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About structures

Structure analysis in mathematics is important not only for algorithm
design and applications but also for the variety, richness and beauty of the
mathematical tools that are involved in the research.

Alexander Grothendieck, who received the Fields medal in 1966, said:

”If there is one thing in mathematics that fascinates me more than anything
else (and doubtless always has), it is neither number nor size, but always
form. And among the thousand-and-one faces whereby form chooses to
reveal itself to us, the one that fascinates me more than any other and con-
tinues to fascinate me, is the structure hidden in mathematical things.”



In linear algebra, structures reveal themselves in terms of matrix properties

Their analysis and exploitation is not just a challenge but it is also a
mandatory step which is needed to design highly effective ad hoc
algorithms for solving large scale problems from applications

The structure of a matrix reflects the peculiarity of the mathematical
model that the matrix describes

Often, structures reveal themselves in a clear form. Very often they are
hidden and hard to discover.

Here are some examples of structures, with the properties of the physical
model that they represent, the associated algorithms and their complexities



Clear structures: Toeplitz matrices

Toeplitz matrices


a b c d
e a b c
f e a b
g f e a


Definition: A = (ai ,j), ai ,j = αj−i

Original property: shift invariance (polynomials and power series,
convolutions, derivatives, PSF, correlations, time-series, etc.)

Multidimensional problems lead to block Toeplitz matrices with Toeplitz
blocks

Algorithms: based on FFT
– Multiplying an n × n matrix and a vector costs O(n log n)
– Solving a Toeplitz system costs O(n2) (Trench-Zohar-Levinson-Schur)
O(n log2 n) Bitmead-Anderson, Musicus, Ammar-Gregg
– Preconditioned Conjugate Gradient: O(n log n)



Clear structures: band matrices

Band matrices: 2k + 1-diagonal matrices


a b
c d e

f g h
i l


Definition: A = (ai ,j), ai ,j = 0 for |i − j | > k

Original property: Locality of some operators (PSF, finite difference
approximation of derivatives)

Multidimensional problems lead to block band matrices with banded blocks

Algorithms:
– A n × n → LU and QR in O(nk2) ops
– Solving linear systems O(nk2)
– QR iteration for symmetric tridiagonal matrices costs O(n) per step



Hidden structures: Toeplitz-like

Toeplitz like matrices:


20 15 10 5
4 23 17 11
8 10 27 19
4 11 12 28


The inverse of a Toeplitz matrix is not generally Toeplitz. It maintains a
structure of the form L1U1 + L2U2 where Li ,U

T
i are lower triangular

Toeplitz, for i = 1, 2

In general Toeplitz-like matrices have the form A =
∑k

i=1 LiUi where
k << n and Li ,U

T
i are lower triangular Toeplitz

A− ZAZT and ZA− AZ have rank at most 2k for Z =


0

1
. . .

. . .
. . .

1 0


Displacement operators, displacement rank
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Hidden structures: rank-structured matrices

Quasiseparable matrices:


7 1 3 4 2
1 2 6 8 4
6 12 −3 −4 −2
4 8 −2 6 3
2 4 −1 3 8


The inverse of a tridiagonal matrix A is not generally banded

However, if A is nonsingular, the submatrices of A−1 contained in the
upper (or lower) triangular part have rank at most 1. If A is also
irreducible then

A−1 = tril(uvT ) + triu(wzT ), u, v ,w , z ∈ Rn

Rank-structured matrices (quasi-separable, semi-separable) share this
property, the submatrices contained in the upper/lower triangular part
have rank bounded by k << n

This structure is hardly detectable

A wide literature exists in this regard



Markov chains and queuing models



Markov chains and queuing models
A research area where structured matrices play an important role is
Markov Chains and Queuing Models.

Just few words about Markov chains and then some important examples.

Stochastic process: Family {Xt ∈ E : t ∈ T}
Xt : random variables

E : state space (denumerable) E = N
T : time space (denumerable) T = N

Example: Xt number of customers in the line at time t

Notation: P(X = a|Y = b) conditional probability that X = a given that
Y = b.

Markov chain: Stochastic process {Xn}n∈T such that

P(Xn+1 = j |X0 = i0,X1 = i1, . . . ,Xn = in) =

P(Xn+1 = j |Xn = in)



The state Xn+1 of the system at time n + 1 depends only on the state Xn

at time n. It does not depend on the past history of the system

Homogeneity assumption: P(Xn+1 = j |Xn = i) = P(X1 = j |X0 = i) ∀ n

Transition matrix of the Markov chain:

P = (pi ,j)i ,j∈T , pi ,j = P(X1 = j |X0 = i).

P is row-stochastic: pi ,j ≥ 0,
∑

j∈T pi ,j = 1.

Equivalently: Pe = e, e = (1, 1, . . . , 1)T .



Properties: If x (k) = (x (k))i is the probability (row) vector of the Markov

chain at time k , that is, x
(k)
i = P(Xk = i), then

x (k+1) = x (k)P, k ≥ 0

If the limit π = limk x (k) exists, then by continuity

π = πP

π is said the stationary probability vector

If P is finite then the Perron-Frobenius theorem provides the answers to all
the questions



Define the spectral radius of an n × n matrix A as

ρ(A) = max
i
|λi (A)|, λi (A) eigenvalue of A

Theorem [Perron-Frobenius] Let A = (ai ,j) be an n × n matrix such that
ai ,j ≥ 0, let A be irreducible then

the spectral radius ρ(A) is a positive simple eigenvalue

the corresponding right and left eigenvectors are positive

if B ≥ A and B 6= A then ρ(B) > ρ(A)

In the case of P, if any other eigenvalue of P has modulus less than 1,
then lim Pk = eπ and for any x (0) ≥ 0 such that x (0)e = 1 it holds

lim
k

x (k) = π, πTP = πT , πe = 1



In the case where A is infinite, the situation is more complicated.
Assume A = (ai ,j)i ,j∈N stochastic and irreducible. The existence of π > 0
such that πe = 1 is not guaranteed

Examples:
0 1

3/4 0 1/4
3/4 0 1/4

. . .
. . .

. . .

 , π = [12 ,
2
3 ,

2
9 ,

2
27 , . . .] ∈ `1

positive recurrent


0 1

1/4 0 3/4
1/4 0 3/4

. . .
. . .

. . .

 , π = [1, 4, 12, 16, . . .] 6∈ `∞
negative recurrent


0 1

1/2 0 1/2
1/2 0 1/2

. . .
. . .

. . .

 , π = [1/2, 1, 1, . . .] 6∈ `1
null recurrent



Intuitively, positive recurrence means that the global probability that the
state changes into a “forward” state is less than the global probability of a
change into a backward state

In this way, the probabilities πi of the stationary probability vector get
smaller and smaller as long as i grows

Negative recurrence means that it is more likely to move forward
Null recurrence means that the probabilities to move forward/backward are
equal

Positive recurrence plus additional properties guarantee that even in the
infinite case lim x (k) = π

Positive/negative/null recurrence can be detected by means of the drift

An important computational problem is: designing efficient algorithms for
computing π1, π2, . . . πk for any given integer k



Some examples

We present some examples of Markov chains which show how matrix
structures reflect specific properties of the physical model



Some examples: Random walk
Random walk: At each instant a point Q moves along a line of a unit step

to the right with probability p

to the left with probability q

Clearly, the position of Q at time n + 1 depends only on the position of Q
at time n.

q p

1-p-q

E = Z: coordinates of Q

T = N: units of time

Xn: coordinate of Q at time n

Xn+1 =


Xn + 1 with probability p
Xn − 1 with probability q
Xn with probability 1− p − q



P(Xn+1 = j |Xn = i) =


p if j = i + 1
q if j = i − 1
1− p − q if j = i
0 otherwise

P =



. . .
. . .

. . . 0
q 1− p − q p

q 1− p − q p
q 1− p − q p

0
. . .

. . .
. . .



bi-infinite tridiagonal Toeplitz matrix



Case where E = Z+

q p

1-p-q

P =


1− p p

q 1− q − p p
q 1− q − p p

. . .
. . .

. . .



Semi-infinite tridiagonal almost Toeplitz matrix



Case where E = {1, 2, . . . , n}

q p

1-p-q

P =



1− p p
q 1− q − p p

q 1− q − p p
. . .

. . .
. . .

q 1− q − p p
q 1− q



Finite tridiagonal almost Toeplitz matrix



Some examples: A more general random walk

At each instant a point Q moves along a line

to the right of k unit steps with probability pk , k ∈ N
to the left with probability p−1

Semi-infinite case

P =


p̂0 p1 p2 p3 p4 . . .

p−1 p0 p1 p2 p3
. . .

p−1 p0 p1 p2
. . .

. . .
. . .

. . .
. . .


Almost Toeplitz matrix in Hessenberg form

M/G/1 Markov chain



Some examples: Bidimensional random walk

The particle can move in the plane: at each instant it can move
right, left, up, down, up-right, up-left, down-right, down-left,

with assigned probabilities a
(j)
i , i , j = −1, 0, 1.

p
(1)
−1 p

(1)
0 p

(1)
1

p
(0)
−1 p

(0)
0 p

(0)
1

p
(−1)
−1 p

(−1)
0 p

(−1)
1

Ordering the coordinates row-wise as

(0, 0), (1, 0), (2, 0), . . . , (0, 1), (1, 1), (2, 1), . . . , (0, 2), (1, 2), (2, 2), . . .

one finds that the matrix P has a block structure



For E = Z× Z

P =


. . .

. . .
. . .

A−1 A0 A1

A−1 A0 A1

. . .
. . .

. . .

 , where Ai =


. . .

. . .
. . .

p
(i)
−1 p

(i)
0 p

(i)
1

p
(i)
−1 p

(i)
0 p

(i)
1

. . .
. . .

. . .


block tridiagonal block Toeplitz with tridiagonal Toeplitz blocks

– Blocks can be finite, semi-infinite or bi-infinite

– The block matrix can be finite semi-infinite or bi-infinite

Example: if E = {0, 1, 2, . . . , n} × N then the blocks Ai are finite

P =



Â0 A1

A−1 A0 A1

. . .
. . .

. . .

A−1 A0 A1

. . .
. . .

. . .


, where Ai =



p̂
(i)
0 p

(i)
1

p
(i)
−1 p

(i)
0 p

(i)
1

. . .
. . .

. . .

p
(i)
−1 p

(i)
0 p

(i)
1

p
(i)
−1 p̃

(i)
0





For E = Zd one obtains a multilevel structure with d levels, that is, block
Toeplitz, block tridiagonal matrices where the blocks have a multilevel
structure with d − 1 levels



Some examples: The shortest queue model

Shortest queue model

m servers with m queues

at each time unit each server serves one customer

at each time unit, α new customers arrive with probability qα

each customer joins the shortest queue

Xn: total number of customers in the lines



Xn+1 =

{
Xn + α−m if Xn + α−m ≥ 0
0 if Xn + α−m < 0

pi ,j =


q0 + q1 + · · ·+ qm−i if j = 0, 0 ≤ i ≤ m − 1
qj−i+m if j − i + m ≥ 0
0 if j − i + m < 0



Xn+1 =

{
Xn + α−m if Xn + α−m ≥ 0
0 if Xn + α−m < 0

pi ,j =


q0 + q1 + · · ·+ qm−i if j = 0, 0 ≤ i ≤ m − 1
qj−i+m if j − i + m ≥ 0
0 if j − i + m < 0

if i < m then transition i → 0 occurs if the number of arrivals is at most
m − i



Xn+1 =

{
Xn + α−m if Xn + α−m ≥ 0
0 if Xn + α−m < 0

pi ,j =


q0 + q1 + · · ·+ qm−i if j = 0, 0 ≤ i ≤ m − 1
qj−i+m if j − i + m ≥ 0
0 if j − i + m < 0

transition i → j if there are j − i + m ≥ 0 arrivals



Xn+1 =

{
Xn + α−m if Xn + α−m ≥ 0
0 if Xn + α−m < 0

pi ,j =


q0 + q1 + · · ·+ qm−i if j = 0, 0 ≤ i ≤ m − 1
qj−i+m if j − i + m ≥ 0
0 if j − i + m < 0

transition i → j impossible if j < i −m (at most m customers are served
in a unit of time)



pi ,j =


q0 + q1 + · · ·+ qm−i if j = 0, 0 ≤ j ≤ m − 1
qj−i+m if j − i + m ≥ 0
0 if j − i + m < 0

P =



b0 qm+1 qm+2 qm+3 . . . . . .
...

...
...

...
...

...
bm−1 q2 q3 q4 . . . . . .

q0 q1 q2 q3 . . . . . .

q0 q1 q2 q3
. . .

. . .
. . .

. . .
. . .


bi = q0 + q1 + · · ·+ qm−i , 0 ≤ i ≤ m − 1

Almost Toeplitz, generalized Hessenberg



Case m = 2 (for simplicity)



b0 q3 q4 q5 q6 q7 q8 q9 . . .
b1 q2 q3 q4 q5 q6 q7 q8 . . .
q0 q1 q2 q3 q4 q5 q6 q7 . . .

q0 q1 q2 q3 q4 q5 q6

. . .

q0 q1 q2 q3 q4 q5

. . .

q0 q1 q2 q3 q4

. . .

q0 q1 q2 q3 q4

. . .

. . .
. . .

. . .
. . .



=



Q̂1 Q2 Q3 . . .

Q0 Q1 Q2

. . .

Q0 Q1

. . .

. . .
. . .



Generalized Hessenberg → Block Hessenberg

(Almost) Toeplitz → (Almost) Block Toeplitz



M/G/1-Type Markov chains

Set of states: E = N× {1, 2, . . . ,m}
Xn = (ψn, ϕn) ∈ E , ψn: level, ϕn: phase

P(Xn+1 = (i ′, j ′)|Xn = (i , j)) = (Ai ′−i )j ,j ′ , for i ′ − i ≥ −1, 1 ≤ j , j ′ ≤ m

P(Xn+1 = (i ′, j ′)|Xn = (0, j)) = (Bi ′)j ,j ′ , for i ′ − i ≥ −1

The probability to switch from level i to level i ′ depends on i ′ − i

P =


B0 B1 B2 B3 . . .

A−1 A0 A1 A2 A3 . . .

A−1 A0 A1 A2 A3
. . .

. . .
. . .

. . .
. . .

. . .


Almost block Toeplitz, block Hessenberg



G/M/1-Type Markov chains

Set of states: E = N× {1, 2, . . . ,m}
Xn = (ψn, ϕn) ∈ E , ψn: level, ϕn: phase

P(Xn+1 = (i ′, j ′)|Xn = (i , j)) = (Ai ′−i )j ,j ′ , for i ′ − i ≤ −1, 1 ≤ j , j ′ ≤ m

P(Xn+1 = (0, j ′)|Xn = (i , j)) = (Bi ′)j ,j ′ , for i ′ − i ≥ −1

The probability to switch from level i to level i ′ depends on i ′ − i

P =


B0 A1

B−1 A0 A1

B−2 A−1 A0 A1

B−3 A−2 A−1 A0 A1
...

...
. . .

. . .
. . .


Almost block Toeplitz, block lower Hessenberg



Quasi–Birth-Death models

The level can move up or down only by one step

The phase can move anywhere

P =


B0 A1

A−1 A0 A1

A−1 A0 A1

A−1 A0 A1

. . .
. . .

. . .


birth

death

.........



The Tandem Jackson model

Two queues in tandem

Queue 1 Queue 2

Allowed transitions

first buffer

se
co

n
d

 b
u
ff

e
r

Service node Service node

customers arrive at the first queue according to a Poisson process with
rate λ

customers are served with an exponential service time with parameter µ1

on leaving the first queue, customers enter the second queue and are
served with an exponential service time with parameter µ2



The model is described by a Markov chains where the set of states are the
pairs (α, β), where α is the number of customer in the first queue, β is the
number of customer in the second queue

The transition matrix is  Ã0 A1

A−1 A0 A1

. . .
. . .

. . .


where

A−1 =


0
µ1 0

µ1 0
. . .

. . .

 , A0 =

1− λ− µ2 λ
1− λ− µ1 − µ2 λ

. . .
. . .

 ,

A1 = µ2I , Ã0 =

1− λ λ
1− λ− µ1 λ

. . .
. . .





