
Exploiting Localization in Matrix Computations
II. Functions of Matrices

Michele Benzi

Department of Mathematics and Computer Science
Emory University

Atlanta, Georgia, USA

CIME-EMS Summer School in Applied Mathematics

Exploiting Hidden Structure in Matrix Computations:
Theory and Applications

Cetraro, 22-26 June, 2015

1

Outline

1 Examples and uses of matrix functions

2 Some numerical methods

3 Conclusions

4 Bibliography

2

Outline

1 Examples and uses of matrix functions

2 Some numerical methods

3 Conclusions

4 Bibliography

3

Important examples

Let A ∈ Cn×n, and let z /∈ σ(A). The resolvent of A at z is defined as

R(A; z) = (zI −A)−1.

The resolvent is central to the definition of matrix functions via the
contour integral approach. As a special case, the resolvent can be used to
define the spectral projector onto the eigenspace of a matrix or operator
corresponding to an isolated eigenvalue λ0 ∈ σ(A):

Pλ0 :=
1

2πi

∫
|z−λ0|=ε

(zI −A)−1dz

where ε > 0 is small enough so that no other eigenvalue of A falls within ε
of λ0.

Remarks: More generally, one can define the spectral projector onto the invariant
subspace of A corresponding to a set of selected eigenvalues by integrating
R(A; z) along a countour surrounding those eigenvalues and excluding the others.

The spectral projector is orthogonal if and only if A is normal.
4

Important examples (cont.)

Also extremely important is the matrix exponential

eA = I +A+
1

2!
A2 +

1

3!
A3 + · · · =

∞∑
k=0

1

k!
Ak

which is defined for arbitrary A ∈ Cn×n.
Just as the resolvent is central to spectral theory, the matrix exponential is
fundamental to the solution of differential equations. For example, the solution
to the inhomogeneous system

dy
dt

= Ay + f(t, y), y(0) = y0, y ∈ Cn, A ∈ Cn×n

is given (implicitly!) by

y(t) = etAy0 +

∫ t

0

eA(t−s)f(s, y(s))ds.

In particular, y(t) = etAy0 when f = 0.
It is important to recall that limt→∞ etA = 0 if and only if A is a stable matrix:
Re(λ) < 0, for all λ ∈ σ(A).

5

Important examples (cont.)

When f(t, y) = b ∈ Cn (=const.), the solution can also be expressed as

y(t) = tψ1(tA)(b+Ay0) + y0

where

ψ1(z) =
ez − 1

z
= 1 +

z

2!
+
z2

3!
+ · · ·

Trigonometric functions and square roots of matrices are also important in
applications. For example, the solution to the second-order system

d2y

dt2
+Ay = 0, y(0) = y0, y′(0) = y′0

(where A is SPD) can be expressed as

y(t) = cos(
√
At) y0 + (

√
A)−1 sin(

√
At) y′0 .

6

Important examples (cont.)

If A,B ∈ Cn×n commute (AB = BA), then the identity

eA+B = eAeB

holds true, but in general eA+B 6= eAeB.

A useful identity that is always true is

eA = cosh(A) + sinh(A) ,

where

cosh(A) =
eA + e−A

2
=

∞∑
k=0

1

(2k)!
A2k

and

sinh(A) =
eA − e−A

2
=

∞∑
k=0

1

(2k + 1)!
A2k+1 .

7

Important examples (cont.)

Apart from the contour integration formula, the matrix exponential and
the resolvent are also related through the Laplace transform: there exists
an ω ∈ R such that z /∈ σ(A) for Re(z) > ω and

(zI −A)−1 =

∫ ∞

0
e−ztetAdt =

∫ ∞

0
e−t(zI−A)dt .

Recall also that if |z| > ρ(A), the following Neumann series expansion of
the resolvent is valid:

(zI −A)−1 = z−1(I + z−1A+ z−2A2 + · · ·) = z−1
∞∑

k=0

z−kAk.

A useful variant of this expression is

(I − αA)−1 = I + αA+ α2A2 + · · · =
∞∑

k=0

αkAk ,

where 0 < α < 1
ρ(A) .

