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Decay properties of matrix functions

Generally speaking, functions of banded or sparse matrices, such as the
inverse, the exponential, the logarithm, roots, trig functions, etc. are full:
all entries are nonzero.

Indeed, suppose that f(z) can be expanded as a power series around z0:

f(z) = a0 + a1(z − z0) + a2(z − z0)
2 + · · · =

∞∑
k=0

ak(z − z0)
k

and that A is a n× n matrix such that f(A) is defined:

f(A) = a0In + a1(A− z0In) + a2(A− z0In)2 + · · · =
∞∑

k=0

ak(A− z0In)k.

If A is irreducible then (A− z0In)k is structurally full for all k ≥ n− 1.
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Example: eA =
∑∞

k=0
1
k!A
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Sparsity pattern of A = trid(−1, 2,−1) and eA = expm(A).
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Decay properties of matrix functions (cont.)

Hence, barring fortuitous cancellation, f(A) is a full matrix.

Simple numerical experiments, however, show that when A is a banded
matrix and f(z) is a smooth function for which f(A) is defined, the entries
of f(A) usually decay rapidly as one moves away from the diagonal.

The same property is often (but not always!) satisfied by more general
sparse matrices: in this case the decay is away from the support (nonzero
pattern) of A.

In other words, non-negligible entries of f(A) tend to be strongly localized
near the positions (i, j) for which aij 6= 0.

This observation opens up the possibility of developing fast algorithms for
approximating functions of sparse matrices.

We are especially interested in the possibility of developing approximation
methods with optimal computational complexity, i.e., O(n) methods.
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Example: eA =
∑∞
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Example: Decay behavior in log(A), with A sparse, SPD
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Decay behavior in the logarithm of matrix bcsstk03 from Matrix Market.
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Example: cos(A) with A banded, nonsymmetric
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The decay property is not limited to functions of Hermitian matrices.
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Example: Decay behavior in eA, with A Hamiltonian
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Sparsity pattern of matrix A and decay in eA. Note that eA is symplectic.

10



Some basic questions

These examples suggest the following natural questions:

1 Under which conditions can we expect decay in f(A)?
2 Can we obtain sharp bounds on the entries of f(A)?
3 Can we characterize the rate of decay in f(A) in terms of

I the bandwidth/sparsity of A?
I the spectral properties of A?
I the location of possible singularities of f(z) in relation to the

spectrum of A?
4 What if f(z) is an entire function?
5 When is the rate of decay independent of the matrix size n?

The last point is crucial if we want to develop O(n) algorithms for
approximating functions of sparse matrices.
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Some applications

Decay results for functions of sparse matrices have important applications
in various areas, including

Numerical analysis
Wavelet analysis
Quantum chemistry (electronic structure)
Solid state physics
Quantum information theory (entanglement entropy)
High-dimensional statistics, random matrix theory
Control Theory
. . .

M. Benzi, P. Boito and N. Razouk, Decay properties of spectral projectors with
applications to electronic structure, SIAM Rev., 55 (2013), pp. 3–64.

J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the
entanglement entropy, Rev. Modern Phys., 82 (2010), pp. 277–306.
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The case of A−1

In 1984, Demko, Moss and Smith showed that the entries of A−1, where
A is Hermitian positive definite and m-banded (aij = 0 if |i− j| > m),
satisfy the following exponential decay bound:

|[A−1]ij | ≤ K λ|i−j|, ∀i, j

where [a, b] is the smallest interval containing the spectrum σ(A) of A,
K = max{a−1,K0}, K0 = (1 +

√
κ)/2b, λ = q1/m,

q = q(κ) =

√
κ− 1√
k + 1

, κ =
b

a
.

The result holds for finite matrices as well as for bounded, infinite matrices
acting on `2.
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The case of A−1 (cont.)

The DMS result implies that the rate of decay is independent of the
matrix size n if the condition number κ and the bandwidth m remain
uniformly bounded with respect to n. The bound is sharp.

On the other hand, if either a→ 0 or b→∞ (or both), the (bound on
the) decay rate deteriorates as n→∞.

The same happens if the bandwidth m increases.
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The case of A−1 (cont.)

Similar results were proved, using different techniques, by Jaffard (1990)
for f(A) = A−1 and for f(A) = A−1/2, where A is not sparse, but has
entries that decay exponentially.