Non-Skip–Free models

In certain models, the transition to lower levels is limited by a positive
constant N. That is the Toeplitz part of the matrix P has the generalized
block Hessenberg form

A0 A1 A2 A3 . . .

A−1 A0 A1 A2
. . .

... A−1 A0 A1 A2
. . .

A−N
. . . A−1 A0 A1 A2

. . .

A−N
. . . A−1 A0 A1 A2

. . .


Reblocking the above matrix into N × N blocks yields a block Toeplitz
matrix in block Hessenberg form where the blocks are block Toeplitz
matrices



Models from the real world

Queuing and communication systems IEEE 801.10 wireless protocol:

Â0 Â1 . . . . . . Ân−1 Ân

A−1 A0 A1 . . . An−2 Ãn−1

A−1 A0 A1

...
...

. . .
. . .

...
...

A−1 A0 Ã1

A−1 Ã0


Risk and insurance problems

State-dependent susceptible-infected-susceptible epidemic models

Inventory systems

J. Artalejo, A. Gomez-Corral, SORT 34 (2) 2010



Additional structures

In some cases, the blocks Ai in the QBD, M/G/1 or G/M/1 processes,
have a tensor structure,

in other cases, the blocks Ai for i 6= 0 have low rank



Recursive structures
Tree-like stochastic processes are bivariate Markov chains over a d-ary tree

States: (j1, . . . , j` ; i), 1 ≤ j1, . . . , j` ≤ d , 1 ≤ i ≤ m

The `-tuple (j1, . . . , j`) denotes the generic node at the level ` of the tree

d=3level 1

level 2

level 3

Allowed transitions

within a node (J; i)→ (J; i ′) with probability (Bj)i ,i ′

within the root node i → i ′ with probability (B0)i ,i ′

between a node and one of its children (J; i)→ ([J, k]; i ′) with
probability (Ak)i ,i ′

between a node and its parent ([J, k]; i)→ (J; i ′) with probability
(Dk)i ,i ′



Over an infinite tree, with a lexicographical ordering of the states according
to the leftmost integer of the node J, the Markov chain is governed by

P =


C0 Λ1 Λ2 . . . Λd

V1 W 0 . . . 0

V2 0 W
. . .

...
...

...
. . .

. . . 0
Vd 0 . . . 0 W


where C0 = B0 − I , Λi = [Ai 0 0 . . .], V T

i = [DT
i 0 0 . . .], we assume

B1 = . . . = Bd =: B, C = I −B and the matrix W is recursively defined by

W =


C Λ1 Λ2 . . . Λd

V1 W 0 . . . 0

V2 0 W
. . .

...
...

...
. . .

. . . 0
Vd 0 . . . 0 W


They model single server queues with LIFO service discipline, medium
access control protocol with an underlying stack structure [Latouche,

Ramaswami 99]



Computational problems

In all these problems the most important computational task is to
compute a usually large number of components of the vector π such that

πP = π

where the stochastic matrix P is block upper (lower) Hessenberg, or
generalized Hessenberg, almost block Toeplitz, with finite or with infinite
size, with blocks that are either finite or infinite

In the infinite case, this problem can be reduced to solving the following
matrix equation

∞∑
i=−1

AiX
i+1 = X

where X is an n × n matrix, where the solution of interest is nonnegative
and among all the solutions is the minimal one w.r.t. the component-wise
ordering



Markovian binary trees and vector equations

Markovian binary trees, a particular family of branching processes used to
model the growth of populations and networking systems, are
characterized by the following laws

1 At each instant, a finite number of entities, called “individuals”, exist.

2 Each individual can be in any one of N different states (say, age
classes or difference features in a population).

3 Each individual evolves independently from the others. Depending on
its state i , it has a fixed probability bi ,j ,k of being replaced by two
new individuals (“children”) in states j and k respectively, and a fixed
probability ai of dying without producing any offspring.

The MBT is characterized by the vector a = (ai ) ∈ RN
+ and by the tensor

B = (bi ,j ,k) ∈ RN×N×N
+



One important issue related to MBTs is the computation of the extinction
probability of the population, given by the minimal nonnegative solution
x ∈ RN of the quadratic vector equation [N.G. Bean, N. Kontoleon,

P.G. Taylor 2008]

xk = ak + xTBkx , Bk = (bi ,j ,k)

xk is the probability that a colony starting from a single individual in state
k becomes extinct in a finite time

Compatibility condition: e = a + B(e ⊗ e)

the probabilities of all the possible events that may happen to an
individual in state i sum to 1

The equation can be rewritten as

x = a + B(x ⊗ x), B = Diag(vec(BT
1 )T , . . . , vec(BT

N )T )



A related problem: the Poisson problem

Given a stochastic matrix P, irreducible, non-periodic, positive recurrent;
given a vector d , determine all the solutions x = (x1, x2, . . .), z of the
following system

(I − P)x = d − ze, e = (1, 1 . . .)T

Found in many places: Markov reward processes, Central limit theorem for
M.C., perturbation analysis, heavy-traffic limit theory, variance constant
analysis, asymptotic variance of single-birth process (Asmussen, Bladt

1994)

Finite case:
for π such that π(I − P) = 0 one finds that z = πd so that it remains to
solve (I − P)x = c with c = d − ze

Infinite case:
More complicated situation



Example: (Makowski and Shwartz, 2002)

P =


q p
q 0 p

q 0 p
. . .

. . .
. . .


with p + q = 1, p, q > 0. Take any d . For any real z , there exists a
solution x

What happens for QBDs?

Computational problem: system of vector difference equations of the kind

 B A1

A−1 A0 A1

. . .
. . .

. . .




u0

u1

u2
...

 =


c0
c1
c2
...





Another problem in Markov chains

In the framework of continuous time Markov chains, the following problem
is encountered:

Compute

exp(A) =
∞∑
i=0

1

i !
Ai

where A is an n × n block triangular block Toeplitz matrix with m ×m
blocks; A is a generator, i.e., Ae ≤ 0, ai ,i ≤ 0, ai ,j ≥ 0 for i 6= j

Erlangian approximation of Markovian fluid queues

S. Asmussen, F. Avram, M. Usábel 2002

D. Stanford, et al. 2005
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2– Fundamentals on structured matrices

Toeplitz matrices
I Toeplitz matrices, polynomials and power series
I Trigonometric matrix algebras and FFT
I Displacement operators
I Algorithms for Toeplitz inversion
I Asymptotic spectral properties and preconditioning

Rank structures



Toeplitz matrices [Otto Toeplitz 1881-1940]

Let F be a field (F ∈ {R,C})
Given a bi-infinite sequence {ai}i∈Z ∈ FZ and an integer n, the n × n
matrix Tn = (ti ,j)i ,j=1,n such that ti ,j = aj−i is called Toeplitz matrix

T5 =


a0 a1 a2 a3 a4

a−1 a0 a1 a2 a3
a−2 a−1 a0 a1 a2
a−3 a−2 a−1 a0 a1
a−4 a−3 a−2 a−1 a0


Tn is a leading principal submatrix of the (semi) infinite Toeplitz matrix
T∞ = (ti ,j)i ,j∈N, ti ,j = aj−i

T∞ =


a0 a1 a2 . . .

a−1 a0 a1
. . .

a−2 a−1
. . .

. . .
...

. . .
. . .

. . .





Theorem [Otto Toeplitz] The matrix T∞ defines a bounded linear
operator in `2(N), x → y = T∞x , yi =

∑+∞
j=0 aj−ixj if and only if ai are

the Fourier coefficients of a function a(z) ∈ L∞(T), T = {z ∈ C : |z | = 1}

a(z) =
+∞∑

n=−∞
anzn, an =

1

2π

∫ 2π

0
a(eiθ)e−inθdθ, i2 = −1

In this case

‖T‖ = ess supz∈T|a(z)|, where ‖T‖ := sup
‖x‖2=1

‖Tx‖2

The function a(z) is called symbol associated with T∞

Example
If a(z) =

∑k
i=−k aiz

i is a Laurent polynomial, then T∞ is a banded
Toeplitz matrix which defines a bounded linear operator



Block Toeplitz matrices
Let F be a field (F ∈ {R,C})
Given a bi-infinite sequence {Ai}i∈Z, Ai ∈ Fm×m and an integer n, the
mn ×mn matrix Tn = (ti ,j)i ,j=1,n such that ti ,j = Aj−i is called block
Toeplitz matrix

T5 =


A0 A1 A2 A3 A4

A−1 A0 A1 A2 A3

A−2 A−1 A0 A1 A2

A−3 A−2 A−1 A0 A1

A−4 A−3 A−2 A−1 A0


Tn is a leading principal submatrix of the (semi) infinite block Toeplitz
matrix T∞ = (ti ,j)i ,j∈N, ti ,j = Aj−i

T∞ =


A0 A1 A2 . . .

A−1 A0 A1
. . .

A−2 A−1
. . .

. . .
...

. . .
. . .

. . .





Block Toeplitz matrices with Toeplitz blocks

Theorem The infinite block Toeplitz matrix T∞ defines a bounded linear

operator in `2(N) iff the blocks Ak = (a
(k)
i ,j ) are the Fourier coefficients of

a matrix-valued function A(z) : T→ Cm×m,
A(z) =

∑+∞
k=−∞ zkAk = (ai ,j(z))i ,j=1,m such that ai ,j(z) ∈ L∞(T)

If the blocks Ai are Toeplitz themselves we have a block Toeplitz matrix
with Toeplitz blocks

A function a(z ,w) : T× T→ C having the Fourier series
a(z ,w) =

∑+∞
i ,j=−∞ ai ,jz

iw j defines an infinite block Toeplitz matrix
T∞ = (Aj−i ) with infinite Toeplitz blocks Ak = (ak,j−i ).
T∞ defines a bounded operator iff a(z ,w) ∈ L∞

For any pair of integers n,m we may construct an n × n Toeplitz matrix
Tm,n = (Aj−i )i ,j=1,n with m ×m Toeplitz blocks Aj−i = (ak,j−i )i ,j=1,m



Multilevel Toeplitz matrices

A function a : Td → C having the Fourier expansion

a(z1, z2, . . . , zd) =
+∞∑

i1,...,id=−∞
ai1,i2,...,id z i1

i1
z i2
i2
· · · z id

id

defines a d-multilevel Toeplitz matrix: that is a block Toeplitz matrix with
blocks that are themselves (d − 1)-multilevel Toeplitz matrices



Generalization: Toeplitz-like matrices

Let Li and Ui be lower triangular and upper triangular n × n Toeplitz
matrices, respectively, where i = 1, . . . , k and k is independent of n

A =
k∑

i=1

LiUi

is called a Toeplitz-like matrix

If k = 2, L1 = U2 = I then A = U1 + L2 is a Toeplitz matrix.

If A is an invertible Toeplitz matrix then there exist Li ,Ui , i = 1, 2 such
that

A−1 = L1U1 + L2U2

that is, A−1 is Toeplitz-like



Toeplitz matrices, polynomials and power series



Toeplitz matrices, polynomials and power series
Polynomial multiplication

a(x) =
∑n

i=0 aix
i , b(x) =

∑m
i=0 bix

i ,

c(x) := a(x)b(x), c(x) =
∑m+n

i=0 cix
i

c0 = a0b0

c1 = a0b1 + a1b0

. . . 

c0
c1
...
...
...
...

cm+n


=



a0
a1 a0
...

. . .
. . .

an
. . .

. . . a0
. . .

. . . a1

. . .
...

an




b0

b1
...

bm





Let A be an n × n Toeplitz matrix and b an n-vector, consider the
matrix-vector product

c = Ab

rewrite it in the following form

ĉ1
ĉ2
...

ĉn−1
c1
c2
...

cn−1
cn
c̃1
c̃2
...

c̃n−1



=



an−1
an−2 an−1

...
. . .

. . .

a1 . . . an−2 an−1
a0 a1 . . . an−2 an−1

a−1 a0 a1 . . . an−2
...

. . .
. . .

. . .
...

a−n+2 . . . a−1 a0 a1
a−n+1 a−n+2 . . . a−1 a0

a−n+1 a−n+2 . . . a1
. . .

. . .
...

a−n+1




b1

b2

...
bn





Deduce that the Toeplitz-vector product can be viewed as part of the
product of a polynomial of degree ≤ 2n − 1 and a polynomial of degree
≤ n − 1.

Observe that the result is a polynomial of degree at most 3n − 2 whose
coefficients can be computed by means of an evaluation-interpolation
scheme at 3n − 1 points.

Polynomial product

1 Choose N ≥ 3n − 1 different numbers x1, . . . , xN
2 evaluate αi = a(xi ) and βi = b(xi ), for i = 1, . . . ,N

3 compute γi = αiβi , i = 1, . . . ,N

4 interpolate c(xi ) = γi and compute the coefficients of c(x)

If the knots x1, . . . , xN are N-th roots of 1 then the evaluation and the
interpolation steps can be executed by means of FFT in time O(N log N)



Polynomial division

a(x) =
∑n

i=0 aix
i , b(x) =

∑m
i=0 bix

i , bm 6= 0

a(x) = b(x)q(x) + r(x), deg r(x) < m

q(x) quotient, r(x) remainder of the division of a(x) by b(x)



a0
a1
...

am
...
...

an


=



b0

b1 b0
...

. . .
. . .

bm
. . .

. . . b0

. . .
. . . b1

. . .
...

bm




q0

q1
...

qn−m

+



r0
r1
...

rm−1
0
0
...
0


The last n −m + 1 equations form a triangular Toeplitz system



Polynomial division

a(x) =
∑n

i=0 aix
i , b(x) =

∑m
i=0 bix

i , bm 6= 0

a(x) = b(x)q(x) + r(x), deg r(x) < m

q(x) quotient, r(x) remainder of the division of a(x) by b(x)



a0
a1
...

am
...
...

an


=



b0

b1 b0
...

. . .
. . .

bm
. . .

. . . b0

. . .
. . . b1

. . .
...

bm




q0

q1
...

qn−m

+



r0
r1
...

rm−1
0
0
...
0


The last n −m + 1 equations form a triangular Toeplitz system



Polynomial division (in the picture n −m = m − 1)


bm bm−1 . . . b2m−n

bm
. . .

...
. . . bm−1

bm




q0

q1
...

qn−m

 =


am

am+1
...

an


Its solution provides the coefficients of the quotient.
The remainder can be computed as a difference. r0

...
rm−1

 =

 a0
...

am−1

−
 b0

...
. . .

bm−1 . . . b0


 q0

...
qn−m





Polynomial gcd

If g(x) = gcd(a(x), b(x)), deg(g(x)) = k, deg(a(x)) = n, deg(b(x)) = m.
Then there exist polynomials r(x), s(x) of degree at most m − k − 1,
n − k − 1, respectively, such that (Bézout identity)

g(x) = a(x)r(x) + b(x)s(x)

In matrix form one has the (m + n − k)× (m + n − 2k) system

a0
a1 a0
...

. . .
. . .

an
. . .

. . . a0
. . .

. . . a1

. . .
...

an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b0

b1 b0
...

. . .
. . .

bm
. . .

. . . b0

. . .
. . . b1

. . .
...

bm





r0
r1
...

rm−k−1
s0
s1
...

sn−k−1


=



g0
...

gk
0
...
...
0


Sylvester matrix



Polynomial gcd

The last m + n − 2k equations provide a linear system of the kind

S

[
r
s

]
=


gk
0
...
0


where S is the (m + n − 2k)× (m + n − 2k) submatrix of the Sylvester
matrix in the previous slide formed by two Toeplitz matrices.



Infinite Toeplitz matrices and power series

Let a(x), b(x) be polynomials of degree n,m with coefficients ai , bj , define
the Laurent polynomial

c(x) = a(x)b(x−1) =
n∑

i=−m
cix

i

Then the following infinite UL factorization holds


c0 . . . cn
... c0

. . .
. . .

c−m

. . .
. . .

. . .
. . .

. . .
. . .

. . .

 =


a0 . . . an

a0
. . . an
. . .

. . .
. . .





bm
bm−1 b0

...
. . .

. . .

b0
. . .

. . .
. . .

. . .
. . .

. . .
. . .


If the zeros of a(x) and b(x) lie outside the unit disk, this factorization is
called Wiener-Hopf factorization. This factorization is encountered in
many applications.