8

The exponential and resolvent in network analysis

Let G = (V,E) be a graph, or network, assumed to be unweighted and
without self-loops, and let A be the corresponding n× n adjacency matrix
(n = |V |):

aij =

{
1, if (vi, vj) ∈ E,
0, else.

A walk of length k in G is a set of nodes vi1 , vi2 , . . . vik , vik+1
∈ V such

that for all 1 ≤ j ≤ k, there is an edge between vij and vij+1 .

A closed walk is a walk where vi1 = vik+1
.

It can be easily shown that

[Ak]ii = # of closed walks of length k based at node vi,
[Ak]ij = # of walks of length k that connect nodes vi and vj .

9

The exponential and resolvent in network analysis (cont.)

Consider now a matrix function given by a convergent power series:

f(A) = a0I + a1A+ a0A
2 + · · · =

∞∑
k=0

akA
k,

where the coefficients are assumed to be positive. Note that ak → 0 as
k →∞ since the series converges.

Then, the entries of f(A) are a weighted sum of the number of walks
between vertices in V , where the weights are chosen so as to penalize
longer walks.

Choosing for instance ak = αk, where 0 < α < 1/ρ(A), corresponds to
using the resolvent f(A) = (I − αA)−1.

Choosing instead ak = 1/k! corresponds to using the matrix exponential
f(A) = eA.

10

The exponential and resolvent in network analysis (cont.)

Consider now the i-th diagonal entry of f(A):

[f(A)]ii =
∞∑

k=0

ak[A
k]ii, 1 ≤ i ≤ n.

The diagonal entries of f(A) provide a measure of how important each
node is the network, in terms of how central a role that node plays in
controlling the flow of information in the network.

Therefore, the diagonal entries of f(A) can be used to rank the nodes of
the graph in order of “importance".

Resolvent-based centrality is known as Katz centrality, whereas
exponential-based centrality is known as subgraph centrality.

They have both found widespread use in network analysis, side-by-side
with other techniques.

11

The exponential and resolvent in network analysis (cont.)

See, for instance,

L. Katz, A new status index derived from sociometric analysis,
Psychometrika, 18 (1953), pp. 39–43.

E. Estrada and J. A. Rodríguez-Velázquez, Subgraph centrality in
complex networks, Phys. Rev. E, 71 (2005), 056103.

E. Estrada and D. J. Higham, Network properties revealed through
matrix functions, SIAM Rev., 52 (2010), pp. 671–696.

12

The exponential and resolvent in network analysis (cont.)

Similarly, the (i, j) entry of f(A) can be regarded as a measure of how
well two nodes in G communicate. When f(A) = eA, we obtain the
communicability between nodes i and j:

C(i, j) = [eA]ij =
∞∑

k=0

[Ak]ij
k!

.

Also of interest in applications to network science is the total
communicability of a node vi ∈ V , defined as

n∑
j=1

C(i, j) = [eA1]i = i-th row sum of eA,

and the total network communicability:

TC(G) =
n∑

i=1

n∑
j=1

C(i, j) = 1T eA1.

Here 1 denotes the vector of all ones.
13

The exponential and resolvent in network analysis (cont.)

The total communicability of a node is similar to subgraph centrality, but
it is much easier to compute for large graphs, since it requires the
evaluation of the product eA1, whereas subgraph centrality requires
computing the diagonal entries of eA, a much harder task.

Similarly, the total communicability TC(G) = 1T eA1 is easy to compute.
Note that no entry of eA is explicitly needed.

E. Estrada and N. Hatano, Communicability in complex networks,
Phys. Rev. E, 77 (2008), 036111.

M. Benzi and C. Klymko, Total communicability as a centrality measure,
J. Complex Networks, 1(2), 2013, pp. 124–149.

14

Matrix functions in quantum physics

The matrix exponential plays an especially important role in quantum
mechanics. Consider for instance the time-dependent Schrödinger
equation:

i
∂Ψ

∂t
= HΨ, t ∈ R, Ψ(0) = Ψ0,

where Ψ0 ∈ L2 is a prescribed initial state with ‖Ψ0‖2 = 1. Here H = H∗

is the Hamiltonian, or energy operator.