Improved bounds for the inverses of matrices of the form

A = T ⊗ I + I ⊗ T

(with T banded) are due to Canuto, Simoncini and Verani (2014).

S. Demko, W. F. Moss and P. W. Smith, Decay rates for inverses of band
matrices, Math. Comp., 43 (1984), pp. 491–499.

S. Jaffard, Propriétés des matrices “bien localisées” près de leur diagonale et
quelques applications, Ann. Inst. Henri Poincarè, 7 (1990), pp. 461–476.

C. Canuto, V. Simoncini and M. Verani, On the decay of the inverse of matrices
that are sum of Kronecker products, Linear Algebra Appl., 452 (2014), pp. 21–39.
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The case of A−1 (cont.)

The DMS estimate implies the following (asymptotic) uniform approximation
result:

Theorem
Let An be a sequence of n× n matrices, all HPD and m-banded for n→∞
(with m independent of n). Assume further that there exists an interval [a, b],
0 < a < b <∞, such that σ(An) ⊂ [a, b], for all n. Then, for all ε > 0 and for
all n there exist an integer p = p(ε,m, a, b) (independent of n) and a matrix
Bn = B∗n with bandwidth p such that ‖A−1

n −Bn‖2 < ε.

Each approximate inverse Bn ≈ A−1
n can be expressed as a polynomial in An.

The DMS conditions imply that the degree of this polynomial does not depend
on n, only on ε. Hence, the approximation requires only O(n) flops/storage, and
is therefore optimal.
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Decay bounds for general matrix functions

The proof of DMS is based on a result of Chebyshev on the best uniform
approximation over [a, b] of the function f(x) = x−1 by polynomials, which
shows that the error ‖pk(x)− x−1‖∞ decays exponentially fast in the
degree k. Combined with the Spectral Theorem (which allows to go from
scalar functions to matrix functions, with the ‖ · ‖2 matrix norm replacing
the ‖ · ‖∞ norm), this result gives the exponential decay bound for [A−1]ij .

Replacing the result of Chebyshev with a more general result of Bernstein
on the best uniform approximation of analytic functions by polynomials
yields exponential decay bounds for analytic functions of band matrices.

M. Benzi and G. H. Golub, Bounds for the entries of matrix functions with
applications to preconditioning, BIT, 39 (1999), pp. 417–418.
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Decay bounds for general matrix functions (cont.)

As in the case of the DMS bounds for A−1, the rate of decay is controlled
by the distance between the poles of f(z) and the spectral interval [a, b],
and by the bandwidth m of A.

WLOG, we assume that A = A∗ has been scaled and shifted so that
σ(A) ⊂ [−1, 1]. Then there is a family of ellipses E = E(χ) with foci −1
and 1 and semiaxes κ1 > 1, κ2 > 0, parameterized by χ = κ1 + κ2 > 1,
such that f(z) is analytic inside each E and continuous on E .

We have a whole family of exponential decay bounds:

Theorem (B., Golub)

Let M = M(χ) = maxz∈E |f(z)| and λ = λ(χ) = χ−
1
m . Then

|[f(A)]ij | ≤ K λ|i−j|, ∀i, j = 1, 2, . . .

where K = max {K0, ‖f(A)‖2} and K0 = 2χM
χ−1 .
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Decay bounds for general matrix functions (cont.)

Proof
Bernstein’s Theorem states that

Ek(f, [−1, 1]) := ‖f − pk‖∞ ≤ K0 q
k, k = 0, 1, . . . ,

where q = χ−1 and pk is the polynomial of degree k for which the
approximation error ‖f − pk‖∞ is minimum. Next, observe that if A is
m-banded then Ak (and therefore pk(A)) is km-banded: [pk(A)]ij = 0 if
|i− j| > km. For i 6= j write |i− j| = km+ l, l = 1, 2, . . . ,m, hence
k < |i− j|/m and qk < q

|i−j|
m = λ|i−j|. Therefore, for all i 6= j we have

|[f(A)]ij | = |[f(A)]ij − [pk(A)]ij | ≤ ‖f(A)− pk(A)‖2 ≤ ‖f − pk‖∞ < K0λ
|i−j|.

For i = j we have |[f(A)]ii| ≤ ‖f(A)‖2, therefore the bound holds ∀i, j.
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Decay bounds for general matrix functions (cont.)

Letting α = − lnλ > 0 the bounds can be written as

|[f(A)]ij | ≤ K e−α |i−j|, ∀i, j.

