical analysis.

As an illustration of the theory, in the last lecture I will go back to
quantum mechanics and discuss the importance of locality in the
computation of electronic structures.
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Locality in physics and in mathematics (cont.)

Interestingly, delocalization can also be computationally advantageous.

Consider for example the iterative solution of linear systems, or eigenvalue
problems. The fact that “information" spreads very quickly across the
computational “domain" typically means fast convergence of even simple
iterative methods, independent of system size.

In contrast, in a highly localized system information tends do diffuse
slowly, and many iterations are required for convergence.

On the other hand, delocalized systems are much more tightly coupled
than localized one, which makes parallelization a very hard task.
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Locality in physics and in mathematics (cont.)
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A localized system: 1D graph Laplacian L (left) and the matrix L5 (right).
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Locality in physics and in mathematics (cont.)
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Small-world network: graph Laplacian L (left) and the matrix L5 (right).
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Locality in physics and in mathematics (cont.)

Note: Things I will not cover include

Sparse solutions to dense linear algebra problems (compressed
sensing, `1 minimization, etc.)
Data sparse approximations of non-local operators (hierarchical,
semi-separable, quasi-separable matrices, and related structures)
Applications to signal processing, computational harmonic analysis,
quantum computing, etc.
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Matrix classes

We will be dealing primarily with matrices with entries in R or C.

A matrix A ∈ Cn×n is

Hermitian if A∗ = A

skew-Hermitian if A∗ = −A

unitary if A∗ = A−1

symmetric if AT = A

skew-symmetric if AT = −A

orthogonal if AT = A−1

normal if AA∗ = A∗A

Theorem: A ∈ Cn×n is normal if and only if there exist U ∈ Cn×n unitary
and D ∈ Cn×n diagonal such that U∗AU = D.
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Jordan Normal Form

Any matrix A ∈ Cn×n can be reduced to the form

Z−1AZ = J = diag (J1, J2, . . . , Jp),

Jk = Jk(λk) =


λk 1

λk
. . .
. . . 1

λk

 ∈ Cnk×nk ,

where Z ∈ Cn×n is nonsingular and n1 + n2 + . . . + np = n. The Jordan
matrix J is unique up to the ordering of the blocks, but Z is not. The λk’s
are the eigenvalues of A. These constitute the spectrum of A, denoted by
σ(A).

Definition: The order ni of the largest Jordan block in which the
eigenvalue λi appears is called the index of λi.
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Diagonalizable matrices

A matrix A ∈ Cn×n is diagonalizable if there exists an invertible matrix
X ∈ Cn×n such that X−1AX = D is diagonal. In this case all the Jordan
blocks are 1× 1.

From AX = XD it follows that the columns of X are corresponding
eigenvectors of A, which form a basis for Cn.

Normal matrices are precisely those matrices that can be diagonalized by
unitary transformations. Thus: a matrix A is normal if and only if there
exists an orthonormal basis for Cn consisting of eigenvectors of A.

The eigenvalues of a normal matrix can lie anywhere in C. Hermitian
matrices have real eigenvalues; skew-Hermitian matrices have purely
imaginary eigenvalues; and unitary matrices have eigenvalues of unit
modulus, i.e., if λ ∈ σ(U) with U unitary then |λ| = 1.
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Some useful expressions

From the Jordan decomposition of a matrix A ∈ Cn×n we obtain the
following “coordinate-free” decomposition of A:

A =
s∑

i=1

[λiGi + Ni]

where λ1, . . . , λs are the distinct eigenvalues of A, Gi is the projector onto
the generalized eigenspace Ker((A− λiI)ni) along Ran((A− λiI)ni) with
ni = index(λi), and Ni = (A− λiI)Gi = Gi(A− λiI) is nilpotent of index
ni. The Gi’s are the Frobenius covariants of A.

If A is diagonalizable (A = XDX−1) then Ni = 0 and the expression
above can be written

A =
n∑

i=1

λixiy
∗
i

where λ1, . . . , λn are not necessarily distinct eigenvalues, and xi, yi are
right and left eigenvectors of A corresponding to λi. Hence, A is a
weighted sum of at most n rank-one matrices (oblique projectors).
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Some useful expressions (cont.)