Remark about the condition a(x), b(x) 6= 0 for |x | ≤ 1

Observe that if |γ| > 1 and a(x) = x − γ then

1

a(x)
=

1

x − γ = −1

γ

1

1− x
γ

= −1

γ

∞∑
i=0

(
x

γ

)i

the series
∑∞

i=0 1/|γ|i is convergent since 1/|γ| < 1. This is not true if
|γ| ≤ 1

Moreover, in matrix form

−γ 1 0 . . .
−γ 1 0 . . .

. . .
. . .

. . .


−1

= −γ−1


1 γ−1 γ−2 . . .

1 γ−1 γ−2
. . .

. . .
. . .

. . .


A similar property holds if all the zeros of a(x) have modulus > 1

A similar remark applies to the factor b(z)



The Wiener-Hopf factorization can be defined for matrix-valued functions
C (x) =

∑+∞
i=−∞ Cix

i , Ci ∈ Cm×m, in the Wiener class Wm, i.e, such that∑+∞
i=−∞ ‖Ci‖ <∞. It exists provided that det C (x) 6= 0 for |x | = 1.

In this case, the Wiener-Hopf factorization takes the form

C (x) = A(x)diag(xk1 , . . . , xkm)B(x−1), A(x) =
∞∑
i=0

x iAi , B(x) =
∞∑
i=0

Bix
i

where A(x),B(x) ∈ Wm and det A(x) and det B(x) are nonzero in the
open unit disk Böttcher, Silbermann.

If the partial indices ki ∈ Z are zero, the factorization takes the form
C (x) = A(x)B(x−1) and is said canonical factorization

Its matrix representation provides a block UL factorization of the infinite
block Toeplitz matrix (Cj−i )



Matrix form of the canonical factorization


C0 C1 . . .

C−1 C0 C1
. . .

...
. . .

. . .
. . .

 =


A0 A1 . . .

A0 A1
. . .

. . .
. . .
. . .




B0

B−1 B0
... B−1

. . .
...

. . .
. . .

. . .



Moreover, the condition det A(z), det B(z) 6= 0 for |z | ≤ 1 make A(z)−1,
B(z)−1 exist in Wm. Consequently, the two infinite matrices have a block
Toeplitz inverse which has bounded infinity norm

We will see that the Wiener-Hopf factorization is fundamental for
computing the vector π for many Markov chains encountered in queuing
models



Trigonometric matrix algebras and FFT



Let ωn = cos 2π
n + i sin 2π

n be a primitive nth root of 1, that is, such that
ωn
n = 1 and {1, ωn, . . . , ω

n−1
n } has cardinality n.

Define the n × n matrix Ωn = (ωij
n )i ,j=0,n−1, Fn = 1√

n
Ωn.

One can easily verify that F ∗n Fn = I that is, Fn is a unitary matrix.

For x ∈ Cn define

y = DFT(x) = 1
nΩ∗nx the Discrete Fourier Transform (DFT) of x

x = IDFT(y) = Ωny the Inverse DFT (IDFT) of y

Remark: cond2(Fn) = ‖Fn‖2‖F−1n ‖2 = 1, cond2(Ωn) = 1

This shows that the DFT and IDFT are numerically well conditioned when
the perturbation errors are measured in the 2-norm.



If n is an integer power of 2 then the IDFT of a vector can be computed
with the cost of 3

2n log2 n arithmetic operations by means of FFT

FFT is numerically stable in the 2-norm. That is, if x̃ is the value
computed in floating point arithmetic with precision µ in place of
x = IDFT(y) then

‖x − x̃‖2 ≤ µγ‖x‖2 log2 n

for a moderate constant γ

norm-wise well conditioning of DFT and the norm-wise stability of FFT
make this tool very effective for most numerical computations.

Unfortunately, the norm-wise stability of FFT does not imply the
component-wise stability. That is, the inequality

|xi − x̃i | ≤ µγ|xi | log2 n

is not generally true for all the components xi .



Warning: be aware that FFT is not
point-wise stable, otherwise unpleasant
things may happen

Here is an example



Warning: the example of Graeffe iteration

Let p(x) =
∑n

i=0 pix
i be a polynomial of degree n having zeros

|x1| < · · · < |xm| < 1 < |xm+1| < · · · < |xn|

With p0(x) := p(x), define the sequence (Graeffe iteration)

q(x2) = pk(x)pk(−x), pk+1(x) = q(x)/qm, for k = 0, 1, 2, , . . .

The zeros of pk(x) are x2k
i , so that limk→∞ pk(x) = xm

If pk(x) =
∑n

i=0 p
(k)
i x i then

lim
k→∞

|p(k)
n−1/p

(k)
n |1/2

k
= |xn|

moreover, convergence is very fast. Similar equations hold for |xi |



lim
k→∞

|p(k)
n−1/p

(k)
n |1/2

k
= |xn|

On the other hand (if m < n − 1)

lim
k→∞

|p(k)
n−1| = lim

k→∞
|p(k)

n | = 0

with double exponential convergence
Computing pk(x) given pk−1(x) by using FFT (evaluation interpolation at
the roots of unity) costs O(n log n) ops.

But as soon as |p(k)
n | and |p(k)

n−1| are below the machine precision the
relative error in these two coefficients is greater than 1. That is, no digit
is correct in the computed estimate of |xn|.



Figure : The values of log10 |p(6)
i | for i = 0, . . . , n for the polynomial obtained

after 6 Graeffe steps starting from a random polynomial of degree 100. In red the
case where the coefficients are computed with FFT, in blue the coefficients
computed with the customary algorithm



step custom FFT

1 1.40235695 1.40235695
2 2.07798429 2.07798429
3 2.01615072 2.01615072
4 2.01971626 2.01857621
5 2.01971854 1.00375471
6 2.01971854 0.99877589

End of warning



Trigonometric matrix algebras: Circulant matrices
Given the row vector [a0, a1, . . . , an−1], the n × n matrix

A = (aj−i mod n)i,j=1,n =


a0 a1 . . . an−1

an−1 a0
. . .

...
...

. . .
. . . a1

a1 . . . an−1 a0


is called the circulant matrix associated with [a0, a1, . . . , an−1] and is

denoted by Circ(a0, a1, . . . , an−1).

If ai = Ai are m ×m matrices we have a block circulant matrix

Any circulant matrix A can be viewed as a polynomial with coefficients ai
in the unit circulant matrix S defined by its first row (0, 1, 0, . . . , 0)

A =
n−1∑
i=0

aiS
i , S =


0 1

.

.

.
. . .

. . .

0
. . . 1

1 0 . . . 0


Clearly, Sn − I = 0 so that circulant matrices form a matrix algebra
isomorphic to the algebra of polynomials with the product modulo xn − 1



If A is a circulant matrix with first row rT and first column c, then

A =
1

n
Ω∗nDiag(w)Ωn = F ∗Diag(w)F

where w = Ωnc = Ω∗nr.

Consequences

Ax = DFTn(IDFTn(c)� IDFTn(x))

where “�” denotes the Hadamard, or component-wise product of vectors.

The product Ax of an n × n circulant matrix A and a vector x, as well as
the product of two circulant matrices can be computed by means of two
IDFTs and a DFT of length n in O(n log n) ops

The inverse of a circulant matrix can be computed in O(n log n) ops

A−1 =
1

n
Ω∗nDiag(w−1)Ωn ⇒ A−1e1 =

1

n
Ω∗nw−1



The definition of circulant matrix is naturally extended to block matrices
where ai = Ai are m ×m matrices.

The inverse of a block circulant matrix can be computed by means of 2m2

IDFTs of length n and n inversions of m ×m matrices for the cost of
O(m2n log n + nm3)

The product of two block circulant matrices can be computed by means of
2m2 IDFTs, m2 DFT of length n and n multiplications of m ×m matrices
for the cost of O(m2n log n + nm3).



z-circulant matrices
A generalization of circulant matrices is provided by the class of
z-circulant matrices.

Given a scalar z 6= 0 and the row vector [a0, a1, . . . , an−1], the n× n matrix

A =


a0 a1 . . . an−1

zan−1 a0
. . .

...
...

. . .
. . . a1

za1 . . . zan−1 a0


is called the z-circulant matrix associated with [a0, a1, . . . , an−1].

Denote by Sz the z-circulant matrix whose first row is [0, 1, 0, . . . , 0], i.e.,

Sz =



0 1 0 . . . 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . 0 1
z 0 . . . 0 0


,



Any z-circulant matrix can be viewed as a polynomial in Sz .

A =
n−1∑
i=0

aiS
i
z .

Szn = zDzSD−1z , Dz = Diag(1, z , z2, . . . , zn−1),
where S is the unit circulant matrix.

If A is the zn-circulant matrix with first row rT and first column c
then

A =
1

n
DzΩ∗nDiag(w)ΩnD−1z ,

with w = Ω∗nDzr = ΩnD−1z c.

Multiplication of z-circulants costs 2 IDFTs, 1 DFT and a scaling

Inversion of a z-circulant costs 1 IDFT, 1 DFT, n inversions and a
scaling

The extension to block matrices trivially applies to z-circulant
matrices.



Embedding Toeplitz matrices into circulants

An n × n Toeplitz matrix A = (ti ,j), ti ,j = aj−i , can be embedded into the
2n × 2n circulant matrix B whose first row is
[a0, a1, . . . , an−1, ∗, a−n+1, . . . , a−1], where ∗ denotes any number.

B =


a0 a1 a2 ∗ a−2 a−1

a−1 a0 a1 a2 ∗ a−2
a−2 a−1 a0 a1 a2 ∗
∗ a−2 a−1 a0 a1 a2
a2 ∗ a−2 a−1 a0 a1
a1 a2 ∗ a−2 a−1 a0

 .

More generally, an n × n Toeplitz matrix can be embedded into a q × q
circulant matrix for any q ≥ 2n − 1.

Consequence: the product y = Ax of an n × n Toeplitz matrix A and a
vector x can be computed in O(n log n) ops.



y = Ax , [
y
w

]
= B

[
x
0

]
=

[
A H
H A

] [
x
0

]
=

[
Ax
Hx

]

embed the Toeplitz matrix A into the circulant matrix B =
[
A H
H A

]
embed the vector x into the vector v = [ x0 ]

compute the product u = Bv

set y = (u1, . . . , un)T

Cost: 3 FFTs of order 2n, that is O(n log n) ops

Similarly, the product y = Ax of an n × n block Toeplitz matrix with
m ×m blocks and a vector x ∈ Cmn can be computed in
O(m2n log n + m3n) ops.



Triangular Toeplitz matrices
Let Z = (zi ,j)i ,j=1,n be the n × n matrix

Z =


0 0

1
. . .
. . .

. . .

0 1 0

 ,

Clearly Zn = 0, moreover, given the polynomial a(x) =
∑n−1

i=0 aix
i , the

matrix a(Z ) =
∑n−1

i=0 aiZ
i is a lower triangular Toeplitz matrix defined by

its first column (a0, a1, . . . , an−1)T

a(Z ) =


a0 0
a1 a0
...

. . .
. . .

an−1 . . . a1 a0

 .

The set of lower triangular Toeplitz matrices forms an algebra isomorphic
to the algebra of polynomials with the product modulo xn.



Inverting a triangular Toeplitz matrix
The inverse matrix T−1n is still a lower triangular Toeplitz matrix defined by
its first column vn. It can be computed by solving the system Tnvn = e1

Let n = 2h, h a positive integer, and partition Tn into h × h blocks

Tn =

[
Th 0

Wh Th

]
,

where Th, Wh are h × h Toeplitz matrices and Th is lower triangular.

T−1n =

[
T−1h 0

−T−1h WhT−1h T−1h

]
.

The first column vn of T−1n is given by

vn = T−1n e1 =

[
vh

−T−1h Whvh

]
=

[
vh

−L(vh)Whvh

]
,

where L(vh) = T−1h is the lower triangular Toeplitz matrix whose first
column is vh.



The same relation holds if Tn is block triangular Toeplitz. In this case, the
elements a0, . . . , an−1 are replaced with the m ×m blocks A0, . . . ,An−1
and vn denotes the first block column of T−1n .

Recursive algorithm for computing vn (block case)

Input: n = 2k , A0, . . . ,An−1

Output: vn

Computation:

1 Set v1 = A−10

2 For i = 0, . . . , k − 1, given vh, h = 2i :
1 Compute the block Toeplitz matrix-vector products w = Whvh and

u = −L(vh)w.
2 Set

v2h =

[
vh

u

]
.

Cost: O(n log n) ops



z-circulant and triangular Toeplitz matrices

If ε = |z | is “small” then a z-circulant approximates a triangular Toeplitz


a0 a1 . . . an−1

zan−1 a0
. . .

...
...

. . .
. . . a1

za1 . . . zan−1 a0

 ≈


a0 a1 . . . an−1

a0
. . .

...
. . . a1

a0


Inverting a z-circulant is less expensive than inverting a triangular Toeplitz
(roughly by a factor of 10/3)

The advantage is appreciated in a parallel model of computation, over
multithreading architectures



Numerical algorithms for approximating the inverse of (block) triangular
Toeplitz matrices. Main features:

Total error=approximation error + rounding errors

Rounding errors grow as µε−1, approximation errors are polynomials
in z

the smaller ε the better the approximation, but the larger the
rounding errors

good compromise: choose ε such that ε = µε−1. This implies that the
total error is O(µ1/2): half digits are lost

Different strategies have been designed to overcome this drawback



Assume to work over R
(interpolation) The approximation error is a polynomial in z .
Approximating twice the inverse with, say z = ε and z = −ε and
taking the arithmetic mean of the results the approximation error
becomes a polynomial in ε2.
⇒ total error= O(µ2/3)

(generalization) Approximate k times the inverse with values
zi = εωi

k , i = 0, . . . , k − 1. Take the arithmetic mean of the results
and get the error O(εk).
⇒ total error= O(µk/(k+1)).
Remark: for k = n the approximation error is zero



(Higham trick) Choose z = iε then the approximation error affecting
the real part of the computed approximation is O(ε2).
⇒ total error= O(µ2/3), i.e., only 1/3 of digits are lost

(combination) Choose z1 = ε(1 + i)/
√

2 and z2 = −z1; apply the
algorithm with z = z1 and z = z2; take the arithmetic mean of the
results. The approximation error on the real part turns out to be
O(ε4). The total error is O(µ4/5). Only 1/5 of digits are lost.

(replicating the computation) In general choosing as zj the kth roots
of i and performing k inversions the error becomes O(µ2k/(2k+1)),
i.e., only 1/2k of digits are lost



Other matrix algebras

Matrices diagonalized by

the Hartley transform H = (hi ,j), hi ,j = cos 2π
n ij + sin 2pi

n ij [B.,

Favati]

the sine transform S =
√

2
n+1(sin π

n+1 ij) (class τ) [B., Capovani]

the sine transform of other kind

the cosine transform of kind k [Kailath, Olshevsky]



Displacement operators



Displacement operators

Recall that Sz =

 0 1

. . .
. . .
. . . 1

z 0

 and let T =

a b c d
e a b c
f e a b
g f e a


Then

Sz1T − TSz2 =

 ↑

−
 →



=


e a b c
f e a b
g f e a

z1a z1b z1c z1d

−


z2d a b c
z2c e a b
z2b f e a
z2a g f e



=

 ∗... 0
∗ . . . ∗

 = enuT + veT
1 (rank at most 2)



T → Sz1T − TSz2 displacement operator of Sylvester type

T → T − Sz1TST
z2 displacement operator of Stein type

If the eigenvalues of Sz1 are disjoint from those of Sz2 then the operator of
Sylvester type is invertible. This holds if z1 6= z2

If the eigenvalues of Sz1 are different from the reciprocal of those of Sz2

then the operator of Stein type is invertible. This holds if z1z2 6= 1



For simplicity, here we consider Z := ST
0 =


0

1
. . .
. . .

. . .
1 0


If A is Toeplitz then ∆(A) = AZ − ZA is such that

∆(A) =

 ←

−
 ↓

 =


a1 a2 . . . an−1 0

−an−1

0
...
−a2
−a1

 = VW T ,

V =


1 0
0 an−1
...

...
0 a1

 , W =


a1 0
...

...
an−1 0

0 −1


Any pair V ,W ∈ Fn×k such that ∆(A) = VW T is called displacement
generator of rank k .



Proposition.