The solution is given esplicitly by Ψ(t) = e−itHΨ0, for all t ∈ R; note that
since itH is skew-Hermitian, the propagator U(t) = e−itH is unitary,
which guarantees that the solution has unit norm for all t:

‖Ψ(t)‖2 = ‖U(t)Ψ0‖2 = ‖Ψ0‖2 = 1, ∀t ∈ R.

15

Matrix functions in quantum physics (cont.)

Also very important in many-body quantum mechanics is the Fermi–Dirac
operator, defined as

f(H) := (I + exp(β(H − µI)))−1 ,

where β = (κBT)−1 is the inverse temperature, κB the Boltzmann
constant, and µ is the Fermi level, separating the eigenvalues of H
corresponding to the first Ne eigenfunctions from the rest, where Ne

is the number of electrons. We will come back to this in Lecture IV.

Finally, in statistical quantum mechanics the state of a system is
completely described (statistically) by the density operator:

ρ :=
e−βH

Z
, where Z = Tr(e−βH).

Z = Z(β) is known as the partition function of the system.
16

Outline

1 Examples and uses of matrix functions

2 Some numerical methods

3 Conclusions

4 Bibliography

17

Computational tasks

There are essentially two types of computational problems involving matrix
functions:

(1) Computing individual entries of f(A)

(2) Computing the action of f(A) on a vector: f(A)v

The first problem can be further divided into two cases:

(1a) All entries of f(A) are needed
(1b) Only selected entries are needed (e.g., on or near the diagonal)

Problem (1a) is only feasible for A small (up to n = O(103), say).

In the other two cases A is typically large and sparse. In some applications
high accuracy is not always required or warranted.

18

Computational tasks (cont.)

When A is of moderate size and high accuray is important, there exist
specialized algorithms for the most important functions, such as the
exponential, the logarithm, the p-th root, etc.

The following resources are highly recommended:

N. J. Higham, Functions of Matrices. Theory and Computation, SIAM,
Philadelphia, 2008.

C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the
exponential of a matrix, SIAM Rev., 20 (1978), 801–836.

C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later, SIAM Rev., 45 (2003), pp. 3–49.

Note: Our main focus will be on problems of the type (1b) and (2).

19

Computational tasks (cont.)

Many computations can be formulated as evaluation of expressions of the
form uT f(A)v for suitably chosen vectors u,v ∈ Rn and for suitable
functions f(x).

For instance, computing individual entries of f(A) requires computing the
bilinear form

[f(A)]ij = eT
i f(A) ei.

Similarly, computing the i-th row sum of f(A) amounts to evaluating

n∑
j=1

[f(A)]ij = [f(A)1]i = eT
i f(A)1.

As a further example, the total network communicability requires
computing TC(G) = 1T exp(A)1.

Question: How do we compute these quantities efficiently?

20

Golub & Meurant to the rescue!

Gene Golub and Gérard Meurant (Oxford, July 2007)

21

Golub & Meurant to the rescue!

22

Quadrature-based bounds

It turns out that Gaussian quadrature rules can be used to obtain bounds
or estimates for bilinear forms involving functions of Hermitian matrices.
These techniques can take full advantage of localization in f(A), when
present.

In particular, upper and lower bounds are available for the bilinear form

h(u,v) = 〈f(A)u,v〉 = uT f(A)v

with
u,v ∈ Rn (taking u = ei, v = ej yields [f(A)]ij)
A ∈ Rn×n symmetric
f(x) strictly completely monotonic on an interval containing the
spectrum of A.

23

Quadrature-based bounds (cont.)

Definition
A real function f(x) is strictly completely monotonic on an interval I ⊂ R
if f (2j)(x) > 0 and f (2j+1)(x) < 0 on I for all j ≥ 0.

Examples:
f(x) = 1/xα is s.c.m. on (0,∞), for all α > 0,
f(x) = ex is not s.c.m.,
f(x) = e−x is s.c.m. on R.

In particular, we can compute:
bounds on eA = e−(−A),
bounds on B−1 if B = I − αA is positive definite
(that is, if 0 < α < 1

λmax(A)).

24

Quadrature-based bounds (cont.)