If A is normal then the spectral theorem yields

A =
n∑

i=1

λiuiu
∗
i

where ui is eigenvector corresponding to λi. Hence, A is a weighted sum
of at most n rank-one orthogonal projectors.

From these expressions one readily obtains for any matrix A ∈ Cn×n that

Tr(A) :=
n∑

i=1

aii =
n∑

i=1

λi

and, more generally,

Tr(Ak) =
n∑

i=1

λk
i , ∀k = 1, 2, . . .
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Singular Value Decomposition (SVD)

For any matrix A ∈ Cm×n there exist unitary matrices U ∈ Cm×m and
V ∈ Cn×n and a “diagonal” matrix Σ ∈ Rm×n such that

U∗AV = Σ = diag (σ1, . . . , σp)

where p = min{m,n}.

The σi are the singular values of A and satisfy

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σp = 0 ,

where r = rank(A). The matrix Σ is uniquely determined by A, but U and
V are not.

The columns ui and vi of U and V are left and right singular vectors of A
corresponding to the singular value σi.
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Singular Value Decomposition (cont.)

Note that

Avi = σiui and A∗ui = σivi, 1 ≤ i ≤ p.

From AA∗ = UΣΣT U∗ and A∗A = V ΣT ΣV ∗ we deduce that the singular
values of A are the (positive) square roots of the eigenvalues of the
matrices AA∗ and A∗A; the left singular vectors of A are eigenvectors of
AA∗, and the right ones are eigenvectors of A∗A.

Moreover,

A =
r∑

i=1

σiuiv
∗
i ,

showing that any matrix A of rank r is the sum of exactly r rank-one
matrices.
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Schur Normal Form

Any matrix A ∈ Cn×n is unitarily similar to an upper triangular matrix.
That is, there exist U ∈ Cn×n unitary and T ∈ Cn×n upper triangular
such that

U∗AU = T .

Neither U nor T are unique: only the diagonal elements of T are, and they
are the eigenvalues of A.

The matrix A is normal if, and only if, T is diagonal.

If T is split as
T = D + N

with D diagonal and N strictly upper triangular (nilpotent), then the
“size” of N is a measure of how far A is from normal.
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Matrix norms

The notion of a norm on a vector space (over R or C) is well-known. A
matrix norm on the matrix spaces Rn×n or Cn×n is just a vector norm ‖ · ‖
which satisfies the additional requirement of being submultiplicative:

‖AB‖ ≤ ‖A‖‖B‖, ∀A,B .

Important examples of matrix norms include the induced norms (especially
for p = 1, 2,∞) and the Frobenius norm

‖A‖F :=

√√√√ n∑
i=1

n∑
j=1

|aij |2 .

It is easy to show that

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |, ‖A‖∞ = ‖A∗‖1 = max
1≤i≤n

n∑
j=1

|aij | .
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Matrix norms (cont.)

Furthermore, denoting by σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 the singular values of A, it
holds

‖A‖2 = σ1 , ‖A‖F =

√√√√ n∑
i=1

σ2
i

and therefore ‖A‖2 ≤ ‖A‖F for all A. These facts hold for rectangular matrices
as well.

Also, the spectral radius ρ(A) := max{|λ| : λ ∈ σ(A)} satisfies ρ(A) ≤ ‖A‖ for
all A and all matrix norms.

For a normal matrix, ρ(A) = ‖A‖2. But if A is nonnormal, ‖A‖2 − ρ(A) can be
arbitrarily large.

Also note that if A is diagonalizable with A = XDX−1, then

‖A‖2 = ‖XDX−1‖2 ≤ ‖X‖2‖X−1‖2‖D‖2 = κ2(X)ρ(A) ,

where κ2(X) = ‖X‖2‖X−1‖2 is the spectral condition number of X.
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Matrix powers and matrix polynomials

For a matrix A ∈ Cn×n and a scalar polynomial

p(λ) = c0 + c1λ + c2λ
2 + · · ·+ ckλ

k,

define
p(A) = c0I + c1A + c2A

2 + · · ·+ ckA
k .