If A ∈ Fn×n has first column a and ∆(A) = VW T , V ,W ∈ Fn×k then

A = L(a) +
k∑

i=1

L(vi )LT (Zwi ), L(a) =

a1
...

. . .

an . . . a1


Outline of the proof.

Consider the case where k = 1. Rewrite the system AZ − ZA = vwT in
vec form as

(ZT ⊗ I − I ⊗ Z )vec(A) = w ⊗ v

where vec(A) is the n2-vector obtained by stacking the columns of A

Solve the block triangular system by substitution

Equivalent representations can be given for Stein-type operators



Proposition.

For ∆(A) = AZ − ZA it holds that ∆(AB) = A∆(B) + ∆(A)B and

∆(A−1) = −A−1∆(A)A−1

Therefore

A−1 = L(A−1e1)−
k∑

i=1

L(A−1vi )LT (ZA−Twi )

If A = (aj−i ) is Toeplitz then ∆(A) = VW T where

V =


1 0
0 an−1
...

...
0 a1

 , W =


a1 0
...

...
an−1 0

0 −1


Therefore, the inverse of a Toeplitz matrix is Toeplitz-like

A−1 =L(A−1e1)− L(A−1e1)LT (ZA−1w1) + L(A−1v2)LT (ZA−1en)

=L(A−1e1)LT (e1 − ZA−1w1) + L(A−1v2)LT (ZA−1en)



The Gohberg-Semencul-Trench formula

T−1 =
1

x1

(
L(x)LT (Jy)− L(Zy)LT (ZJx)

)
,

x = T−1e1, y = T−1en, J =
[

1
..
.

1

]
The first and the last column of the inverse define all the entries

Multiplying a vector by the inverse costs O(n log n)



Generalization of displacement operators
Given matrices X ,Y define the operator

FX ,Y (A) = XA− AY

Assume rank(X − Y ) = 1. Let A = BC where B =
∑

i biX
i , C =

∑
i ciY

i . Then

XA− AY = XBC − BCY = BXC − BYC = B(X − Y )C

Thus, A =
∑k

j=1 BjCj , where Bj and Cj are polynomials in X and Y , respectively,
implies rankFX ,Y (A) ≤ k .

If the spectra of X and Y are disjoint then FX ,Y (·) is invertible and

rank FX ,Y (A) = k ⇒ A =
∑k

j=1 BjCj

Examples:
X unit circulant, Y lower shift matrix
X unit −1-circulant, Y unit circulant
provide representations of Toeplitz matrices and their inverses

If A is invertible then FY ,X (A−1) = −A−1FX ,Y (A)A−1 so that
rank FY ,X (A−1) = rank FX ,Y (A)



Other operators: Cauchy-like matrices

Define ∆(X ) = D1X − XD2, D1 = diag(d
(1)
1 , . . . , d

(1)
n ),

D2 = diag(d
(2)
1 , . . . , d

(2)
n ), where d

(1)
i 6= d

(2)
j for i 6= j .

It holds that

∆(A) = uvT ⇔ ai ,j =
uivj

d
(1)
i − d

(2)
j

Similarly, given n × k matrices U,V , one finds that

∆(B) = UV T ⇔ bi ,j =

∑k
r=1 ui ,rvj ,r

d
(1)
i − d

(2)
j

A is said Cauchy matrix, B is said Cauchy-like matrix



A nice feature of Cauchy-like matrices is that their Schur complement is
still a Cauchy-like matrix
Consider the case k = 1: partition the Cauchy-like matrix C as

C =


u1v1

d
(1)
1 −d

(2)
1

u1v2
d
(1)
1 −d

(2)
2

. . . u1vn

d
(1)
1 −d

(2)
n

u2v1
d
(1)
2 −d

(2)
1

... Ĉ
unv1

d
(1)
n −d

(2)
1


where Ĉ is still a Cauchy-like matrix. The Schur complement is given by

Ĉ −


u2v1

d
(1)
2 −d

(2)
1

...
unv1

d
(1)
n −d

(2)
1

 d
(1)
1 − d

(2)
1

u1v1

[
u1v2

d
(1)
1 −d

(2)
2

. . . u1vn

d
(1)
1 −d

(2)
n

]



The entries of the Schur complement can be written in the form

ûi v̂j

d
(1)
i − d

(2)
j

, ûi = ui
d
(1)
1 − d

(1)
i

d
(1)
i − d

(2)
1

, v̂j = vj
d
(2)
j − d

(2)
1

d
(1)
1 − d

(2)
j

.

The values ûi and v̂j can be computed in O(n) ops.

The computation can be repeated until the LU decomposition of C is
obtained

The algorithm is known as Gohberg-Kailath-Olshevsky (GKO) algorithm

Its overall cost is O(n2) ops

There are variants which allow pivoting



Algorithms for Toeplitz inversion



Algorithms for Toeplitz inversion
Consider ∆(A) = S1A− AS−1 where S1 is the unit circulant matrix and
S−1 is the unit (−1)-circulant matrix.

We have observed that the matrix ∆(A) has rank at most 2

Now, recall that S1 = F ∗D1F , S−1 = DF ∗D−1FD−1, where
D1 = Diag(1, ω̄, ω̄2, . . . , ω̄n−1), D−1 = δD1, D = Diag(1, δ, δ2, . . . , δn−1),

δ = ω
1/2
n = ω2n so that

∆(A) = F ∗D1FA− ADF ∗D−1FD−1

multiply to the left by F , and to the right by DF ∗ and discover that

D1B − BD−1 has rank at most 2, where B = FADF ∗

That is, B is Cauchy like of rank at most 2.

Toeplitz systems can be solved in O(n2) ops by means of the GKO
algorithm

Software by G. Rodriguez and A. Aricò: bugs.unica.it/~gppe/soft/#smt

bugs.unica.it/~gppe/soft/#smt


Super fast Toeplitz solvers

The term “fast Toeplitz solvers” denotes algorithms for solving n × n
Toeplitz systems in O(n2) ops.

The term “super-fast Toeplitz solvers” denotes algorithms for solving
n × n Toeplitz systems in O(n log2 n) ops.

Idea of the Bitmead-Anderson superfast solver

Operator F (A) = A− ZAZT =

 −
 ↘

 =

∗ . . . ∗
...
∗

.

Partition the matrix as

A =

[
A1,1 A1,2

A2,1 A2,2

]



A =

[
I 0

A2,1A−11,1 I

] [
A1,1 A1,2

0 B

]
, B = A2,2 − A2,1A−11,1A1,2

Fundamental property

The Schur complement B is such that rankF (A) = rankF (B); the other
blocks of the LU factorization have almost the same displacement rank of
the matrix A

Solving two systems with the matrix A (for computing the displacement
representation of A−1) is reduced to solving two systems with the matrix
A1,1 for computing A−11,1 and two systems with the matrix B which has
displacement rank 2, plus performing some Toeplitz-vector products

Cost: C (n) = 2C (n/2) + O(n log n) ⇒ C (n) = O(n log2 n)



Asymptotic spectral properties and preconditioning



Definition: Let f (x) : [0, 2π]→ R be a Lebesgue integrable function. A

sequence {λ(n)i }i=1,n, n ∈ N, λ
(n)
i ∈ R is distributed as f (x) if

lim
n→∞

1

n

n∑
i=1

F (λ
(n)
i ) =

1

2π

∫ 2π

0
F (f (x))dx

for any continuous F (x) with bounded support.

Example λ
(n)
i = f (2iπ/n), i = 1, . . . , n, n ∈ N is distributed as f (x).

With abuse of notation, given a(z) : T→ R we write a(θ) in place of
a(z(θ)), z(θ) = cos θ + i sin θ ∈ T



Assume that

the symbol a(θ) : [0 : 2π]→ R is a real valued function so that
a(θ) = a0 + 2

∑∞
k=1 ak cos kθ

Tn is the sequence of Toeplitz matrices associated with a(θ), i.e.,
Tn = (a|j−i |)i ,j=1,n; observe that Tn is symmetric

ma = ess infθ∈[0,2π]a(θ), Ma = ess supθ∈[0,2π]a(θ) are the essential
infimum and the essential supremum

λ
(n)
1 ≤ λ

(n)
2 ≤ · · · ≤ λ

(n)
n are the eigenvalues of Tn sorted in

nondecreasing order (observe that Tn is real symmetric).

Then



1 if ma < Ma then λ
(n)
i ∈ (ma,Ma) for any n and i = 1, . . . , n; if

ma = Ma then a(θ) is constant and Tn(a) = maIn;

2 limn→∞ λ
(n)
1 = ma, limn→∞ λ

(n)
n = Ma;

3 the eigenvalues sequence {λ(n)1 , . . . , λ
(n)
n } are distributed as a(θ)

Moreover

if a(x) > 0 the condition number µ(n) = ‖Tn‖2‖T−1n ‖2 of Tn is such
that limn→∞ µ

(n) = Ma/ma

a(θ) > 0 implies that Tn is uniformly well conditioned

a(θ) = 0 for some θ implies that limn→∞ µn =∞



In red: eigenvalues of the Toeplitz matrix Tn associated with the symbol
f (θ) = 2− 2 cos θ − 1

2 cos(2θ) for n = 10, n = 20

In blue: graph of the symbol. As n grows, the values λ
(n)
i for i = 1, . . . , n tend to

be shaped as the graph of the symbol



The same asymptotic property holds true for

block Toeplitz matrices generated by a matrix valued symbol A(x)

block Toeplitz matrices with Toeplitz blocks generated by a bivariate
symbol a(x , y)

multilevel block Toeplitz matrices generated by a multivariate symbol
a(x1, x2, . . . , xd)

singular values of any of the above matrix classes

The same results hold for the product P−1n Tn where Tn and Pn are
associated with symbols a(θ), p(θ), respectively

eigenvalues are distributed as a(θ)/p(θ)

(preconditioning) given a(θ) ≥ 0 such that a(θ0) = 0 for some θ0; if
there exists a trigonometric polynomial p(θ) =

∑k
i=−k pk cos(kθ)

such that p(θ0) = 0, limθ→θ0 a(θ)/p(θ) 6= 0 then P−1n Tn has
condition number uniformly bounded by a constant



Trigonometric matrix algebras and preconditioning
The solution of a positive definite n × n Toeplitz system Anx = b can be
approximated with the Preconditioned Conjugate Gradient (PCG) method

Some features of the Conjugate Gradient (CG) iteration:

it applies to positive definite systems Ax = b

CG generates a sequence of vectors {xk}k=0,1,2,... converging to the
solution in n steps

each step requires a matrix-vector product plus some scalar products.
Cost for Toeplitz systems O(n log n)

residual error: ‖Axk − b‖ ≤ γθk , where θ = (
√
µ− 1)/(

√
µ+ 1),

µ = λmax/λmin is the condition number of A

convergence is fast for well-conditioned systems, slow otherwise.
However:

(Axelsson-Lindskog) Informal statement: if A has all the eigenvalues
in the interval [α, β] where 0 < α < 1 < β except for q outliers which

stay outside, then the residual error is bounded by γ1θ
k−q
1 for

θ1 = (
√
µ1 − 1)/(

√
µ1 + 1), where µ1 = β/α.



Features of the Preconditioned Conjugate Gradient (PCG) iteration:

it consists of the Conjugate Gradient method applied to the system
P−1Anx = P−1b, the matrix P is the preconditioner

The preconditioner P must be chosen so that:
I solving the system with matrix P is cheap
I P mimics the matrix A so that P−1A has either condition number close

to 1, or has eigenvalues in a narrow interval [α, β] containing 1, except
for few outliers

For Toeplitz matrices, P can be chosen in a trigonometric algebra. In this
case

each step of PCG costs O(n log n)

the spectrum of P−1A is clustered around 1



Example of preconditioners

If An is associated with the symbol a(θ) = a0 + 2
∑∞

i=1 ai and a(θ) ≥ 0,
then µ(An)→ max a(θ)/min a(θ)

Choosing Pn = Cn, where Cn is the symmetric circulant which minimizes
the Frobenius norm ‖An − Cn‖F , then the eigenvalues of Bn = P−1n Cn are
clustered around 1. That is, for any ε there exists n0 such that for any
n ≥ n0 the eigenvalues of P−1n A belong to [1− ε, 1 + ε] except for a few
outliers.

Effective preconditioners can be found in the τ and in the Hartley
algebras, as well as in the class of banded Toeplitz matrices



Example of preconditioners
Consider the n × n matrix A associated with the symbol
a(θ) = 6 + 2(−4 cos(θ) + cos(2θ)), that is

A =


6 −4 1
−4 6 −4 1

1 −4
. . .

. . .
. . .

. . .
. . .

. . .
. . .


Its eigenvalues are distributed as the symbol a(θ) and its cond is O(n4)

The eigenvalues of the preconditioned matrix P−1A, where P is circulant,
are clustered around 1 with very few outliers.



Example of preconditioners
The following figure reports the log of the eigenvalues of A (in red) and of
the log of the eigenvalues of P−1A in blue

Figure : Log of the eigenvalues of A (in red) and of P−1A in blue



Rank structured matrices



Rank structured (quasiseparable) matrices

Definition

An n × n matrix A is rank structured with rank k if all its submatrices
contained in the upper triangular part or in the lower triangular part have
rank at most k

A wide literature exists: Gantmacher, Krĕın,
Asplund, Capovani, Rózsa, Van Barel, Vande-
bril, Mastronardi, Eidelman, Gohberg, Romani,
Gemignani, Boito, Chandrasekaran, Gu, ...

Books by Van Barel, Vandebril, Mastronardi,

and by Eidelman



Some examples:

The sum of a diagonal matrix and a matrix of rank k

A tridiagonal matrix (k = 1)

The inverse of an irreducible tridiagonal matrix (k = 1)

Any orthogonal matrix in Hessenberg form (k = 1)

A Frobenius companion matrix (k = 1)

A block Frobenius companion matrix with m ×m blocks (k = m)



Definition

A rank structured matrix A of rank k has a generator if there exist
matrices B, C of rank k such that triu(A) = triu(B), tril(A) = tril(C ).

Remarks:

An irreducible tridiagonal matrix has no generator,

A (block) companion matrix has a generator defining the upper
triangular part but no generator for the lower triangular part



Some properties of rank-structured matrices

Nice properties have been proved concerning rank-structured matrices
For a k-rank-structured matrix A

The inverse of A is k rank structured

The LU factors of A are k-rank structured

The QR factors of A are rank-structured with rank k and 2k

Solving an n × n system with a k-rank structured matrix costs
O(nk2) ops

the Hessenberg form H of A is (2k − 1)-rank structured

if A is the sum of a real diagonal matrix plus a matrix of rank k then
the QR iteration generates a sequence Ai of rank-structured matrices

computing H costs O(nk2) ops

computing det H costs O(nk) ops



A nice representation, with an implementation of specific algorithms is
given by Börm, Grasedyck and Hackbusch and relies on the hierarchical
representation

It relies on splitting the matrix into blocks and in representing blocks
non-intersecting the diagonal by means of low rank matrices
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3– Algorithms for structured Markov
chains



Finite case: block tridiagonal matrices

Let us consider the finite case and start with a QBD problem
In this case we have to solve a homogeneous linear system where the
matrix A is n × n block-tridiagonal almost block-Toeplitz with m ×m
blocks. We assume A irreducible

[
π1 π2 . . . πn

]


I − Â0 −A1

−A−1 I − A0 −A1

. . .
. . .

. . .

−A−1 I − A0 −A1

−A−1 I − Ã0

 = 0

The matrix is singular, the vector e = (1, . . . , 1)T is in the right null
space. By the Perron-Frobenius theorem aplied to trid(A−1,A0,A1), the
null space has dimension 1



Remark. If A = I − S, with S stochastic and irreducible, then all the
proper principal submatrices of A are nonsingular.

Proof. Assume by contraddiction that a principal submatrix Â of A is
singular. Then the corresponding submatrix Ŝ of S has the eigenvalue 1.
This contraddicts Lemma 2.6 [R. Varga] which says that ρ(Ŝ) < ρ(S)

In particular, since the proper leading principal submatrices are invertible,
there exists unique the LU factorization where only the last diagonal entry
of U is zero.