Consider the spectral decompositions

A = QΛQT , f(A) = Qf(Λ)QT .

For u,v ∈ Rn we have

uT f(A)v = uTQf(Λ)QTv = pT f(Λ)q =
n∑

i=1

f(λi)piqi,

where p = QTu and q = QTv. Rewrite this as a Riemann-Stieltjes
integral:

uT f(A)v =

∫ b

a

f(λ)dµ(λ), µ(λ) =

0 λ < a = λ1∑i

j=1 pjqj λi ≤ λ < λi+1∑n
j=1 pjqj b = λn ≤ λ.

Caveat: Note the numbering of the eigenvalues of A here.

25

Gauss quadrature

The general Gauss-type quadrature rule is∫ b

a
f(λ)dµ(λ) =

N∑
j=1

wjf(tj) +
M∑

k=1

vkf(zk) +R[f],

where the nodes {zk} are prescribed.

Gauss: M = 0,
Gauss–Radau: M = 1, z1 = a or z2 = b,
Gauss–Lobatto: M = 2, z1 = a and z2 = b.

The evaluation of these quadrature rules is reduced to
computation of orthogonal polynomials via three-term recurrence,
or, equivalently, computation of entries and spectral information of
the corresponding tridiagonal matrix (Lanczos).

26

Gauss quadrature (cont.)

For instance, we have for the Gauss rule:∫ b

a
f(λ)dµ(λ) =

N∑
j=1

wjf(tj) +R[f]

with

R[f] =
f (2N+M)(η)

(2N +M)!

∫ b

a

[N∏
j=1

(λ− tj)
]2
dµ(λ),

for some a < η < b.

Theorem (Golub-Meurant)
N∑

j=1

wjf(tj) = eT
1 f(JN)e1 = [f(JN)]11

27

Gauss quadrature (cont.)

The tridiagonal matrix JN corresponds to the three-term recurrence
relationship satisfied by the set of polynomials orthonormal with respect
to dµ:

JN =

ω1 γ1

γ1 ω2 γ2

.
γN−2 ωN−1 γN−1

γN−1 ωN

The eigenvalues of JN are the Gauss nodes, whereas the Gauss weights are
given by the squares of the first entries of the normalized eigenvectors of
JN .

The quadrature rule is computed with the Golub–Welsch QR algorithm.
Alternatively, the (1,1) entry of f(JN) can be computed via explicit
diagonalization of JN .

28

Gauss quadrature (cont.)

Consider the case u = v = ei (corresp. to the (i, i) entry of f(A)).

The entries of JN are computed using the symmetric Lanczos algorithm:

γjxj = rj = (A− ωjI)xj−1 − γj−1xj−2, j = 1, 2, . . .

ωj = xT
j−1Axj−1,

γj = ‖rj‖2

with initial vectors x−1 = 0 and x0 = ei.

Two approaches for computing bounds:
Explicit, a priori bounds are obtained by taking a single Lanczos step.
Alternatively, one may explicitly carry out a certain number of
Lanczos iterations (MMQ Matlab toolbox by G. Meurant). Each
additional Lanczos step amounts to adding another node to the
Gauss-type quadrature rule, resulting in tighter and tighter bounds.

29

Gauss quadrature (cont.)

For f(A) = eA and f(A) = (I − αA)−1 we obtain:

bounds on [f(A)]ii from symmetric Lanczos,
bounds on [f(A)]ij using the identity

eT
i f(A)ej =

1

4
[(ei + ej)

T f(A)(ei + ej)− (ei − ej)
T f(A)(ei − ej)],

or, bounds on [f(A)]ii + [f(A)]ij using nonsymmetric Lanczos,
lower bounds from the Gauss and the Gauss-Radau rules,
upper bounds from the Gauss-Radau and Gauss-Lobatto rules.

In computations one can use simple Geršgorin estimates instead of the
exact values of λmin(A), λmax(A); however, convergence may be slowed
down. Using more accurate estimates of the extreme eigenvalues of A
generally leads to improved results.

30

Explicit bounds on the entries of matrix functions

Carrying out explicitly (“by hand”) a single Lanczos step, we obtain
explicit bounds on the entries of f(A).