Note that the bounds can be “optimized", for each i, j, by choosing the
ellipse E(χ) that yields the minimum value of K e−α |i−j|.
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Decay bounds for general matrix functions (cont.)

There is a clear trade-off in the choice of χ: a larger value of χ yields a
larger value of α, and thus a faster decay rate in the exponential, but also
a larger prefactor K (through M). If f(z) has poles near [−1, 1], then
χ ≈ 1 and decay may be slow.

What if the function is entire, i.e, analytic everywhere? Example:
f(A) = eA.

In this case, χ can be taken arbitrarily large and decay is now
superexponential. In this case, however, different techniques give
sharper bounds, see

A. Iserles, How large is the exponential of a banded matrix?, New Zealand
J. Math., 29:177–1992, 2000.

M. Benzi an V. Simoncini, Decay bounds for functions of Hermitian matrices with
banded or Kronecker structure, to appear in SIAM J. on Matrix Analysis and
Applications (2015).
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Decay bounds for general matrix functions (cont.)

We have the following uniform approximation result:

Theorem
Let An be a sequence of n× n Hermitian matrices, all m-banded (with m
independent of n). Assume further that there exists an interval [a, b] with
−∞ < a < b <∞ such that σ(An) ⊂ [a, b], for all n. Let f(z) be analytic
on an open set Ω ⊆ C containing [a, b], and such that f(x) is real for real
x. Then, for all ε > 0 and for all n there exist an integer p = p(ε,m, a, b)
(which does not depend on n) and a matrix Bn = B∗n with bandwidth p
such that ‖f(An)−Bn‖2 < ε.

Again, Bn can be expressed as a polynomial pk(An) with fixed degree
k = k(ε) (independent of n). Thus, optimal O(n) approximation is
possible.
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Sparse approximate inverses

Consider a large linear system of equations Ax = b.

If we have an approximation M ≈ A−1, with M sparse, then we can use M
as a preconditioner in a Krylov subspace method, such as CG or GMRES.

For example, if we know that A−1 decays rapidly away from the main
diagonal, then one could use a banded approximation M .

More generally, if we know that A−1 decays rapidly away from some
nonzero pattern S = {(i, j) | 1 ≤ i, j ≤ n}, then we can approximate A−1

by a sparse matrix with nonzero pattern in S, perhaps by means of
Frobenius norm minimization:

‖I −AM‖F → min, s. t. supp(M) ⊆ S.

Information on the decay pattern of A−1 can be used to determine S. The main
appeal of this approach is its high potential for parallelization.

M. Benzi, Preconditioning techniques for large linear systems: a survey,
J. Comput. Phys., 182 (2002), pp. 418–477.
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Sparse approximate inverses (cont.)
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Coefficient matrix and sparse approximate inverse: FEM for fluid-structure
interaction problem. Preconditioned Bi-CGSTAB converges in 39 iterations.
Here nnz(M)/nnz(A) ≈ 1.56.
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Perturbation theory for eigenvalues

Assume A = A∗, and consider the eigenvalue problem Ax = λx. For
simplicity we assume that λ is a simple eigenvalue.

If x is normalized (‖x‖2 = 1), then

λ = x∗Ax =
n∑

i=1

n∑
j=1

aij x̄ixj .

Suppose now we want to estimate how sensitive λ is to small changes in
the entries of A. We have (i 6= j)

∂λ

∂aij
= x̄ixj + x̄jxi.

Now, the (i, j) entry of the spectral projector P = xx∗ is Pij = xix̄j .
Therefore,

|Pij | ≈ 0 ⇒ λ is insensitive to small changes in aij , aji = āij .
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Perturbation theory for eigenvalues (cont.)

The spectral projector P is a “delta" function in A. It can be written as a
Lagrange interpolation polynomial in A:

P = L(A), L(x) =
∏

µ∈σ(A)\{λ}

x− µ

λ− µ
.

This function can be approximated with arbitrary accuracy by a Gaussian:

P ≈ exp(−β(A− λI)2)

for β > 0 sufficiently large. The size of β depends on the gap between λ
and the nearest eigenvalue µ 6= λ and on the desired accuracy.

Assume now that A is banded, e.g., tridiagonal. Since P is an entire
function of A, its entries must decay super-exponentially away from the
main diagonal. Hence, |i− j| � 1 ⇒ |Pij | ≈ 0.