The most immediate possibility to solve this system is to compute the LU
factorization A = LU and solve the system

πL = (0, . . . , 0, 1)

since the vector [0, . . . , 0, 1]U = 0

This method is numerically stable (no cancellation is encountered), its cost
is O(nm3), but it is not the most efficient method. Moreover, the
structure is only partially exploited

A more efficient algorithm relies on the Cyclic Reduction (CR) technique
introduced by Gene H. Golub in 1970

For the sake of notational simplicity denote

B−1 = −A1 , ,B0 = I − A0, B1 = −A1,

B̂0 = I − Â0, B̃0 = I − Ã0



Thus, our problem becomes

[π1, π2, . . . , πn]



B̂0 B1

B−1 B0 B1

B−1 B0 B1

. . .
. . .

. . .

B−1 B0 B1

B−1 B̃0


= 0



Outline of CR

Suppose for simplicity n = 2q, apply an even-odd permutation to the block
unknowns and block equation of the system and get

[
πeven πodd

]



B0 B−1 B1

. . . B−1

. . .

B0

. . . B1

B̃0 B−1

B1 B̂0

B−1 B1 B0

. . .
. . .

. . .

B−1 B1 B0


= 0

where [
πeven πodd

]
=
[
π2 π4 . . . π n

2
π1 π3 . . . π n−2

2

]





x x . . . . . .
x x x . . . . .
. x x x . . . .
. . x x x . . .
. . . x x x . .
. . . . x x x .
. . . . . x x x
. . . . . . x x





(1,1) block



x x . . . . . .
x x x � . � . �
. x x x . . . .
. � x x x � . �
. . . x x x . .
. � . � x x x �
. . . . . x x x
. � . � . � x x





(2,2) block



x x � . � . � .
x x x . . . . .
� x x x � . � .
. . x x x . . .
� . � x x x � .
. . . . x x x .
� . � . � x x x
. . . . . . x x





(1,2) block



x x . . . . . .
x x x . � . � .
. x x x . . . .
� . x x x . � .
. . . x x x . .
� . � . x x x .
. . . . . x x x
� . � . � . x x





(2,1) block



x x . � . � . �
x x x . . . . .
. x x x . � . �
. . x x x . . .
. � . x x x . �
. . . . x x x .
. � . � . x x x
. . . . . . x x





Denote by

A′ =

[
D1 V

W D2

]
=

the matrix obtained after the permutation

Compute its block LU factorization and get

A′ =

[
I 0

WD−12 I

] [
D1 V
0 S

]
where the Schur complement S , given by

S = D2 −WD−11 V

is singular



The original problem is reduced to

[πeven πodd]

[
I 0

WD−12 I

] [
D1 V
0 S

]
= [0 0]

that is

πoddS = 0

πeven = −πoddWD−12

Computing π is reduced to computing πodd

From size n to size n/2



Examine the structure of the Schur complement S

S =


B̂0

B0

. . .

B0

−


B1

B−1 B1

. . .
. . .

B−1 B1



B0

. . .

B0

B̃0


−1

B−1 B1

B−1

. . .

. . . B1

B−1


-1

- ==



A direct inspection shows that

S =


B̂ ′0 B ′1

B ′−1 B ′0 B ′1
. . .

. . .
. . .

B ′−1 B ′0 B ′1
B ′−1 B̃ ′0


where, for C = B−10 ,

B ′0 = B0 − B−1CB1 − B1CB−1

B ′1 = −B1CB1

B ′−1 = −B−1CB−1

B̂ ′0 = B̂0 − B−1B̂−10 B1

B̃ ′0 = B̃0 − B1CB−1

(1)

Cost of computing S : O(m3)



The odd-even reduction can be cyclically applied to the new block
tridiagonal matrix until we arrive at a Schur complement of size 2× 2

Algorithm

1 if n = 2 compute π such that πA = 0 by using LU decomposition

2 otherwise compute the Schur complement S by means of (1)

3 compute πodd such that πoddS = 0 by using this algorithm

4 compute πeven = −(πoddW )D−12

5 output π

Computational cost with size n (asymptotic estimate): Cn

Cn = Cn/2 + O(m3) + O(nm2), C2 = O(m3)

Overall cost:
Schur complementation O(m3 log2 n)

Back substitution: O(m2n + m2 n
2 + m2 n

4 + · · ·+ m2) = O(m2n)

Total: O(m3 log n + m2n) vs. O(m3n) of the standard LU



Remark If n is odd, then after the even-odd permutation one obtains the
matrix

.

S= -

-1

The Schur complement is still block tridiagonal, block Toeplitz except for
the first and last diagonal entry.

The inversion of only one block is required

Choosing n = 2q + 1, after one step the size becomes 2q−1 + 1 so that CR
can be cyclically applied



The finite case: block Hessenberg matrices



Finite case: block Hessenberg

This procedure can be applied to the block Hessenberg case

For simplicity let us write B0 = I − A0 and Bj = −Aj so that the problem
is

π



B̂0 B̂1 B̂2 . . . B̂n−2 B̂n−1

B−1 B0 B1
. . . Bn−3 B̃n−2

B−1
. . .

. . .
. . .

...
. . .

. . . B1

B−1 B0 B̃1

B−1 B̃0


= 0

Assume n = 2m + 1, apply an even-odd block permutation to block-rows
and block-columns and get





x x x x x x x x x
x x x x x x x x x
· x x x x x x x x
· · x x x x x x x
· · · x x x x x x
· · · · x x x x x
· · · · · x x x x
· · · · · · x x x
· · · · · · · x x





(1, 1) block 

x x x x x x x x x
x x x x x x x x x
· x x x x x x x x
· � x x x x x x x
· · · x x x x x x
· � · � x x x x x
· · · · · x x x x
· � · � · � x x x
· · · · · · · x x





(2, 2) block 

x x x x x x x x x
x x x x x x x x x
� x x x x x x x x
· · x x x x x x x
� · � x x x x x x
· · · · x x x x x
� · � · � x x x x
· · · · · · x x x
� · � · � · � x x





(1, 2) block 

x x x x x x x x x
x x x x x x x x x
· x x x x x x x x
� · x x x x x x x
· · · x x x x x x
� · � · x x x x x
· · · · · x x x x
� · � · � · x x x
· · · · · · · x x





(2, 1) block 

x x x x x x x x x
x x x x x x x x x
· x x x x x x x x
· · x x x x x x x
· � · x x x x x x
· · · · x x x x x
· � · � · x x x x
· · · · · · x x x
· � · · · · · x x





[πeven πodd]

[
D1 V

W D2

]
= [0 0]

where

D1 =


B0 B2 . . . B2m−4

B0
. . .

...
. . . B2

B0

 , D2 =



B̂0 B̂2 B̂4 . . . B̂2m−4 B̂2m−2
B0 B2 . . . B2m−6 B̃2m−4

. . .
. . .

...
...

B0 B2 B̃4

B0 B̃2

B̃0



W =


B̂1 B̂3 . . . B̂2m−3

B−1 B1 . . . B2m−5
. . .

. . .
...

B−1 B1

B−1

 V =


B−1 B1 . . . B2m−5 B̃2m−3

B−1
. . .

...
...

. . . B1 B̃3

B−1 B̃1





Computing the LU factorization of
[
D1 V
W D2

]
yields

[πeven πodd]

[
I 0

WD−11 I

] [
D1 V
0 S

]
= 0

where the Schur complement, given by

S = D2 −WD−11 V

is singular

The problem is reduced to computing

πoddS = 0

πeven = −πoddWD−11



Structure analysis of the Schur complement: assume n = 2q + 1

=

-1

---S =

The structure is preserved under the Schur complementation

The size is reduced from 2q + 1 to 2q−1 + 1

The process can be repeated recursively until a 3× 3 block matrix is
obtained

Algorithm
1 if n = 3 compute π such that πA = 0 by using LU decomposition
2 otherwise compute the Schur complement S above
3 compute πodd such that πoddS = 0 by using this algorithm
4 compute πeven = −(πoddW )D−11
5 output π



Cost analysis, Schur complementation:

Inverting a block triangular block Toeplitz matrix costs
O(m3n + m2n log n)

Multiplying block triangular block Toeplitz matrices costs
O(m3n + m2n log n)

Thus, Schur complementation costs O(m3n + m2n log n)

Computing πeven, given πodd amounts to computing the product of a
block Triangular Toeplitz matrix and a vector for the cost of
O(m2n + m2n log n)

Overall cost: Cn is such that

Cn = C n+1
2

+ O(m3n + m2n log n), C3 = O(m3)

The overall computational cost to carry out the computation is
O(m3n + m2n log n) vs. O(m3n2) of standard LU factorization



Applicability of CR and functional interpretation



Applicability of CR
In order to be applied, cyclic reduction requires the nonsingularity of
certain matrices at all the steps of the iteration

Consider the first step where we are given A = tridn(B−1,B0,B1)

Here, we need the nonsingularity of B0, that is a principal submatrix of A

After the first step we have A′ = tridn(B ′−1,B
′
0,B

′
1) where

B ′0 = B0 − B−1CB1 − B1CB−1, C = B−10

Observe that B ′0 is the Schur complement of B0 in B0 0 B1

0 B0 B−1
B−1 B1 B0


which is similar by permutation to trid3(B−1,B0,B1)

By the properties of the Schur complement we have

det trid3(B−1,B0,B1) = det B0 det B ′0



Inductively, we can prove that

det trid2i−1(B−1,B0,B1) 6= 0, i = 1, 2, . . . , k

if and only if CR can be applied for the first k steps with no breakdown

Recall that, since A = I − S , with S stochastic and irreducible, then all
the principal submatrices of A are nonsingular.

Thus, in the block tridiagonal case, CR can be applied with no breakdown

A similar argument can be used to prove the applicability of CR in the
block Hessenberg case



More on applicability
CR can be applied also in case of breakdown where singular or
ill-conditioned matrices are encountered

Denote B
(k)
−1 ,B

(k)
0 ,B

(k)
1 the matrices generated by CR at step k

Assume det trid2k−1(B−1,B0,B1) 6= 0, set R(k) = trid2k−1(B−1,B0,B1)−1,

R(k) = (R
(k)
i ,j ). Then, playing with Schur complements one finds that

B
(k)
−1 = −B−1R

(k)
n,1 B−1

B
(k)
0 = B0 − B−1R

(k)
n,nB1 − B1R

(k)
1,1 B−1

B
(k)
1 = −B1R

(k)
1,n B1

Matrices B
(k)
i are well defined if det trid2k−1(B−1,B0,B1) 6= 0, no mat-

ter if det trid2h−1(B−1,B0,B1) = 0, for some h < k, i.e., if CR encoun-
ters breakdown



More on CR: Functional interpretation

Cyclic reduction has a nice functional interpretation which relates it to the
Graeffe-Lobachevsky-Dandelin iteration [Ostrowsky]

This interpretation enables us to apply CR to infinite matrices and to solve
QBD and M/G/1 Markov chains as well

Let us recall the Graeffe-iteration:

Let p(z) be a polynomial of degree n having q zeros of modulus less than
1 and n − q zeros of modulus greater than 1

Observe that in the product p(z)p(−z) the odd powers of z cancel out

This way, p(z)p(−z) = p1(z2) is a polynomial of degree n in z2

The zeros of p1(z) are the squares of the zeros of p(z)



The sequence defined by

p0(z) = p(z),

pk+1(z2) = pk(z)pk(−z), k = 0, 1, . . .

is such that the zeros of pk(z) are the 2k powers of the zeros of
p0(z) = p(z)

Thus, the zeros of pk(z) inside the unit disk converge quadratically to
zero, the zeros outside the unit disk converge quadratically to infinity.

*
*

*

*

*

*

Im

Re1 Whence, the sequence pk(z)/‖pk‖∞
obtained by normalizing pk(z) with
the coefficient of largest modulus con-
verges to zq



Can we do something similar with matrix polynomials or with Laurent
polynomials?

For simplicity, we consider the block tridiagonal case

Let B−1,B0,B1 be m ×m matrices, B0 nonsingular, and define the
Laurent matrix polynomial

ϕ(z) = B−1z−1 + B0 + B1z

Consider ϕ(z)B−10 ϕ(−z) and discover that the odd powers of z cancel out

ϕ1(z2) = ϕ(z)B−10 ϕ(−z), ϕ1(z) = B
(1)
−1z−1 + B

(1)
0 + B

(1)
1 z



Moreover, the coefficients of ϕ1(z) = B
(1)
−1z−1 + B

(1)
0 + B

(1)
1 z are such that

B
(1)
0 = B0 − B−1CB1 − B1CB−1, C = B−10

B
(1)
1 = −B1CB1

B
(1)
−1 = B−1CB−1

These are the same equations which define cyclic reduction!

Cyclic reduction applied to a block tridiagonal Toeplitz matrix generates the
coefficients of the Graeffe iteration applied to a matrix Laurent polynomial

Can we deduce nice asymptotic properties from this observation?



With ϕ0(z) = ϕ(z) define the sequence

ϕk+1(z2) = ϕk(z)(B
(k)
0 )−1ϕk(−z), k = 0, 1, . . . ,

where we assume that det B
(k)
0 6= 0

Define
ψk(z) = ϕk(z)−1

Observe that B
(k)
0 = 1

2(ϕk(−z) + ϕk(z)) so that

ϕk+1(z2) =ϕk(z)2(ϕk(−z) + ϕk(z))−1ϕk(−z)

=2(ϕk(z)−1 + ϕk(−z)−1)−1

Whence

ψk+1(z2) =
1

2
(ψk(z) + ψk(−z))



ψ1(z) is the even part of ψ0(z)
ψ2(z) is the even part of ψ1(z)
....

If ψ(z) is analytic in the annulus A = {z ∈ C : r < |z | < R}

Re

Im

1r R

then it can be represented as a Laurent series

ψ(z) =
+∞∑

i=−∞
z iHi , z ∈ A

Moreover

For the analyticity of ψ in A one has ∀ ε > 0 ∃ θ > 0 such that{
||Hi || ≤ θ(r + ε)i , i > 0

||Hi || ≤ θ(R − ε)i , i < 0

[Henrici 1988]



ψ0(z) = · · ·+ H−2z−2 + H−1z−1 + H0 + H1z1 + H2z2 + · · ·
ψ1(z) = · · ·+ H−4z−2 + H−2z−1 + H0 + H2z1 + H4z2 + · · ·
ψ2(z) = · · ·+ H−8z−2 + H−4z−1 + H0 + H4z1 + H8z2 + · · ·
......

ψk(z) = · · ·H−3·2k z3+H−2·2k z−2+H−2k z−1+H0+H2k z1+H2·2k z2+H3·2k z3+· · ·

That is, if ψ(z) is analytic on A then the sequence ψk(z) converges to H0

double exponentially for any z in a compact set contained in A

Consequently, if det H0 6= 0 the sequence ϕk(z) converges to H−10 double
exponentially for any z in any compact set contained in A

Practically, the sequence of block tridiagonal matrices generated by CR
converges very quickly to a block diagonal matrix. The speed of
convergence is faster the larger is the width of the annulus A



Some computational consequences

This convergence property makes it easier to solve block tridiagonal block
Toeplitz systems

It is not needed to perform log2 n iteration steps. It is enough to iterate
until the Schur complement is numerically block diagonal

Moreover, convergence of CR enables us to compute any number of
components of the solution of an infinite block tridiagonal block Toeplitz
system:

Iteration is continued until a numerical block diagonal matrix is obtained;
a finite number of block components is computed by solving the truncated
block diagonal system; back substitution is applied



We can provide a functional interpretation of CR also in the block
Hessenberg case. But for this goal we have to carry out the analysis in the
framework of infinite matrices

Therefore we postpone this analysis



Questions about analyticity

Is the function ψ(z) analytic over some annulus A?