Let σ(A) = {λ1, λ2, . . . , λn}, and let A = ZJZ−1 where J is the Jordan
form of A. Then p(A) = Zp(J)Z−1. Hence, the eigenvalues of p(A) are
given by p(λi), for i = 1, . . . , n. Moreover, A and p(A) have the same
eigenvectors. This applies, in particular, to p(A) = Ak.

Thus, if A is diagonalizable with A = XDX−1 then p(A) = Xp(D)X−1.
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Matrix powers and matrix polynomials (cont.)

Theorem (Cayley–Hamilton): For any matrix A ∈ Cn×n it holds

pA(A) = 0

where pA(λ) := det (A− λI) is the characteristic polynomial of A.

An even more important polynomial is the minimum polynomial of A,
which is defined as the monic polynomial qA(λ) of least degree such that
qA(A) = 0. Note that qA|pA, hence deg(qA) ≤ deg(pA) = n.

It easily follows from this that for any nonsingular A ∈ Cn×n, the inverse
A−1 can be expressed as a polynomial in A of degree at most n− 1:

A−1 = c0I + c1A + c2A
2 + · · ·+ ckA

k, k ≤ n− 1.

Of course, the coefficients ci depend on A. The same result holds for
powers Ap with p ≥ n, and more generally for matrix functions f(A), as
we will see.
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Matrices and graphs

To any matrix A ∈ Cn×n we can associate a directed graph, or digraph,
G(A) = (V,E) where V = {1, 2, . . . , n} and E ⊆ V × V , where (i, j) ∈ E
if and only if aij 6= 0.

Diagonal entries are usually ignored (⇒ no loops in G(A)).

Let |A| := (|aij |), then the digraph G(|A|2) is given by (V, Ê) where Ê is
obtained by including all directed edges (i, k) such that there exists j ∈ V
with (i, j) ∈ E and (j, k) ∈ E.

For higher powers p, the digraph G(|A|p) is defined similarly: its edge set
consists of all pairs (i, k) such that there is a directed path of length at
most p joining node i with node k in G(A).

Note: the reason for the absolute value is to disregard the effect of
possible cancellations in Ap.
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Matrices and graphs (cont.)

Definition: Let G = (V,E) be a directed graph. The transitive closure of
G is the graph Ḡ = (V, Ē) where

(i, j) ∈ Ē ⇔ there is a directed path joining i and j in G(A).

For Hermitian or symmetric matrices, simple (undirected) graphs can be
used instead of directed graphs.

The same is true for structurally symmetric matrices, i.e., matrices such
that aij 6= 0 ⇔ aji 6= 0.

Since most matrices arising form the discretization of PDEs are
structurally symmetric, undirected graphs are most often used in this area.
Also note that if A is “not too far from being structurally symmetric”,
then the undirected graph G(A + AT ) is often used in practice.
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Irreducibility

Definition: A matrix A ∈ Cn×n is reducible if there exists a permutation
matrix P such that

P T AP =

[
A11 A12

0 A22

]
with A11 and A22 square submatrices. If no such P exists, A is said to be
irreducible.

Theorem. The following statements are equivalent:
(i) the matrix A is irreducible
(ii) the digraph G(A) is strongly connected, i.e., for every pair of nodes i

and j in V there is a directed path in G(A) that starts at node i and
ends at node j

(iii) the transitive closure Ḡ(A) of G(A) is the complete graph on V , i.e.,
the graph with edge set E = V × V .

Note that (iii) and the Cayley–Hamilton Theorem imply that the powers (I + A)p

are completely full for p ≥ n− 1 (barring cancellation).
40



Geršgorin’s Theorem

Let A ∈ Cn×n. For all i = 1 : n, let

ri :=
∑
j 6=i

|aij |, Di = Di(aii, ri) := {z ∈ C : |z − aii| ≤ ri} .

The set Di is called the ith Geršgorin disk of A.

Geršgorin’s Theorem (1931) states that σ(A) ⊂ ∪n
i=1Di. Moreover, each

connected component of ∪n
i=1Di consisting of p Geršgorin disks of A

contains exactly p eigenvalues of A, counted with their multiplicities.

Of course, the same result holds replacing the off-diagonal row-sums with
off-diagonal column-sums. The spectrum is then contained in the
intersection of the two resulting regions.
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The Field of Values

The field of values (or numerical range) of A ∈ Cn×n is the set

W(A) := {z = 〈Ax, x〉 |x∗x = 1} .