Therefore, replacing an off-diagonal zero in position (i, j) with |i− j| � 1
with a small nonzero will have almost no effect on λ.
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Perturbation theory for eigenvalues (cont.)
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The spectral projector onto the invariant subspace corresponding to an
isolated eigenvalue of a banded matrix.

28



Perturbation theory for eigenvalues (cont.)

More generally, suppose we are interested in computing the quantity
(“total energy")

Tr(PA) = λ1 + λ2 + · · ·+ λk, (1)

where P is the orthogonal projector onto the invariant subspace spanned
by the eigenvectors corresponding to the k smallest eigenvalues of A, a
sparse matrix.

If the gap λk+1 − λk is “large", then the entries of P can be shown to
decay exponentially away from the sparsity pattern of A (see Lecture IV).

Differentiating (1) with respect to aij shows again that the total energy is
insensitive to small perturbations in positions of A that are far from the
nonzero pattern supp(A).

This fact has important consequences in quantum chemistry.
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Matrix factorizations

Localization is not limited to matrix functions such as the inverse, the
exponential, the square root, and so forth. It is also present in many
standard matrix factorizations.

For instance, if A is SPD and sparse, and A = LLT is its Cholesky
factorization, then L may be much less sparse than A, but its entries will
usually decay rapidly outside of the nonzero pattern of the lower triangular
part of A.

Under appropriate conditions, similar remarks also apply to other matrix
factorizations, such as LU and QR, and to the inverse factors L−1, U−1,
R−1, etc. This fact is the main reason behind the success of incomplete
factorization preconditioners.

M. Benzi and M. T �uma, Orderings for factorized sparse approximate inverse
preconditioners, SIAM J. Sci. Comput., 21 (2000), pp. 1851–1868.

I. Krishtal, T. Strohmer, and T. Wertz, Localization of matrix factorizations,
Found. Comput. Math., to appear (2015).
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Network communicability

Let G = (V,E) be a graph with adjacency matrix A (sparse).

Recall that the communicability between two nodes i, j ∈ V is given by

C(i, j) = [eA]ij =
∞∑

k=0

[Ak]ij
k!

.

Bounds on C(i, j) can be very useful in many situations. Low values of
C(i, j) indicate poor communication, for example due to bottlenecks,
between the two nodes. Conversely, high values of C(i, j) indicate that
two nodes, even though they are not directly connected (aij = 0), are
nevertheless strongly connected. This can be used for instance for
community detection, or for network robustness studies.

E. Estrada, Community detection based on network communicability, Chaos, 21
(2011), 016103.

F. Arrigo and M. Benzi, Updating and downdating techniques for optimizing
network communicability, arXiv:1410.5303v2 (2015).
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Network communicability (cont.)

In general, communicability values are low for distant pairs of nodes if the
graph G has large diameter, for example, if G corresponds to a path, or a
Cartesian product of paths (so-called grid graphs), and generally for spatial
networks, like road networks.

On the other hand, for small-world graphs (such as social networks,
collaboration networks, protein-protein interaction networks, and airline
connection networks) the communicability is usually very high between
most pairs of nodes.

Hence, communicability is localized for the first type of graph, and
delocalized for the second. This correspons to the intuition that
information diffuses slowly in the first case, and rapidly in the second case.
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Sexual contact network of injecting drug users

Figure courtesy of Ernesto Estrada.
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Sexual contact network of injecting drug users (cont.)

Communicability matrix eA for the previous network.
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Extension 1: General sparsity patterns

In most applications one deals with sparse matrices rather than banded
ones. We can associate to every n× n matrix A a graph G = (V,E) with
|V | = n such that there is an edge (i, j) ∈ E if and only if aij 6= 0; if A
has a symmetric sparsity pattern, then G is undirected.

A path joining nodes i, j is a list of edges (i, i1), (i1, i2), . . . , (ik, j) in E
such that the nodes i, i1, . . . , ik, j are all distinct. The distance d(i, j) of
two nodes i and j is defined as the length of the shortest path in G
connecting i and j.

If the graph is undirected, this is an actual distance (i.e., a metric). Also,
if A is irreducible then G is connected and d(i, j) is well defined for any
pair of nodes.

These notions can be easily adapted to the directed case.
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Extension 1: General sparsity patterns (cont.)