Recall that ψ(z) = ϕ(z)−1, and that ϕ(z) is a Laurent polynomial

Thus, if detϕ(z) 6= 0 for z ∈ A then ψ(z) is analytic in A

The equation det(B−1 + zB0 + z2B1) = 0 plays an important role

Denote ξ1, . . . , ξ2m the roots of the polynomial
a(z) = det(B−1 + zB0 + z2B1), ordered so that |ξi | ≤ |ξi+1|, where we
have added 2n − deg a(z) roots at the infinity if deg a(z) < 2n

Assume that for some integer q

|ξq| < 1 < |ξq+1|

then ψ(z) is analytic on the annulus A of radii r = |ξq| and R = |ξq+1|



In the case of Markov chains the following scenario is encountered:

Positive recurrent: ξm = 1 < ξm+1

Transient: ξm < 1 = ξm+1

Null recurrent: ξm = 1 = ξm+1

Positive recurrent Transient Null recurrent

In yellow the domain of analyticity of ψ(z)



Dealing with ξm = 1

In principle, CR can be still applied

A simple trick enables us to reduce the problem to the case where the
inner part of the annulus A contains the unit circle

Consider ϕ̃(z) := ϕ(αz) so that the roots of det ϕ̃(z) are ξiα
−1

Choose α so that ξm < α < ξm+1, this way the function ψ̃(z) = ϕ̃(z)−1 is
analytic in the annulus Ã = {z ∈ C : ξmα

−1 < |z | < ξm+1α
−1} which

contains the unit circle



With the scaling of the variable one can prove that

in the positive recurrent case where the analyticity annulus has radii

ξm = 1, ξm+1 > 1, the blocks B
(k)
−1 converge to zero with rate

1/ξ2
k

m+1, the blocks B
(k)
1 have a finite nonzero limit

in the transient case where the analyticity annulus has radii ξm < 1,

ξm+1 = 1, the blocks B
(k)
1 converge to zero with rate ξ2

k

m , the blocks

B
(k)
−1 have a finite nonzero limit

However, this trick does not work in the null recurrent case where
ξm = ξm+1 = 1. In this situation, convergence of CR turns to linear with
factor 1/2.

In order to restore the quadratic convergence we have to use a more
sophisticated technique which will be described next



Some general convergence results
Theorem. Assume we are given a function ϕ(z) = z−1B1 + B0 + zB1 and
positive numbers r < 1 < R such that

1 for any z ∈ A(r ,R) the matrix ϕ(z) is analytic and nonsingular

2 the function ψ(z) = ϕ(z)−1, analytic in A(r ,R), is such that
det H0 6= 0 where ψ(z) =

∑+∞
i=−∞ z iHi

Then

1 the sequence ϕ(k)(z) converges uniformly to H−10 over any compact
set in A(r ,R)

2 for any ε and for any norm there exist constants ci > 0 such that

‖B(k)
−1 ‖ ≤ c−1(r + ε)2

k

‖B(k)
1 ‖ ≤ c1(R − ε)−2k

‖B(k)
0 − H−10 ‖ ≤ c0

(
r + ε

R − ε

)2k



Theorem. Given ϕ(z) = z−1A−1 + A0 + zA1. If the two matrix equations

B−1 + B0X + B1X 2 = 0

B−1Y 2 + B0Y + B1 = 0

have solutions X and Y such that ρ(X ) < 1 and ρ(Y ) < 1 then
det H0 6= 0, the roots ξi , i = 1, . . . , 2m of detϕ(z) are such that
|ξm| < 1 < |ξm+1|, moreover ρ(X ) = |ξm|, ρ(Y ) = 1/|ξm+1|.
Moreover, ψ(z) = ϕ(z)−1 is analytic in A(ρ(X ), 1/ρ(Y ))

ψ(z) =
+∞∑

i=−∞
z iHi , Hi =


X−iH0, i < 0

H0

H0Y i , i > 0



Theorem. Consider the case where ϕ(z) =
∑+∞

i=−1 z iBi is analytic over
A(r ,R) and has the following factorizations valid for |z | = 1

ϕ(z) =

+∞∑
j=0

z jUj

(I − z−1G
)

ϕ(z−1) = (I − zV )

+∞∑
j=0

z−jWj


where the matrix functions

∑+∞
j=0 z jUj and

∑+∞
j=0 z−jWj are nonsingular

for |z | < 1 and ρ(G ), ρ(V ) < 1, then det H0 6= 0



Convergence in the critical case ξm = ξm+1

Theorem [Guo et al. 2008] Let ϕ(z) = z−1B−1 + B0 + zB1 be the
function associated with a null recurrent QBD so that its roots ξi satisfy
the condition ξm = 1 = ξm+1.
Then cyclic reduction can be applied and there exists a constant γ such
that

‖B(k)
−1 ‖ ≤ γ2−k

‖B(k)
0 − H−10 ‖ ≤ γ2−k

‖B(k)
1 ‖ ≤ γ2−k



Some special cases



Block tridiagonal derived by a banded Toeplitz matrix

This case is handled by the functional form of CR

Assume we are given an n × n banded Toeplitz matrix, up to some
boundary corrections, having 2m + 1 diagonals. Say, with m = 2,



b̂0 b1 b2
b̂−1 b0 b1 b2
b−2 b−1 b0 b1 b2

b−2 b−1 b0 b1 b2
. . .

. . .
. . .

. . .
. . .

b−2 b−1 b0 b1 b2
b−2 b−1 b0 b̃1

b−2 b−1 b̃0



Reblock it into m ×m blocks....



....and get a block tridiagonal matrix with m ×m blocks. The matrix is
almost block Toeplitz as well the blocks.

b̂0 b1 b2
b̂−1 b0 b1 b2

b−2 b−1 b0 b1
. . .

b−2 b−1 b0
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . . b0 b1 b2
. . . b−1 b0 b1 b2

b−2 b−1 b0 b̃1
b−2 b−1 b̃0



Fundamental property 1: It holds that the Laurent polynomial
ϕ(z) = B−1z−1 + B0 + B1z obtained this way is a z-circulant matrix.



For m = 4,

B(z) =


b0 b1 b2 b3
b−1 b0 b1 b2
b−2 b−1 b0 b1
b−3 b−2 b−1 b0

+ z


b4
b3 b4
b2 b3 b4
b1 b2 b3 b4

+ z−1


b−4 b−3 b−2 b−1

b−4 b−3 b−2

b−4 b−3

b−4



In fact, multiplying the upper triangular part by z we get a circulant
matrix

Fundamental property 2: z-circulant matrices form a matrix algebra, i.e.,
they are a linear space closed under multiplication and inversion

Therefore ψ(z) = ϕ(z)−1 is z-circulant, in particular is Toeplitz

Toeplitz matrices form a vector space therefore

ψ1(z2) = 1
2(ψ(z) + ψ(−z)) is Toeplitz as well as ψ2(z), ψ3(z), . . .



Recall that the inverse of a Toeplitz matrix is Toeplitz-like in view of the
Gohberg-Semencul formula, or in view of the properties of the
displacement operator

Therefore ϕk(z) = ψk(z)−1 is Toeplitz like

The coefficients of ϕk(z) are Toeplitz-like

The relation between the matrix coefficients B−1, B0, B1 at two
subsequent steps of CR can be rewritten in terms of the displacement
generators

We have just to play with the properties of the displacement operators



More precisely, by using displacement operators we can prove that

∆(ϕ(k)(z)) = −z−1ϕ(k)(z)
(

eneTn ψ
(k)(z)ZT − ZTψ(k)(z)e1eT1

)
ϕ(k)(z)

where ∆(X ) = XZT − ZTX , Z =


0

1
. . .
. . .

. . .
1 0


This property implies that

∆(B
(k)
−1 ) = a

(k)
−1u

(k)T
−1 − v

(k)
−1 c

(k)T
−1

∆(B
(k)
0 ) = a

(k)
−1u

(k)T
0 + a

(k)
0 u

(k)T
−1 − v

(k)
−1 c

(k)T
0 − v

(k)
0 c

(k)T
−1

∆(B
(k)
1 ) = r

(k)
1 u

(k)T
0 − v

(k)
0 ĉ(k)T

where the vectors a
(k)
−1 , a

(k)
0 , u

(k)
0 , u

(k)
−1 , c

(k)
0 , c

(k)
−1 , r (k), ĉ(k) can be

updated by suitable formulas

Moreover, the matrices B
(k)
−1 , B

(k)
0 , B

(k)
1 can be represented as

Toeplitz-like matrices through their displacement generator



The computation of the Schur complement has the asymptotic costs

t(m) + m log m

where t(m) is the cost of solving an m ×m Toeplitz-like system, and
m log m is the cost of multiplying a Toeplitz-like matrix and a vector

One step of back substitution stage can be performed in O(nm log m) ops,
that is, O(n) multiplications of m ×m Toeplitz-like matrices and vectors

The overall asymptotic cost C (n,m) of this computation is given by

C (m, n) = t(m) log n + nm log m

Recall that, according to the algorithm used,
t(m) ∈ {m2,m log2 m,m log m}

The same algorithm applies to solving an n × n banded Toeplitz system
with 2m + 1 diagonals. The cost is m log2 m log(n/m) for the LU
factorization and O(n log m) for the back substitution



Block tridiagonal with tridiagonal blocks

A challenging problem is to solve a block tridiagonal block Toeplitz system
where the blocks are tridiagonal or, more generally banded matrices, not
necessarily Toeplitz

CR can be applied once again but the initial band structure of the blocks
apparently is destroyed in the CR iterations

This computational problem is encountered, say, in the analysis of
bidimensional random walks, and in the tandem Jackson model

The analysis is still work in place. The results obtained so far are very
promising

We give just an outline of the main properties



We are given B = tridn(B−1,B0,B1) where Bi = tridm(b
(i)
−1, b

(i)
0 , b

(i)
1 ).

Denote B(k) = trid n

2k
(B

(k)
−1 ,B

(k)
0 ,B

(k)
1 ) the matrix obtained after k steps of

cyclic reduction

Recall that, denoting C (k) = (B
(k)
0 )−1, we have

B
(k+1)
0 = B

(k)
0 − B

(k)
−1 C (k)B

(k)
1 − B

(k)
1 C (k)B

(k)
−1

B
(k+1)
1 = −B

(k)
1 C (k)B

(k)
1 , B

(k+1)
−1 = −B

(k)
−1 C (k)B

(k)
−1

The tridiagonal structure of B−1,B0,B1 is lost, and unfortunately the
more general quasiseparable structure is not preserved. In fact the rank of

the off-diagonal submatrices of B
(k)
i grows as 2k up to saturation

However, from the numerical experiments we discover that the ”numerical
rank” does not grow much



Given 0 < r < 1 < R, and γ > 0 consider the class F(r ,R, γ) of matrix
functions ϕ(z) = z−1B−1 + B0 + zB1, such that

B−1,B0,B1 are m ×m irreducible tridiagonal matrices,

ϕ(z) is nonsingular in the annulus A = {z ∈ C : r ≤ |z | ≤ R}
‖ϕ(z)−1‖ ≤ γ for z ∈ A

We can prove the following

Theorem. There exists a constant θ depending on r ,R, γ such that for
any funcction ϕ(z) ∈ F(r ,R, γ) the ith singular value of the off-diagonal

submatrices of B
(k)
−1 ,B

(k)
0 ,B

(k)
1 is bounded by θσ1

√
n
(
r
R

)i
In other words, the singular values have an exponential decay depending
on the width of the analyticity domain of ϕ(z)



Let σ1, . . . , σm be the singular values of an m ×m matrix A.

For a given ε > 0, define the ε-rank of A as

max{σi : σi ≥ εσ1}

Similarly define the ε-quasiseparability rank of A as the maximum ε-rank
of the off-diagonal submatrices of A

Corollary. For any ε > 0 there exist h > 0 such that for any matrix
function ϕ(z) ∈ F(r ,R, γ), the ε-quasiseparability rank of the matrices

B
(k)
i generated by CR is bounded by h



Implementation
CR has been implemented by using the package of [Börm, Grasedyck
and Hackbusch] on hierarchical matrices





Residual errors

Size CR H10−16 H10−12 H10−8

100 1.91e − 16 1.79e − 15 8.26e − 14 7.40e − 10
200 2.51e − 16 1.39e − 14 1.01e − 13 2.29e − 09
400 2.09e − 16 1.41e − 14 1.33e − 13 1.99e − 09
800 2.74e − 16 1.94e − 14 2.71e − 13 2.69e − 09

1600 3.82e − 12 3.82e − 12 3.82e − 12 3.39e − 09
3200 5.46e − 08 5.46e − 08 5.46e − 08 5.43e − 08
6400 3.89e − 08 3.89e − 08 3.89e − 08 3.87e − 08

12800 1.99e − 08 1.99e − 08 1.99e − 08 1.97e − 08



4– The infinite case: Wiener-Hopf
factorization



The infinite case

Compute the infinite invariant probability vector π = [π0, π1, . . .],

πi = [π
(i)
1 , . . . , π

(i)
m ] such that π ≥ 0, πe = 1, e = [1, 1, . . .]T and

π(P − I ) = 0, where P ≥ 0, Pe = e, e = [1, 1, . . .]T

Three cases of interest:

M/G/1 : P =


Â0 Â1 Â2 . . . . . .

A−1 A0 A1 A2 . . .

A−1 A0 A1
. . .

. . .
. . .

. . .

 , Ai , Âi ≥ 0,
∞∑

i=−1
Ai stoch.

G/M/1 : P =


Â0 A1

Â−1 A0 A1

Â−2 A−1 A0 A1

...
...

. . .
. . .

. . .

 , Ai , Âi ≥ 0,
∞∑

i=−1
A−i stoch.



Quasi-Birth–Death Markov chains

P =


Â0 Â1

Â−1 A0 A1

A−1 A0 A1

. . .
. . .

. . .


where Pe = e, Ai , Âi ≥ 0, A−1 + A0 + A1 stochastic and irreducible



Other cases like Non-Skip–free Markov chains can be reduced to the
previous classes by means of reblocking as in the shortest queue model

P =



Â0 Â1 Â2 Â3 Â4 A5 . . . . . . . . . . . . . . . . . .

Â−1 A0 A1 A2 A3 A4 A5

. . .
. . .

. . .
. . .

. . .

Â−2 A−1 A0 A1 A2 A3 A4 A5

. . .
. . .

. . .
. . .

A−2 A−1 A0 A1 A2 A3 A4 A5

. . .
. . .

. . .

A−2 A−1 A0 A1 A2 A3 A4 A5

. . .
. . .

A−2 A−1 A0 A1 A2 A3 A4 A5

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .





In this context, a fundamental role is played by the UL factorization (if it
exists) of an infinite block Hessenberg block Toeplitz matrix H

For notational simplicity denote B0 = I − A0, Bi = −Ai ,


B0 B1 B2 . . . . . .

B−1 B0 B1 B2
. . .

B−1 B0 B1
. . .

. . .
. . .

. . .

 =


U0 U1 U2 . . .

U0 U1 U2
. . .

. . .
. . .

. . .




I
−G I

−G I
. . .

. . .




B0 B1

B−1 B0 B1

B−2 B−1 B0 B1

...
. . .

. . .
. . .

. . .

 =

I −R
I −R

. . .
. . .




L0

L1 L0

L2 L1 L0

...
. . .

. . .
. . .


where det U0, det L0 6= 0, ρ(G ), ρ(R) ≤ 1



In the case of a QBD, the M/G/1 and G/M/1 structures can be combined
together yielding


B0 B1

B−1 B0 B1

B−1 B0 B1

. . .
. . .

. . .

 =

I −R
I −R

. . .
. . .

D


I
−G I

G I
. . .

. . .


where

D =


U0

U0

U0

. . .





The infinite case: M/G/1

[π0, π1, . . .]


B̂0 B̂1 B̂2 . . . . . .

B−1 B0 B1 B2
. . .

B−1 B0 B1
. . .

. . .
. . .

. . .

 = 0

The above equation splits into

π0B̂0 + π1B−1 = 0

[π1, π2, . . .]


B0 B1 B2 . . .

B−1 B0 B1
. . .

. . .
. . .

. . .

 = −π0[B̂0, B̂1, . . .]

Unfortunately, B−1 is not generally invertible so that substitution cannot
be applied (given π0 compute π1,...)



Assumptions
Assume that π0 is known so that it is enough to solve the infinite block
Hessenberg block Toeplitz system

[π1, π2, . . .]H = −π0[B̂0, B̂1, . . .], H =


B0 B1 B2 . . .

B−1 B0 B1
. . .

B−1 B0 B1
. . .

. . .
. . .

. . .


Assume that there exists the UL factorization of H

H =


U0 U1 U2 . . .

U0 U1 U2
. . .

. . .
. . .




I
−G I

−G I
. . .

. . .

 = UL

where det U0 6= 0 and G k is bounded for k ∈ N. Then the system turns
into



[π1, π2, . . .]UL = −π0[B̂0, B̂1, . . .]

which formally reduces to

[π1, π2, . . .]U = −π0[B̂0, B̂1, . . .]L
−1, L−1 =


I
G I
G 2 G I
...