This set is a compact subset of C containing the eigenvalues of A; it is
also convex. This last statement is known as the Hausdorff–Toeplitz
Theorem, and is highly nontrivial.

The definition of numerical range also applies to bounded linear operators
on a Hilbert space H; however, W(A) may not be closed if dim (H) = ∞.

R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University
Press, 1994.
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The Field of Values (cont.)

−1 0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

Field of Values of a random 10× 10 matrix.
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Motivation

Both classical and new applications have resulted in increased interest in
the theory and computation of matrix functions over the past few years:

Solution of time-dependent ODEs/PDEs
Quantum chemistry (electronic structure theory)
Network Science
Theoretical particle physics (QCD)
Markov models in finance
Data mining
Control theory
etc.

Currently a hot topic in scientific computing!
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A bit of history

Simple matrix functions appear already in Cayley’s A memoir on the
theory of matrices (1858). This is considered to be “the first paper to
investigate the algebraic properties of matrices regarded as objects of
study in their own right” (N. J. Higham).

The term matrix itself had been introduced by Sylvester already in 1850.

In his paper Cayley considered square roots of matrices, as well as polynomial
and rational functions of a matrix (the simplest of which is, of course, A−1).
The paper also contains a statement of the Cayley–Hamilton Theorem.

A. Cayley, A memoir on the theory of matrices, Phil. Trans. Roy. Soc. London,
148:17–37, 1858.
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Founding fathers

Arthur Cayley (1821-1895) and James Joseph Sylvester (1814-1897)
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Definitions of Matrix Function

The first general definitions of matrix function begin to appear after 1880.
A completely satisfactory definition, however, will have to wait until 1932.

There have been proposed in the literature since 1880 eight
distinct definitions of a matric function, by Weyr, Sylvester and
Buchheim, Giorgi, Cartan, Fantappié, Cipolla, Schwerdtfeger and
Richter [. . . ] All of the definitions except those of Weyr and
Cipolla are essentially equivalent.

R. F. Rinehart, The equivalence of definitions of a matric function, Amer. Math.
Monthly, 62:395–414, 1955.
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Matrix function as defined by Sylvester (1883) and
Buchheim (1886)

Polynomial interpolation
Let λ1, . . . , λs be the distinct eigenvalues of A ∈ Cn×n and let ni be the
index of λi. Then f(A) := r(A), where r is the unique Lagrange–Hermite

interpolating polynomial of degree <
s∑

i=1
ni satisfying

r(j)(λi) = f (j)(λi) j = 0, . . . , ni − 1, i = 1, . . . , s.

Of course, this implies that the values f (j)(λi) with 0 ≤ j ≤ ni − 1 and
1 ≤ i ≤ s exist. We say that f is defined on the spectrum of A. When all
the eigenvalues are distinct, the interpolation polynomial has degree n− 1.

Remark:
Every matrix function is a polynomial in A!
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Matrix function as defined by Weyr (1887)

Taylor series
Suppose f has a Taylor series expansion

f(z) =
∞∑

k=0

ak(z − α)k

(
ak =

f (k)(α)

k!

)

with radius of convergence r. If A ∈ Cn×n and each of the distinct
eigenvalues λ1, . . . , λs of A satisfies

|λi − α| < r,

then

f(A) :=
∞∑

k=0

ak(A− αI)k.
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Matrix function as defined by Giorgi (1928)

Jordan canonical form
Let A ∈ Cn×n have Jordan canonical form Z−1AZ = J with
J = diag(J1, . . . , Jp). We define

f(A) := Z f(J) Z−1 = Z diag(f(Jk(λk)))Z−1,

where

f(Jk(λk)) =


f(λk) f ′(λk) . . . f (mk−1)(λk)

(mk−1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)

 .

Remark: If A = XDX−1 with D diagonal, then

f(A) := Xf(D)X−1 = Xdiag(f(λi))X
−1.
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Matrix function as defined by E. Cartan (1928)

In a letter to Giovanni Giorgi, Cartan proposed the following definition:

Contour integral
Let f be analytic inside a closed simple contour Γ enclosing σ(A), the
spectrum of A. Then

f(A) :=
1

2πi

∫
Γ
f(z)(zI −A)−1dz,

where the integral is taken entry-wise.