Theorem
Let A = A∗ with σ(A) ⊂ [−1, 1] and let f(z) be analytic in an open
region containing [−1, 1] and such that f(x) is real for real x. Then
there exist constants K > 0 and α > 0 such that

|[f(A)]ij | ≤ K e−α d(i,j), ∀i, j.

The constants K and α can be explicitly determined as before.

If {An} is a sequence of n× n matrices with a bounded number of
nonzeros per row and σ(An) ⊂ [−1, 1] for all n, then α and K can be
chosen independent of n and O(n) approximation is again possible. The
sparsity assumption ensures that the distance d(i, j) can grow to infinity
as |i− j| → ∞. In other words, the graph diameter diam(G(An)) must be
unbounded for n→∞ if dmax((G(An)) ≤ Dmax for all n.
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Extension 2: Kronecker structure

Recall that the Kronecker product (or tensor product) of two matrices A
and B of sizes na ×ma and nb ×mb, respectively, is defined as

A⊗B :=


a11B a12B · · · a1maB
a21B a22B · · · a2maB

...
...

. . .
...

ana1B ana2B · · · anamaB

 ∈ Cnanb×mamb .

The Kronecker sum of two matrices M1 ∈ Cn1×n1 , M2 ∈ Cn2×n2 is the
matrix

A = M1 ⊕M2 := M1 ⊗ In2 + In1 ⊗M2 ∈ CN×N ,

where N = n1n2. These definitions are easily extended to the case of
more than two factors or summands.

Matrices with Kronecker structure arise in a number of important
applications.
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Extension 2: Kronecker structure (cont.)

The simplest example is the 2D discrete Laplacian, which is the Kronecker
sum of two 1D discrete Laplacians.

More generally, the graph Laplacian of the Cartesian product of two graphs
is the Kronecker sum of of the Laplacians of the component graphs.

The matrix exponential is especially well-behaved with respect to
Kronecker operations, since it satisfies

exp(M1 ⊕M2) = exp(M1)⊗ exp(M2)

Exploiting this property allows us to get very good bounds for the entries
of exp(A), where A = M1 ⊕M2, in terms of bounds for the entries of
exp(M1) and exp(M2). These bounds are generally better than those in
terms of the graph distance.

In particular, the oscillatory behavior of the entries of exp(A) is perfectly
captured by these bounds.
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Extension 2: Kronecker structure (cont.)
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Decay plot for [exp(−5A)]ij where A is the 5-point finite difference discretization
of the negative Laplacian on the unit square on a 10× 10 uniform grid with zero
Dirichlet boundary conditions.
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Extension 2: Kronecker structure (cont.)

The decay bounds for exp(A) can be extended to other matrix functions
by means of integral representations, as follows. Assume that f(x) can be
represented as the Laplace–Stieltjes transform of a positive measure dα(t):

f(x) =

∫ ∞

0
e−txdα(t), x ∈ (a, b).

Many important functions have this property: for example,

x−1/2 =

∫ ∞

0
e−tx dt√

πt
, x > 0.

Hence, if A is SPD we can write

[A−1/2]ij =

∫ ∞

0

[
e−tA]

ij

dt√
πt
, 1 ≤ i, j ≤ n

and by evaluating or bounding these integrals we obtain decay bounds on
the entries of A−1/2.
M. Benzi an V. Simoncini, Decay bounds for functions of Hermitian matrices with
banded or Kronecker structure, to appear in SIMAX (2015).
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Extension 2: Kronecker structure (cont.)
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difference discretization of the negative Laplacian on the unit square on a 10× 10

uniform grid with zero Dirichlet boundary conditions.
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Extension 3: Algebras of matrices with decay

Suppose now that A is not necessarily banded or sparse, but its entries
decay according to some law, e.g.,

|aij | ≤ C0 φ(|i− j|), where φ(r) → 0 for r →∞,

and C0 is a constant. The decay could be exponential, or a power law.
Here A is assumed to be an infinite matrix (bounded linear operator on
the sequence space `p, for some p ≥ 1).

Using the general theory of Banach algebras, Jaffard (1990) has shown
that for matrices of this type, the inverse (if it exists) must satisfy a
similar decay law:

|[A−1]ij | ≤ C1ψ(|i− j|),

where C1 is a constant and ψ is of the same kind as φ (in fact φ = ψ in
the case of a power law).
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Extension 3: Algebras of matrices with decay (cont.)