. . .
. . .

. . .


Thus, if the UL factorization of H exists the problem of computing
π0, . . . , πk is reduced to computing

the UL factorization of H

π0
the first k block components of b = −π0[B̂0, B̂1, . . .]L

−1

the solution of the block triangular block Toeplitz system
[π1, . . . , πk ]Uk = bk

Remark: The boundedness of
∑∞

i=0 |B̂i | and of G k imply the
boundedness of b



The vector π0 can be computed as follows. The condition

[π0, π1, . . .]


B̂0 B̂1 B̂2 . . . . . .

B−1 B0 B1 B2
. . .

B−1 B0 B1
. . .

. . .
. . .

. . .

 = 0

is rewritten as

[π0, π1, π2, . . .]

[
B̂0 [B̂1, B̂2, . . .]

B̃−1 UL

]
= 0

Multiply on the right by diag(I , L−1) and get

[π0, π1, π2, . . .]

[
B̂0 [B̂1, B̂2, . . .]L

−1

B̃−1 U

]
= 0



[π0, π1, π2, . . .]

[
B̂0 [B̂1, B̂2, . . .]L

−1

B̃−1 U

]
= 0

that is

[π0, π1, π2, . . .]


B̂0 [B̂1 B̂2 . . .]L−1

B−1
0
...

U0 U1 U2 . . .

U0 U1
. . .

. . .
. . .

 = 0

Thus the first two equations of the latter system yield

[π0, π1]

[
B̂0 B∗1

B−1 U0

]
= 0, B∗1 =

∞∑
i=0

B̂i+1G i

which provide π0

Remark: The boundedness of
∑∞

i=0 |B̂i | and the boundedness of G k

imply the convergence of the series B∗1



Complexity analysis

the UL factorization of H: we will see this next

π0: m3d , where d is such that
∑∞

i=d ‖B̂i‖ < ε

the vector b = −π0[B̂0, B̂1, . . .]L
−1: m3d

the solution of the block triangular Toeplitz system
[π1, . . . , πk ]U = b: m3k + m2k log k

Overall cost: computing the UL factorization plus
m3(k + d) + m2k log k



The infinite case: G/M/1

[π0, π1, . . .]P = 0, P =


B̂0 B1

B̂−1 B0 B1

B̂−2 B−1 B0 B1
...

...
. . .

. . .
. . .


Consider the UL factorization of H

H =


B0 B1

B−1 B0 B1

B−2 B−1 B0 B1

...
...

. . .
. . .

. . .

 =

I −R
I −R

. . .
. . .




L0

L1 L0

L2 L1 L0

...
. . .

. . .
. . .


multiply to the left by [R,R2,R3, . . .] and find that

[R,R2,R3, . . .]H = [RL0, 0, 0, . . .] = [−B1, 0, . . .]

Now, multiply P to the left by [I ,R,R2, . . .] and get



[I ,R,R2, . . .]


B̂0 B1

B̂−1 B0 B1

B̂−2 B−1 B0 B1
...

...
. . .

. . .
. . .

 = [
∞∑
i=0

R i B̂−i , 0, 0, . . .]

Observe that, since Pe = 0 then [I ,R,R2, . . .]Pe = 0, that is,∑∞
i=0 R i B̂−i [1, 1, . . . , 1]T = 0, i.e.

∑∞
i=0 R i B̂−i is singular and there exists

π0 such that π0
∑∞

i=0 R i B̂−i = 0

We deduce that
π0[I ,R,R2,R3, . . .]P = 0

that is
πi = π0R i

One can prove that if π0(I − R)−1[1, . . . , 1]T = 1 then ‖π‖1 = 1



In the G/M/1 case the computation of any number of components of π is
reduced to

computing the matrix R in the UL factorization of H

computing the matrix
∑∞

i=0 R i B̂−i

solving the m ×m sytem π0(
∑∞

i=0 R i B̂−i ) = 0

computing πi = π0R i , i = 1, . . . , k

Overall cost: computing the UL factorization plus dm3 + m2k , where d
is such that ‖∑∞i=d B̂i‖ ≤ ε

The largest computational cost is the one of computing the UL
factorization of the block lower Hessenberg block Toeplitz matrix H, or
equivalently, of the block upper Hessenberg block Toeplitz matrix HT

Our next efforts are addressed to investigate this kind of factorization of
block Hessenberg block Toeplitz matrices



Our next goals:

prove that there exists the factorization H = UL

more generally, find conditions under which this factorization exists

design an algorithm for its computation

prove that G k and Rk are bounded

extend the approach to more general situations



The infinite case: the Wiener-Hopf factorization
Let us examine first the case where the block Hessenberg matrix H is banded.

H =


B0 B1 . . . Bk

B−1 B0 B1
. . . Bk

B−1 B0 B1
. . . Bk

. . .
. . .

. . .
. . .

. . .

 = UL

=


U0 U1 . . . Uk

U0 U1
. . . Uk

. . .
. . .

. . .
. . .




I
−G I

−G I
. . .

. . .


The equations of this system are equivalent to

[B−1 B0 . . . Bk ] = [U0 U1 . . . Uk ]


−G I

. . .
. . .

−G I
−G





that is, in polynomial form

k∑
i=−1

Biz
k =

(
k∑

i=0

Uiz
i

)
(I − z−1G )

That is a factorization of the Laurent matrix polynomial
∑k

i=−1 Biz
k

where we require that ρ(G ) ≤ 1

This is a necessary condition in order that G k is bounded

More in general, the block UL factorization of an infinite block Hessenberg
block Toeplitz matrix H = (Bi−j) can be formally rewritten in matrix
power series form as

∞∑
i=−1

Biz
i =

( ∞∑
i=0

Uiz
i

)
(I − z−1G )



Wiener-Hopf factorization

Definition Wiener algebra Wm: set of m ×m matrix Laurent series
A(z) =

∑+∞
i=−∞ Aiz

i , such that
∑+∞

i=−∞ |Ai | is finite, where |A| = (|ai ,j |)

Definition A Wiener-Hopf factorization of a(z) ∈ W1 is

a(z) = u(z)zk`(z), |z | = 1,

u(z) =
∞∑
i=0

uiz
i , `(z) =

∞∑
i=0

`iz
−i ∈ W1

u(z) 6= 0 for |z | ≤ 1, `(z) 6= 0 for 1 ≤ |z | ≤ ∞

Example, if a(z) is a polynomial, then u(z) is the factor of a(z) with zeros
outside the unit disk, zk`(z) is the polynomial with zeros inside the unit
disk

It is well known that if a(z) ∈ W1 and a(z) 6= 0 for |z | = 1 then the W-H
factorization exists [Böttcher, Silbermann]



Definition A Wiener-Hopf factorization of A(z) ∈ Wm is

A(z) = U(z)diag(zk1 , . . . , zkm)L(z), |z | = 1, k1, . . . , km ∈ Z

U(z) =
∞∑
i=0

Uiz
i , L(z) =

∞∑
i=0

Liz
−i ∈ Wm

det U(z) 6= 0 for |z | ≤ 1, det L(z) 6= 0 for 1 ≤ |z | ≤ ∞

If k1 = k2 = . . . = km = 0 the factorization is said canonical

It is well known that if A(z) ∈ Wm and det A(z) 6= 0 for |z | = 1 then the
W-H factorization exists [Böttcher, Silbermann]

Definition If the conditions
det U(z) 6= 0 for |z | ≤ 1, det L(z) 6= 0 for 1 ≤ |z | ≤ ∞ are replaced with
det U(z) 6= 0 for |z | < 1, det L(z) 6= 0 for 1 < |z | ≤ ∞ then the
factorization is called weak



Remark. Let ξ be a zero of det B(z), that is assume that det(ξ) = 0.
Taking determinants on both sides of the canonical factorization

B(z) = U(z)L(z)

yields det B(z) = det U(z) det L(z) so that, either det L(ξ) = 0 or
det U(ξ) = 0.

Since U(z) is nonsingular for |z | ≤ 1 and L(z) is nonsingular for |z | ≥ 1
then, ξ is a zero of det L(z) if |ξ| < 1, while ξ is zero of det U(z) if
|ξ| > 1.

In the case of an M/G/1 Markov chains, where L(z) = I − z−1G , the zeros
of det L(z) are the zeros of det(zI − G ), that is the eigenvalues of G .

Therefore a necessary condition for the existence of a canonical
factorization in the M/G/1 case is that det B(z) has exactly m zeros of
modulus ≤ 1



In the framework of Markov chains the m ×m matrix function
B(z) = I − A(z), of which we are looking for the weak canonical W-H
factorization, is in the Wiener class since A(z) =

∑∞
i=−1 Aiz

i , Ai ≥ 0 and∑∞
i=−1 Ai exists finite (stochastic)

Moreover, it can be proved that det(I −A(z)) has zeros ξ1, ξ2, . . . , ordered
such that |ξi | ≤ |ξi+1|, where

positive recurrent: ξm = 1 < ξm+1

negative recurrent: ξm < ξm+1 = 1

null recurrent: ξm = ξm+1 = 1

Thus we are looking for the weak canonical W-H factorization

B(z) = U(z)(I − z−1G )

where

positive or null recurrent: ρ(G ) = 1, ξm simple eigenvalue

negative recurrent: ρ(G ) < 1



W-H factorization and matrix equations
Assume that there exists the UL factorization of H:

H =


U0 U1 U2 . . .

U0 U1 U2
. . .

. . .
. . .




I
−G I

−G I
. . .

. . .

 = UL

multiply to the right by L−1 and get
B0 B1 . . .

B−1 B0 B1
. . .

B−1 B0 B1
. . .




I
G I
G 2 G I
...

. . .
. . .

. . .

 =


U0 U1 U2 . . .

U0 U1 U2
. . .

. . .
. . .

. . .


Reading this equation in the second block-row yields

∞∑
i=0

Bi−1G i = 0, Uk =
∞∑
i=0

Bi+kG i , k = 0, 1, 2, . . .



∞∑
i=0

Bi−1G i = 0, Uk =
∞∑
i=0

Bi+kG i , k = 0, 1, 2, . . .

That is,

computing the matrix G is reduced to solving a matrix equation

computing the blocks Uk is reduced to computing infinite summations
of matrices

The existence of the canonical factorization, implies the existence of the
solution G of minimal spectral radius ρ(G ) < 1 of the matrix equation

∞∑
i=0

Bi−1X i = 0

Conversely, if G solves the above equation where ρ(G ) < 1, if det B(z) has
exactly m roots of modulus less than 1 and no roots of modulus 1, then
there exists a canonical factorization B(z) = U(z)(I − z−1G )



General existence conditions of the W-H factorization

More generally, for a function B(z) =
∑∞

i=−1 z iBi ∈ Wm we can prove
that

If there exists a weak canonical factorization B(z) = U(z)(I − z−1G ) then
G solves the above matrix equation, ‖G k‖ is uniformly bounded from
above and is the solution with minimal spectral radius ρ(G ) ≤ 1

Conversely, if∑∞
i=0(i + 1)|Bi | <∞

there exists a solution G of the matrix equation such that ρ(G ) ≤ 1,
‖G k‖ is uniformly bounded from above

all the zeros of det B(z) of modulus less than 1 are eigenvalues of G

then there exists a canonical factorization B(z) = U(z)(I − z−1G )



The QBD case
For a QBD process where B(z) = z−1B−1 + B0 + zB1 one has

B(z) = (zI − R)U0(I − z−1G ), B(z−1) = (zI − R̂)Û0(I − z−1Ĝ )

moreover, the roots ξi , i = 1, . . . , 2m of the polynomial det zB(z) are such
that

|ξ1| ≤ · · · ≤ |ξm| = ξm ≤ 1 ≤ ξm+1 = |ξm+1| ≤ · · · |ξ2m|
where

ξm = 1 < ξm+1: positive recurrent

ξm < 1 = ξm+1: transient

ξm = 1 = ξm + 1: null recurrent

The matrices G ,R, Ĝ , R̂ solve the equations

B−1 + B0G + B1G 2 = 0

R2B−1 + RB0 + B1 = 0

B−1Ĝ 2 + B0Ĝ + B1 = 0

B−1 + R̂B0 + R̂2B1 = 0



For a general function B(z) = z−1B−1 + B0 + zB1 we have

Theorem (About the existence)

If |ξn| < 1 < |ξn+1| and there exists a solution G with ρ(G ) = |ξn| then

1 the matrix K = B0 + B1G is invertible, there exists the solution
R = −B1K−1, and B(z) has the canonical factorization

B(z) = (I − zR)K (I − z−1G )

2 B(z) is invertible in the annulus A = {z ∈ C : |ξn| < z < |ξn+1|} and
H(z) = B(z)−1 =

∑+∞
i=−∞ z iHi is convergent for z ∈ A, where

Hi =


G−iH0, i < 0,∑+∞

j=0 G jK−1R j , i = 0,

H0R i , i > 0.

3 If H0 is nonsingular, then there exist the solutions Ĝ = H0RH−10 ,

R̂ = H−10 GH0 and B̂(z) = B(z−1) has the canonical factorization

B̂(z) = (I − zR̂)K̂ (I − z−1Ĝ ), K̂ = B0 + B−1Ĝ = B0 + R̂B1



Theorem (About the existence)

Let |ξn| ≤ 1 ≤ |ξn+1|. Assume that there exist solutions G and Ĝ . Then

1 B(z) has the (weak) canonical factorization

B(z) = (I − zR)K (I − z−1G ),

2 B̂(z) has the (weak) canonical factorization

B̂(z) = (I − zR̂)K̂ (I − z−1Ĝ ),

3 if |ξn| < |ξn+1|, then the series

W =
∞∑
i=0

G iK−1R i , (W = H0)

is convergent, W is the unique solution of the equation

X − GXR = K−1,

W is nonsingular and Ĝ = WRW−1, R̂ = W−1GW .



Solving matrix equations
Computing the W-H factorization is equivalent to solve a matrix equation

Here we examine some algorithms for solving matrix equations of the kind

X = A−1 + A0X + A1X 2, equivalently B−1 + B0X + B1 = 0

or, more generally, of the kind

X =
∞∑

i=−1
AiX

i+1, equivalently
∞∑

i=−1
BiX

i+1 = 0

Most natural approach: fixed point iterations

Xk+1 =
∞∑

i=−1
AiX

i+1
k

Xk+1 = (I − A0)−1
∞∑

i=−1, i 6=0

AiX
i
k



Properties:

linear convergence if X0 = 0 or X0 = I

monotonic convergence for X0 = 0

slow convergence, sublinear in the null recurrent case

easy to implement, QBD case: few matrix multiplications per step

Newton’s iteration has a faster convergence but at each step it requires to
solve a linear matrix equation

Cyclic reduction can combine a low cost and quadratic convergence



Solving matrix equations by means of CR
Consider for simplicity a quadratic matrix equation

B−1 + B0X + B1X 2 = 0

rewrite it in matrix form as
B0 B1

B−1 B0 B1

B−1 B0 B1

. . .
. . .

. . .




X
X 2

X 3

...

 =


−B−1

0
0
...


Apply one step of cyclic reduction and get

B̂
(1)
0 B

(1)
1

B
(1)
−1 B

(1)
0 B

(1)
1

B
(1)
−1 B

(1)
0 B

(1)
1

. . .
. . .

. . .




X
X 3

X 5

...

 =


−B−1

0
0
...





Cyclically repeating the same reduction yields
B̂

(k)
0 B

(k)
1

B
(k)
−1 B

(k)
0 B

(k)
1

B
(k)
−1 B

(k)
0 B

(k)
1

. . .
. . .

. . .




X

X 2k−1

X 2·2k−1

...

 =


−B−1

0
0
...


where

B
(k+1)
−1 = −B

(k)
−1 S (k)B

(k)
−1 , S (k) = (B

(k)
0 )−1

B
(k+1)
1 = −B

(k)
1 S (k)B

(k)
1

B
(k+1)
0 = B

(k)
0 − B

(k)
1 S (k)B

(k)
−1 − B

(k)
−1 S (k)B

(k)
1

B̂
(k+1)
0 = B

(k)
0 − B

(k)
1 S (k)B

(k)
−1

Observe that X = (B̂
(k)
0 )−1(−B−1 − B

(k)
1 X 2k−1),

moreover ‖B(k)
1 ‖ = O(

(
r
R

)2k
), B̂

(k)
0 is nonsingular with bounded inverse,

‖X 2k−1‖ = O(r2
k
)



CR for infinite block Hessenberg matrices
Even-odd permutation applied to block rows and block columns of

H =


B̂0 B̂1 B̂2 B̂3 . . . . . . . . .