These bounds can be fairly tight for matrices that have strong diagonal
dominance, and can be used, for instance, to compute simple
preconditioners in the case of f(A) = A−1 or f(A) = A−1/2.

They can also be used to give lower and upper bounds on the entries of
functions of adjacency matrices of graphs.

See
M. Benzi and G. H. Golub, Bounds for the entries of matrix functions with
applications to preconditioning, BIT, 39 (1999), pp. 417–418.

M. Benzi & P. Boito, Quadrature rule-based bounds for functions of adjacency
matrices, Linear Algebra Appl., 433: 637–652 (2010).

31

MMQ (iteratively computed) bounds

This refers to the (increasingly tight) bounds obtained by adding
quadrature nodes (= performing additional Lanczos steps) to
estimate entries of f(A);
Computations are performed using G. Meurant’s MMQ package,
suitably adapted to handle sparse matrices;
Fast and accurate computation of upper and lower bounds for entries
of f(A);
Complexity is at most O(n) per iteration (much less for the first few
iterations) ;
For certain matrices, the number of iterations is (nearly) independent
of n (see below);
Parallelization is possible on shared memory machines.

32

Low-rank approximations

A drawback of these techniques in the case of large matrices is that the
cost remains high.

The approximate O(n2) scaling to evaluate the diagonal entries of f(A) is
unacceptably high for matrices of large size (n in the millions or more).

For some matrix functions, the cost can be reduced by working with
low-rank approximations of A. For example, estimating a small number
k � n of the largest eigenpairs (λi,xi) and using the approximation

eA ≈
k∑

i=1

eλixixT
i

can lead to significant savings. The accuracy is typically good in network
analysis problems, due to rapid decay in the eigenvalues of A for many
networks.

33

Low-rank approximations (cont.)

For details, we refer to the following works:

C. Fenu, D. Martin, L. Reichel, & G. Rodriguez, Network analysis via
partial spectral factorization and Gauss quadrature, SIAM J. Sci. Comput.,
35 (2013), pp. A2046–2068.

C. Fenu, D. Martin, L. Reichel, & G. Rodriguez, Block Gauss and
anti-Gauss quadrature with application to networks, SIAM J. Matrix
Anal. Appl., 34 (2013), pp. 1655–1684.

J. Baglama, C. Fenu, L. Reichel, & G. Rodriguez, Analysis of directed
networks via partial singular value decomposition and Gauss quadrature,
Linear Algebra Appl., 456 (2014), pp. 93–121.

34

Computing row and column sums

Many important problems in computational science require computing the
action of a matrix function on a given vector: f(A)v.

The problem arises, for instance, in the context of exponential integrators
for systems of ODEs. It also arises in computing the total communicability
vector for a graph G with adjacency matrix A:

TC(G) = eA1,

where 1 is the vector of all ones.

Of course, approximating the solution x = A−1b of a large linear system is
also a problem of this type.

Such computations can be done very fast using Krylov subspace methods
for evaluating the action of the matrix function on a vector.

A very efficient Matlab tolbox has been developed by Stefan Güttel:

http://www.guettel.com
35

Krylov subspace methods

Krylov subspace methods are the algorithms of choice for solving many
linear algebra problems, including:

Large-scale linear systems of equations Ax = b

Large-scale (generalized) eigenvalue problems Ax = λB x

Computing f(A)v where A is a large matrix, v is a vector and f a
given function (e.g., f(A) = e−tA, t > 0)
Solving matrix equations (e.g., AX +XA∗ +B = 0)

An attractive feature of Krylov methods in some applications is that the
matrix A is not needed explicitly: only the ability to multiply A times a
given vector is required (action, or operator principle).

36

Krylov subspace methods (cont.)

The main idea behind Krylov methods is the following:

A nested sequence of suitable low-dimensional subspaces (the Krylov
subspaces) is generated;
The original problem is projected onto these subspaces;
The (small) projected problems are solved “exactly";
The approximate solution is expanded back to the original
N -dimensional space, once sufficient accuracy has been attained.