Using the contour integral representation formula,

f(A) =

∫
Γ
f(z)(zI −A)−1dz,

it is possible to extend this result to more general matrix functions.

Let A denote the algebra of matrices with decay. The fact that
A ∈ A ⇒ A−1 ∈ A (if A is invertible) is a noncommutative analogue of
Wiener’s Lemma, which states that if f is a non-vanishing function and
the Fourier expansion f(x) =

∑
cneinx is absolutely convergent (that is,∑

|cn| <∞), then the function g(x) = 1/f(x) has the same property.

K. Gröchenig and M. Leinert, Symmetry and inverse-closedness of matrix algebras
and functional calculus for infinite matrices, Trans. Amer. Math. Soc., 358
(2006), pp. 2695–2711.

K. Gröchenig and A. Klotz, Noncommutative approximation: inverse-closed
subalgebras and off-diagonal decay of matrices, Constr. Approx., 32 (2010),
pp. 429–466.
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Extension 4: Non-Hermitian matrices

There are several ways to extend these results to the non-Hermitian case.

Things are straightforward in the case of normal matrices (AA∗ = A∗A),
using the theory of Faber polynomials (a generalization of Chebyshev
polynomials to the complex domain; Bernstein’s Theorem continues to
hold).

If A is diagonalizable, A = XDX−1, then similar bounds hold but now the
prefactor K contains the additional term κ2(X) = ‖X‖2‖X−1‖2. If this is
very large the bounds can be terrible, even useless (compare this with the
situation for the standard GMRES error bound). Note that κ2(X) = 1 if
A is normal, and we recover the known bounds.

M. Benzi and N. Razouk, Decay bounds and O(n) algorithms for approximating
functions of sparse matrices, Electr. Trans. Numer. Anal., 28 (2007), pp. 16–39.
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Extension 4: Non-Hermitian matrices (cont.)

A more elegant alternative is to obtain decay bounds for general A by
applying Crouzeix’s Theorem. Recall that the numerical range, or field
of values of a matrix, or linear operator, A is the set

W(A) := {〈Ax, x〉 | 〈x, x〉 = 1} ⊂ C.

Theorem (Crouzeix)
Let A be a bounded linear operator on a Hilbert space H and let g(z) be
analytic in an open region Ω ⊆ C containing the closure W(A) of W(A).
Then

‖g(A)‖ ≤ Q‖g‖∞,W(A) ,

where 2 ≤ Q ≤ 11.08.

M. Crouzeix, Numerical range and functional calculus in Hilbert space,
J. Funct. Anal., 244 (2007), pp. 668–690.
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Extension 4: Non-Hermitian matrices (cont.)

Using this result, we can prove the following general decay result:

Theorem (B., Boito)
Let {An} be a sequence of n× n matrices and let f(z) be analytic on an
open region Ω ⊆ C containing a compact set C such that W(An) ⊆ C, for
all n. Then there exist explicitly computable constants K > 0, α > 0 such
that

|[f(A)]ij | ≤ K e−α d(i,j), ∀i, j.

Corollary
If An is a sequence of sparse matrices of order n such that each row
contains at most m nonzeros (with m independent of n) and if the poles
of f(z) remain bounded away from C as n→∞, we can approximate
f(An) with a polynomial pk(An) of fixed degree k = k(ε,m, C), in O(n)
operations and storage.
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Bounds for non-Hermitian matrices

A simple approach to the computation of constants K and α (=− lnλ) in the
decay bound goes as follows. The set C in the last theorem can be be chosen as
as a disk of sufficiently large radius r. Assume that f(z) is analytic on an open
neighborhood of the disk of center 0 and radius R > r. The standard theory of
complex Taylor series gives the following estimate for the Taylor approximation
error:

‖f − Tk‖∞,C ≤
M(R)

1− r
R

( r
R

)k+1

,

where M(R) = max|z|=R |f(z)|. Therefore we can choose

K = max

{
‖f(A)‖∞,C , QM(R)

r

R− r

}
, λ =

( r
R

)1/m

.

Note that R is somewhat arbitary; any value of R will do, as long as
r < R < min |ζ|, where ζ varies over the poles of f (if f is entire, we let
min |ζ| = ∞).
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Bounds for non-Hermitian matrices (cont.)

Choosing as large a value of R as possible gives a better asymptotic decay
rate, but also a potentially large constant K. For practical purposes, one
may therefore want to pick a value of R that ensures a good trade-off
between the magnitude of K and the decay rate.