Remarks: The contour integral approach to f(A) had already been used in special
cases by Frobenius (1896) and by Poincaré (1899).

This definition can also be used to define analytic functions of operators, and
more generally analytic functions over Banach algebras (“holomorphic functional
calculus”).
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Two pioneers of matrix functions

Eduard Weyr (1852-1903) and Élie Cartan (1869-1951)
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Primary vs. non-primary matrix functions

Giorgi’s definition assumes that whenever f is a multi-valued function
(e.g., the square root or the logarithm), the same branch of f is used for
every Jordan block of A. Such matrix functions are called primary matrix
functions.

Functions that allow using different branches of f for different Jordan
blocks are called non-primary. The most general definition of a matrix
function, due to Cipolla (1932), includes non-primary functions.

For example, [
1 0
0 1

]
and

[
−1 0
0 −1

]
are both primary square roots of I2, but[

1 0
0 −1

]
and

[
−1 0
0 1

]
are non-primary. Here we only consider primary matrix functions.
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Early Italian contributors to matrix functions

Giovanni Giorgi (1871-1950) and Michele Cipolla (1880-1947)
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Commemorative stamp of Giovanni Giorgi (1990)

Giorgi introduced a precursor of the metric system based on four units.
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Some basic facts about matrix functions

Let A ∈ Cn×n and let f be defined on σ(A), then

f(A)A = Af(A);
f(AT ) = f(A)T ;
f(XAX−1) = Xf(A)X−1;
σ(f(A)) = f(σ(A));
(λ, x) eigenpair of A ⇒ (f(λ), x) eigenpair of f(A);
If A = (Aij) is block triangular then F = f(A) is block triangular
with the same block structure as A, and Fii = f(Aii);
f(diag (A11, . . . , App)) = diag (f(A11), . . . , f(App));
f(Im ⊗A) = Im ⊗ f(A), where ⊗ is the Kronecker product;
f(A⊗ Im) = f(A)⊗ Im.

For proofs, see Higham (2008).
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Some basic facts about matrix functions (cont.)

Theorem (Higham, Mackey, Mackey, and Tisseur): Let f be analytic on
an open set Ω ⊆ C such that each connected component of Ω is closed
under conjugation. Consider the corresponding matrix function f on the
set D = {A ∈ Cn×n : σ(A) ⊆ Ω}. Then the following are equivalent:
(a) f(A∗) = f(A)∗ for all A ∈ D.
(b) f(A) = f(A) for all A ∈ D.
(c) f(Rn×n ∩ D) ⊆ Rn×n.
(d) f(R ∩ Ω) ⊆ R.

In particular, if f(x) ∈ R for x ∈ R and A is Hermitian, so is f(A).
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Some basic facts about matrix functions (cont.)

Let A ∈ Cn×n and let f be defined on σ(A). The following expressions (in
increasing order of generality) are often useful:

If A is normal (in particular, Hermitian) then

f(A) =
n∑

i=1

f(λi) uiu
∗
i

If A ∈ Cn×n is diagonalizable then

f(A) =
n∑

i=1

f(λi) xiy
∗
i

If A is arbitrary then

f(A) =
s∑

i=1

ni−1∑
j=0

f (j)(λi)

j!
(A− λiI)jGi
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Some basic facts about matrix functions (cont.)

An expression for f(A) can also be obtained from the Schur form of A,
A = UTU∗ with T = (tij) upper triangular:

f(A) = Uf(T )U∗, f(T ) = (fij)

where fij = 0 for i > j, fij = f(λi) for i = j, and

fij =
∑

(s0,...,sk)∈Sij

ts0,s1ts1,s2 · · · tsk−1,sk
f [λs0 , . . . , λsk

] for i < j.

Here Sij is the set of all strictly increasing sequences of integers starting at
i and ending at j, and f [λs0 , . . . , λsk

] is the kth order divided difference of
f at {λs0 , . . . , λsk

}. The triangular matrix function f(T ) can be computed
by the Schur–Parlett algorithm.

G. H. Golub & C. F. Van Loan, Matrix Computations. Fourth Edition, Johns
Hopkins University Press, 2013.
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