Krylov subspace methods are example of polynomial approximation methods,
where f(A)v is approximated by p(A)v where p is a (low-degree) polynomial.
Since every matrix function f(A) is a polynomial in A, this is appropriate.

37

Krylov subspace methods (cont.)

The kth Krylov subspace of A ∈ Cn×n and a nonzero vector v ∈ Cn is
defined by

Kk(A,v) = span {v, Av, . . . , Ak−1v},

and it can be written as

Kk(A,v) = {q(A)v | q is a polynomial of degree ≤ k − 1}.

Obviously,

K1(A,v) ⊂ K2(A,v) ⊂ · · · ⊂ Kd(A,v) = · · · = Kn(A,v).

Here d is the degree of the minimum polynomial of A with respect to v.

38

Krylov subspace methods (cont.)

As is well known, computing projections onto a subspace is greatly
facilitated if an orthonormal basis for the subspace is known. This is also
desirable for numerical stability reasons.

An orthonormal basis for a Krylov subspace can be efficiently constructed
using the Arnoldi process; in the Hermitian case, this is known as the
Lanczos process (Arnoldi, 1951; Lanczos, 1952). Both of these are
efficient implementations of the classical Gram–Schmidt process.

In Arnoldi’s method, the projected matrix has upper Hessenberg structure,
which can be exploited in the computation. In the Hermitian case it is
tridiagonal.

39

Arnoldi’s process

For arbitrary A ∈ Cn×n and v ∈ Cn, v 6= 0, the Arnoldi process is:

Set q1 = v/‖v‖2;
For j = 1, . . . ,m do:

– hi,j = 〈Aqi,qj〉 for i = 1, 2, . . . , j

– uj = Aqj −
∑j

i=1 hi,jqi

– hj+1,j = ‖uj‖2

– If hj+1,j = 0 then STOP;
– qj+1 = uj/‖uj‖2

Remarks:

(i) If the algorithm does not stop before the mth step, the Arnoldi vectors
{q1, . . . ,qm} form an ONB for the Krylov subspace Km(A,v).

(ii) At each step j, the Arnoldi process requires one matrix-vector product, j + 1
inner products, and j linked triads.

(iii) At each step the algorithm computes Aqj and then orthonormalizes it
against all previously computed qj ’s.

40

Arnoldi’s process (cont.)

Define Qm = [q1, . . . ,qm] ∈ Cn×m. Introducing the (m+ 1)×m matrix
Ĥm = [hij] and the m×m upper Hessenberg matrix Hm obtained by
deleting the last row of Ĥm, the following Arnoldi relations hold:

AQm = QmHm + umeT
m = Qm+1Ĥm

Q∗
mAQm = Hm

Hence, the m×m matrix Hm is precisely the projected matrix Q∗
mAQm.

If A = A∗, then Hm = H∗
m = Tm is a tridiagonal matrix, and the Arnoldi

process reduces to the Lanczos process, which is much cheaper in terms of
both operations and storage.

Indeed, the Lanczos process consists of a three-term recurrence, with
constant operation count and storage costs per step, whereas the Arnoldi
process has increasing costs for increasing j.

41

Krylov subspace approximation to f(A)v

To approximate f(A)v we take q1 = v/‖v‖2 and for an appropriate k we
compute

fk := ‖v‖2Qkf(Hk)e1 = Qkf(Hk)Q
∗
kv.

The vector fk is the kth approximation to f(A)v. Typically, k � n and
computing f(Hk) is inexpensive, and can be carried out in a number of
ways. For instance, when Hk = H∗

k = Tk, it can be computed via explicit
diagonalization of Tk.

Deciding when this approximation fk is sufficiently close to f(A)v to stop
the process is a non-trivial problem, and an area of active research.

For the case of the matrix exponential, Saad (1992) suggested the error
estimate

‖eAv −QkeHkQ∗
kv‖2 ≈ ‖v‖2eT

k eHke1 .

Note that eT
k eHke1 is the (k, 1) entry of eHk .

42

A convergence result for functions of adjacency matrices

Theorem
Let {An} be the adjacency matrices associated with a sequence of graphs
{Gn} of size n→∞. Assume that the degree di of any node in Gn

satisfies di ≤ D for all n, with D constant. Let f be an analytic function
defined on a region containing the interval [−D,D]. Then, for any given
ε > 0, the number of Lanczos steps (or, equivalently, of quadrature nodes)
needed to approximate any entry [f(A)]ij with an error < ε is bounded
independently of n.