In summary, use of Crouzeix’s Theorem allows us to obtain decay bounds
for nonnormal matrices without the diagonalizability assumption, and to
replace the factor κ2(X) in the bounds with a small, universal constant.

The drawback is that f must be analytic on a set containing the field of
values, and that ‖f(A)‖∞,W(A) could be very large.

In practice, if A is diagonalizable with an ill-conditioned eigenbasis, the
decay bounds based on Crouzeix’s Theorem are often tighter than those
containing κ2(X).
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Bounds for non-Hermitian matrices (cont.)
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Example: A is the 100× 100 Toeplitz matrix generated by the symbol
φ(t) = 2t−1 + 1 + 3t. We have κ2(X) = 5.26 · 108. In this logarithmic plot: in
black the first row of eA, in blue the κ2-bound, in red the Crouzeix bound.
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Extension 5: Matrices over C∗-algebras

On September 5, 2011, I received the following email:

Dear Sir,

I am currently doing research in the University of Oxford about
functions of matrices with non-commuting matrix elements.

When reading your article ‘‘Decay Bounds and O(n) algorithms for
approximating functions of sparse matrices", I was wondering if
your results hold for non-commuting elements as well? It looks
to me that your results should hold so long as we use the
appropriate norm to evaluate the decay. Could you tell if [you]
know whether this is indeed the case or not?

Thank you very much,
Pierre-Louis Giscard,
Atomic & Laser Physics
University of Oxford
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Extension 5: Matrices over C∗-algebras (cont.)

As it turns out, the answer is yes: decay holds not only for functions of
matrices with entries in R or in C, but also in rather general normed
algebras.

For instance, the matrix entries could be other matrices, or quaternions, or
bounded linear operators on a Hilbert space.

In the process of finding the answer to Giscard’s question, we also realized
that decay results even hold for functions of matrices whose entries are
(continuous) functions of one or more variables—i.e., for matrix functions
of matrix-valued functions.

As a special case, one can also define functions of certain tensors and
prove decay results for these.

M. Benzi and P. Boito, Decay properties for functions of matrices over
C∗-algebras, Linear Algebra Appl., 456 (2014), pp. 174–198.
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C∗-algebras

The natural setting for the desired extension is provided by the theory of
C∗-algebras. These algebras play an important role in functional analysis
(operator theory, spectral theory), harmonic analysis, control theory, and
quantum physics. They also have applications in numerical analysis (see
References).

Recall that a Banach algebra is an algebra A0 with a norm making A0

into a Banach space and satisfying

‖ab‖ ≤ ‖a‖‖b‖

for all a, b ∈ A0. Here we consider only unital complex Banach algebras,
i.e., algebras with a multiplicative unit I with ‖I‖ = 1.
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C∗-algebras (cont.)

An involution on a Banach algebra A0 is a map a→ a∗ of A0 into itself
satisfying

1 (a∗)∗ = a

2 (ab)∗ = b∗a∗

3 (λa+ b)∗ = λa∗ + b∗

for all a, b ∈ A0 and λ ∈ C (a∗ is called the adjoint of a).

A C∗-algebra is a Banach algebra with an involution such that the
following C∗-identity,

‖a∗a‖ = ‖a‖2 ,

holds for all a ∈ A0. Note that we do not make any assumption on
whether A0 is commutative or not.

There can be at most one norm ‖ · ‖ which makes A0 into a C∗-algebra.
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Examples of C∗-algebras

1 The commutative algebra C(X) of all continuous complex-valued
functions on a compact Hausdorff space X. Here the addition and
multiplication operations are defined pointwise, and the norm is given
by

‖f‖∞ = max
t∈X

|f(t)|.

The involution on C(X) maps each function f to its complex
conjugate f∗, defined by f∗(t) = f(t) for all t ∈ X.

2 The algebra B(H) of all bounded linear operators on a complex
Hilbert space H, with the operator norm

‖T‖ = sup
x 6=0

‖Tx‖H
‖x‖H

.

The involution on B(H) maps each bounded linear operator T on H
to its adjoint, T ∗.
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C∗-algebras (cont.)

The second example contains as a special case the algebra Cn×n of all
n× n matrices with complex entries, with the norm being the usual
spectral norm and the involution mapping each matrix A = [aij ] to its
conjugate transpose A∗ = [ aji ].