The assumption of bounded degree may be restrictive for certain graphs.
More generally, it can be shown that the number of Lanczos steps grows
at worse like O(Dn), where Dn is the max degree of any node in Gn.

The result is a consequence of the fact that the coefficients of an analytic
function in the Chebyshev expansion decay super-exponentially to 0.

43

Some results for real world networks

Network n NNZ λ1 λ2

Zachary Karate Club 34 156 6.726 4.977
Drug Users 616 4024 18.010 14.234
Yeast PPI 2224 13218 19.486 16.134

Pajek/Erdos971 472 2628 16.710 10.199
Pajek/Erdos972 5488 14170 14.448 11.886
Pajek/Erdos982 5822 14750 14.819 12.005
Pajek/Erdos992 6100 15030 15.131 12.092
SNAP/ca-GrQc 5242 28980 45.617 38.122

SNAP/ca-HepTh 9877 51971 31.035 23.004
SNAP/as-735 7716 26467 46.893 27.823

Gleich/Minnesota 2642 6606 3.2324 3.2319

Characteristics of selected real world networks. All networks are undirected.

44

Some results for real world networks (cont.)

Network expm mmq funm_kryl
Zachary Karate Club 0.062 0.138 0.120

Drug Users 0.746 2.416 0.363
Yeast PPI 47.794 9.341 0.402

Pajek/Erdos971 0.542 2.447 0.317
Pajek/Erdos972 579.214 35.674 0.410
Pajek/Erdos982 612.920 39.242 0.393
Pajek/Erdos992 656.270 53.019 0.325
SNAP/ca-GrQc 281.814 23.603 0.465

SNAP/ca-HepTh 2710.802 58.377 0.435
SNAP/as-735 2041.439 75.619 0.498

Gleich/Minnesota 1.956 10.955 0.329

Timings (in seconds) to compute all the diagonal entries and row sums of eA

for various test problems using different codes. expm: Matlab’s built-in matrix
exponential; mmq: Meurant’s code, modified; funm_kryl: Güttel’s code.

45

A large example: the Wikipedia graph

The Wikipedia graph is a directed graph with n = 4, 189, 503 nodes and
67, 197, 636 edges (as of June 6, 2011).

The row/columns of the exponential of the adjacency matrix can be used
to rank the “hubs" and “authorities" in Wikipedia in order of importance.

Using the Arnoldi-based code funm_kryl we can compute the hub and
authority rankings for all the nodes in about 216s to high accuracy on a
parallel system comprising 24 Intel(R) Xeon(R) E5-2630 2.30GHz CPUs.

46

Outline

1 Examples and uses of matrix functions

2 Some numerical methods

3 Conclusions

4 Bibliography

47

Concluding remarks

Problems involving matrix functions arise in many areas of
computational science and engineering
Algorithms based on the Lanczos and Arnoldi processes enable the
efficient solution of various computational problems involving
functions of large matrices
The performance of these methods depends strongly on structural
properties of these matrices, such as their eigenvalue distribution,
graph structure, and the presence of localization/delocalization in
f(A)

48

Outline

1 Examples and uses of matrix functions

2 Some numerical methods

3 Conclusions

4 Bibliography

49

Monographs

G. H. Golub and G. Meurant, Matrices, Moments and Quadrature
with Applications, Princeton University Press, 2010.

J. Liesen and Z. Strakos, Krylov Subspace Methods: Principles and
Analysis, Oxford University Press, 2013.

50

Software

Complex Networks Package for Matlab:
http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html

CONTEST Matlab Toolbox:
http://www.mathstat.strath.ac.uk/research/groups/numerical_analysis/contest/toolbox

G. Meurant’s MMQ package: http://pagesperso-orange.fr/gerard.meurant/.

Stefan Güttel package funm_kryl: http://www.guettel.com

51

	Examples and uses of matrix functions
	Some numerical methods
	Conclusions
	Bibliography