Examples 1 and 2 above provide, in a precise sense, the “only” examples
of C∗-algebras. Indeed, every (unital) commutative C∗-algebra admits a
faithful representation as an algebra of the form C(X) for a suitable (and
essentially unique) compact Hausdorff space X; and, similarly, every unital
(possibly noncommutative) C∗-algebra can be represented faithfully onto a
norm-closed ∗-subalgebra of B(H) for a suitable complex Hilbert space H.

Note: a subalgebra of a C∗-algebra is called a ∗-subalgebra if it is closed
under involution.
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C∗-algebras (cont.)

It turns out that the theory of analytic functions, including Cauchy’s integral
formula, can be generalized verbatim from the scalar case

f : Ω ⊆ C −→ C

to the case of functions taking values in a Banach algebra:

f : Ω ⊆ C −→ A.

Moreover, since An×n is also a Banach algebra, we may generalize the theory to
analytic functions

f : Ω ⊆ C −→ An×n.

The case of matrix functions is just a special case of this so-called holomorphic
functional calculus, corresponding to A = C.

The C∗-algebra case corresponds to using the spectral norm ‖A‖2.

Hence, all our results generalize almost without changes to the case of functions
of matrices over A.
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Example: Hermitian matrix over A0 = C([0, 1])

Consider the tridiagonal Hermitian Toeplitz matrix-valued function of size
20× 20

A = A(t) =


1 e−t

e−t 1
. . .

. . . . . . e−t

e−t 1

 , t ∈ [0, 1].

Scale A(t) so that σ(A(t)) ⊂ [−1, 1].
Compute (symbolically!) the Chebyshev approximation
eA(t) ≈

∑12
k=0 ckA(t)k.

The approximation error is bounded in norm by 3.9913 · 10−14.
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Example: Hermitian matrix over A0 = C([0, 1]) (cont.)

Decay behavior in ‖[eA(t)]ij‖∞. Comparison with bounds (first row,
log10-plot):

0 2 4 6 8 10 12 14 16 18 20
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row  index

 

 

exp(A)
bound, χ =10
bound, χ = 5
bound, χ = 20
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Example: inverse of non-Hermitian matrix over
A0 = C([1, 2])

B(t) =

26664
1 e−t

. . .
. . .
1 e−t

1

37775 , C(t) =

2666664
1

e
1
3
− t

2
. . .
. . . 1

e
1
3
− t

2 1

3777775 .
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Decay behavior of ‖[A(t)−1]ij‖∞ where A(t) = B(t)C(t)
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The case of quaternions

What about functions of matrices with entries in H, the algebra of
quaternions? Note that H is not a complex C∗-algebra (it is a real one).

However, quaternions can be represented as 2× 2 matrices over C, and
this allows us to extend our decay theorems to functions of matrices over
H, with one restriction: f must be expressible as a power series with real
coefficients. Indeed, Hn×n can be identified with a real subalgebra of
C2n×2n.

H = {q = a + bi + cj + dk : a, b, c, d ∈ R} ∼=


Q =

„
a + bi c + di

−c + di a− bi

«
∈ C2×2

ff

Note: ‖q‖ =
√
a2 + b2 + c2 + d2 = ‖Q‖2.
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Decay in functions of matrices over H

Recall:

H = {a + bi + cj + dk : a, b, c, d ∈ R} ∼=
„

a + b i c + d i
−c + d i a− b i

«
∈ C2×2

ff

A ∈ H50×50 is an Hermitian Toeplitz tridiagonal matrix with
quaternionic entries.
Ã ∈ C100×100 is the associated complex block matrix.
Compute f(Ã) in Matlab, convert it back to a matrix with
quaternionic entries, plot norms of entries.
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Example: matrix over the quaternion algebra H
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Left plot: sparsity pattern of A ∈ H50×50

Right plot: decay in the norm of the entries of eA
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Example over H: decay in the exponential

Norms of entries of eA:
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Example over H: decay in the logarithm

Norms of entries of log(A):
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Example over H: decay in the inverse square root

Norms of entries of A−
1
2 :
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Conclusions

In conclusion:

Decay results for matrix functions are important in several areas of
mathematics and in applications
When present, localization can be exploited to produce O(n)
approximations of otherwise apparently dense matrix problems
Results can be extended to non-normal matrices and to different
types of sparsity and decay
Such results hold for functions of matrices over rather general normed
algebras, not just R or C
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