B−1 B0 B1 B2 B3
. . .

. . .

B−1 B0 B1 B2 B3
. . .

. . .
. . .

. . .
. . .

. . .


leads to the following structure



CR for infinite block Hessenberg matrices
Computing the Schur complements yields

-

-1

=

Computational analysis

inverting an infinite block-triangular block-Toeplitz matrix can be
performed with the doubling algorithm until the (far enough)
off-diagonal entries are sufficiently small. For the esponential decay,
the stop condition is verified in few iterations

multiplication of block-triangular block-Toeplitz matrices can be
performed with FFT

Computational cost: O(Nm2 log m + Nm3) where N is the number of the
non-negligible blocks



Functional interpretation
Associate the block Hessenberg block Toeplitz matrix H = (Bi−j) with the
matrix function ϕ(z) =

∑∞
i=−1 z iBi

Using the interplay between infinite Toeplitz matrices and power series,
the Schur complement can be written as

ϕ(k+1)(z) = ϕ(k)
even(z)− zϕ

(k)
odd(z)

(
ϕ(k)
even(z)

)−1
ϕ
(k)
odd(z)

ϕ̂(k+1)(z) = ϕ̂(k)
even(z)− zϕ̂

(k)
odd(z)

(
ϕ(k)
even(z)

)−1
ϕ
(k)
odd(z)

where for a matrix function F (z) we denote

Feven(z2) =
1

2
(F (z) + F (−z))

Fodd(z2) =
1

2
(F (z)− F (−z))



Functional interpretation
By means of formal manipulation, relying on the identity

a− z2ba−1b = (a + zb)a−1(a− zb)

we find that

ϕ(k+1)(z2) = ϕ(k)
even(z2)− z2ϕ

(k)
odd(z2)ϕ(k)

even(z2)−1ϕ
(k)
odd(z2)

= (ϕ(k)
even(z2) + ϕ

(k)
odd(z2))ϕ(k)

even(z2)−1(ϕ(k)
even(z2)− zϕ

(k)
odd(z2))

On the other hand, for a function ϕ(z) one has

ϕeven(z2) + zϕodd(z2) = ϕ(z), ϕeven(z2)− zϕodd(z2) = ϕ(−z)

so that

ϕ(k+1)(z2) = ϕ(k)(z)ϕ(k)
even(z)−1ϕ(k)(−z)

which extends the Graeffe iteration to matrix power series



Functional interpretation

Thus, the functional iteration for ϕ(k)(z) can be rewritten in simpler form
as

ϕ(k+1)(z2) = ϕ(k)(z)

(
1

2
(ϕ(k)(z) + ϕ(k)(−z))

)−1
ϕ(k)(−z)

Define ψ(k)(z) = ϕ(k)(z)−1 and find that

ψ(k+1)(z2) =
1

2
(ψ(k)(z) + ψ(k)(−z))

This property enables us to prove the following convergence result



Convergence
Theorem.

Assume we are given a function ϕ(z) =
∑+∞

i=−1 z iAi and positive numbers
r < 1 < R such that

1 for any z ∈ A(r ,R) the matrix ϕ(z) is analytic and nonsingular
2 the function ψ(z) = ϕ(z)−1, analytic in A(r ,R), is such that

det H0 6= 0 where ψ(z) =
∑+∞

i=−∞ z iHi

Then
1 the sequence ϕ(k)(z) converges uniformly to H−10 over any compact

set in A(r ,R)
2 for any ε and for any norm there exist constants ci > 0 such that

‖A(k)
−1‖ ≤ c−1(r + ε)2

k

‖A(k)
i ‖ ≤ ci (R − ε)−i2k , for i ≥ 1

‖A(k)
0 − H−10 ‖ ≤ c0

(
r + ε

R − ε

)2k



Convergence for ξm = 1
Theorem.

Assume we are given a function ϕ(z) =
∑+∞

i=−1 z iAi and positive numbers
r = 1 < R such that

1 for any z ∈ A(r ,R) the matrix ϕ(z) is analytic and nonsingular
2 the function ψ(z) = ϕ(z)−1, analytic in A(r ,R), is such that

det H0 6= 0 where ψ(z) =
∑+∞

i=−∞ z iHi

Then
1 the sequence ϕ(k)(z) converges uniformly to H−10 over any compact

set in A(r ,R)
2 for any ε and for any norm there exist constants ci > 0 such that

lim
k

A
(k)
−1 = A

(∞)
−1

‖A(k)
i ‖ ≤ ci (R − ε)−i2k , for i ≥ 1

‖A(k)
0 − H−10 ‖ ≤ c0

(
r + ε

R − ε

)2k



Remark

In principle, Cyclic Reduction in functional form can be applied to any
function having a Laurent series of the kind

ϕ(z) =
∞∑

i=−∞
z iBi

provided it is analytic over an annulus including the unit circle.

In the matrix framework, CR can be applied to the associated block
Toeplitz matrix, no matter if it is not Hessenberg

The computational difficulty for a non-Hessenberg matrix is that the block
corresponding to ϕeven(z) is not triangular. Therefore its inversion,
required by CR is not cheap



Solution of the matrix equation

Consider the matrix equation

∞∑
i=−1

BiX
i+1 = 0

rewrite it in matrix form as
B0 B1 B2 B3 B4 . . .

B−1 B0 B1 B2 B3
. . .

. . .

B−1 B0 B1 B2
. . .

. . .
. . .

. . .
. . .




X
X 2

X 3

...

 =


−B−1

0
0
...


Apply cyclic reduction and get




B̂

(k)
0 B̂

(k)
1 B̂

(k)
2 B̂

(k)
3 B̂

(k)
4 . . .

B
(k)
−1 B

(k)
0 B

(k)
1 B

(k)
2 B

(k)
3

. . .
. . .

B
(k)
−1 B

(k)
0 B

(k)
1 B

(k)
2

. . .
. . .

. . .
. . .

. . .




X

X 2k−1

X 2·2k−1

X 3·2k−1

...

 =


−B−1

0
0
...


where B

(k)
i and B̂

(k)
i are defined in functional form by

ϕ(k+1)(z) = ϕ(k)
even(z)− zϕ

(k)
odd(z)

(
ϕ(k)
even

)−1
ϕ
(k)
odd(z)

ϕ̂(k+1)(z) = ϕ̂(k)
even(z)− zϕ̂

(k)
odd(z)

(
ϕ(k)
even

)−1
ϕ
(k)
odd(z)

where

ϕ(k)(z) =
∞∑

i=−1
B

(k)
i z i , ϕ̂(k)(z) =

∞∑
i=−1

B̂
(k)
i



From the first equation we have

X =(B̂
(k)
0 )−1(−B−1 −

∞∑
i=1

B̂
(k)
i X i ·2k−1)

=−(B̂
(k)
0 )−1B−1 − (B̂

(k)
0 )−1

∞∑
i=1

B̂
(k)
i X i ·2k−1

Properties:

(B̂
(k)
0 )−1 is bounded from above

B
(k)
i converges to zero as k →∞

convergence is double exponential for positive recurrent or transient
Markov chains

convergence is linear with factor 1/2 for null recurrent Markov chains



Evaluation interpolation
Question: how to implement cyclic reduction for infinite M/G/1 or G/M/1
Markov chains?

One has to compute the coefficients of the matrix Laurent series

ϕ(k)(z) =
∑∞

i=−1 z iB
(k)
i such that

ϕ(k+1)(z) = ϕ(k)(z)

(
ϕ(k)(z) + ϕ(k)(−z)

2

)−1
ϕ(k)(−z)

A first approach

Interpret the computation in terms of infinite block Toeplitz matrices

Truncate matrices to finite size N for a sufficiently large N

apply the Toeplitz matrix technology to perform each single operation
in the CR step



ϕ(k+1)(z) = ϕ(k)(z)

(
ϕ(k)(z) + ϕ(k)(−z)

2

)−1
ϕ(k)(−z)

A second approach:
Remain in the framework of analytic functions and implement the iteration
point-wise

1 choose the Nth roots of the unity, for N = 2k , as knots

2 apply CR point-wise at the current knots

3 check if the remainder in the power series is small enough

4 if not, set k = 2k and return to step 2 (using the already computed
quantities)

5 if the remainder is small then exit the cycle



Some reductions: from banded M/G/1 to QBD
Let G be the minimal nonnegative solution of

B−1 + B0X + B1X 2 + · · ·+ BNXN = 0

Rewrite the equation in matrix form B0 B1 . . . BN

B−1 B0 B1 . . . BN

. . .
. . .

. . .
. . .

. . .


 G

G 2

...

 =

−B−1
0
...


Reblock the system into N × N blocks and get B0 B1

B−1 B0 B1
. . .

. . .
. . .


 G

G 2

...

 =

B−1
0
...



B−1 =


0 . . . 0 B−1

0 . . . 0 0
...

...
...

...
0 . . . 0 0

 ,B0 =


B0 B1 . . . BN−1

B−1 B0

. . .
...

. . .
. . . B1

B−1 B0

 ,B1 =


BN

BN−1 BN

...
. . .

. . .

B1 . . . BN−1 BN





This suggests to consider the auxliary equation

B−1 + B0X + B1X 2 = 0

It is a direct verification to show that

G =


0 . . . 0 G
... . . .

... G 2

... . . .
...

...
0 . . . 0 GN


solves the auxiliary equation

Solving a banded M/G/1 is reduced to solve a QBD with larger blocks

This technique does not apply to a power series. However...



Some reductions: from M/G/1 to QBD
Let G be the minimal nonnegative solution of

B−1 + B0X + B1X 2 + · · · = 0

Consider the auxiliary equation

B−1 + B0X + B1X 2 = 0

where B−1,B0,B1 are infinite matrices defined by

B−1 = diag(B−1, 0, . . .), B0 =


B0 B1 B2 . . .

−I 0 . . .
−I

. . .

 , B1 =


0
I 0

I 0
. . .

. . .


A solution of the auxiliary equation is given by

X = G =


G 0 . . .
G 2 0 . . .
G 3 0 . . .
...

...
...





B−1 + B0X + B1X 2 = 0

B−1 0 . . .
0 0 . . .
...

...
. . .

+
B0 B1 . . .

0 −I
...

. . .


 G 0 . . .
G2 −I
...

. . .

+

0
I 0

I 0

. . .
. . .


 G 0 . . .
G2 0 . . .
... 0 . . .


2

= 0

B−1 0 . . .
0 0 . . .
...

...
. . .

+



∑∞
i=0 BiG

i+1 0 . . .
−G2 0 . . .

−G3
...

. . .

...
...

...

+


0 0 . . .
G2 0 . . .

G3
...

. . .

...
...

...



Computing G is reduced to computing the solution G of a QBD with
infinite blocks



Shifting techniques



Shifting techniques

We have seen that in the solution of QBD Markov chains one needs to
compute the minimal nonnegative solution G of the m×m matrix equation

A−1 + A0X + A1X 2 = X

Moreover the roots ξi of the polynomial det(A−1 + (A0 − I )z + A1z2) are
such that

|ξ1| ≤ · · · ≤ ξm ≤ 1 ≤ ξm+1 ≤ · · · ≤ |ξ2m|
In the null recurrent case where ξm = ξm+1 = 1 the convergence of
algorithms for computing G deteriorates

Moreover, the problem of computing G is ill-conditioned



Here we provide a tool for getting rid of this drawback

The idea is an elaboration of a result introduced by [Brauer 1952] and
extended to matrix polynomials by [He, Meini, Rhee 2001]

It relies on transforming the polynomial A(z) = A−1 + zA0 + z2A1 into a
new one Ã(z) = Ã−1 + zÃ0 + z2Ã1 in such a way that ã(z) = det Ã(z) has
the same roots of a(z) = det A(z) except for ξm = 1 which is shifted to 0,
and ξm+1 = 1 which is shifted to infinity

This way, the roots of ã(z) are

0, ξ1, . . . , ξm−1, ξm+2, . . . , ξ2m, ∞



The Brauer idea

Let A be an n × n matrix, let u be an eigenvector corresponding to the
eigenvalue λ, that is Au = λu, let v be any vector such that vTu = 1

Then B = A− λuvT has the same eigenvalues of A except for λ which is
replaced by 0

Proof

Bu = Au − λuvTu = λu − λu = 0

If wTA = µwT then wTB = wTA− λwTuvT = µwT

Can we extend the same argument to matrix polynomials and to the
polynomial eigenvalue problem?



Our assumptions:

A(z) = A−1z−1 + A0 + zA1, A−1,A0,A1 are m ×m matrices

A−1,A0,A1 ≥ 0

(A−1 + A0 + A1)e = e, e = (1, . . . , 1)T

A−1 + A0 + A1 irreducible

ξm = 1 = ξm+1, z = 1 is zero of a(z) = det(zA(z)) of multiplicity 2

The following equations have solution where B−1 = A−1, B0 = A0 − I ,
B1 = A1

B−1 + B0G + B1G 2 = 0, ρ(G ) = ξm

R2B−1 + RB0 + B1 = 0, ρ(R) = ξ−1m+1

B−1Ĝ 2 + B0Ĝ + B1 = 0, ρ(Ĝ ) = ξ−1m+1

B−1 + R̂B0 + R̂2B1 = 0, ρ(R̂) = ξm.



Recall that the existence of these 4 solutions is equivalent to the existence
of the canonical factorizations of ϕ(z) = z−1B(z) and of ϕ(z−1) where
B(z) = B−1 + zB0 + z2B1

ϕ(z) = (I − zR)K (I − z−1G ), R,K ,G ∈ Rm×m, det K 6= 0

ϕ(z−1) = (I − zR̂)K̂ (I − z−1Ĝ ), R̂, K̂ , Ĝ ∈ Rm×m, det K̂ 6= 0



Shift to the right
Here, we construct a new matrix polynomial B̃(z) having the same roots
as B(z) except for the root ξn which is shifted to zero.

– Recall that G has eigenvalues ξ1, . . . , ξm
– denote uG an eigenvector of G such that GuG = ξmuG

– denote v any vector such that vTuG = 1
– define

B̃(z) = B(z)

(
I +

ξm
z − ξm

Q

)
, Q = uGvT

Theorem

The function B̃(z) coincides with the quadratic matrix polynomial
B̃(z) = B̃−1 + zB̃0 + z2B̃1 with matrix coefficients

B̃−1 = B−1(I − Q), B̃0 = B0 + ξnB1Q, B̃1 = B1.

Moreover, the roots of B̃(z) are 0, ξ1, . . . , ξm−1, ξm+1, . . . , ξ2m.



Outline of the proof
Since B(ξm)uG = 0, and Q = uGvT , then B(ξm)Q = 0 so that
B−1Q = −ξmB0Q − ξ2mB1Q, and we have

B(z)Q = −ξmB0Q − ξ2mB1Q + B0Qz + B1Qz2

= (z2 − ξ2m)B1Q + (z − ξm)B0Q.

This way ξm
z−ξm B(z)Q = ξm(z + ξm)B1Q + ξmB0Q, therefore

B̃(z) = B(z) +
ξm

z − ξm
B(z)Q = B̃−1 + B̃0z + B̃1z2

so that

B̃−1 = B−1(I − Q), B̃0 = B0 + ξmB1Q, B̃1 = B1.

Since det(I + ξm
z−ξm Q) = z

z−ξm then from the definition of B̃(z) we have

det B̃(z) = z
z−ξm det B(z). This means that the roots of the polynomial

det B̃(z) coincide with the roots of det B(z) except the root equal to ξm
which is replaced with 0.



Shift to the left
Here, we construct a new matrix polynomial B̃(z) having the same roots
as B(z) except for the root ξm which is shifted to infinity.

– Recall that R has eigenvalues ξ−1m+1, . . . , ξ
−1
2m

– denote vR a left eigenvector of R such that vT
R R = ξ−1m+1vT

R

– denote w any vector such that wT vR = 1
– define

B̃(z) =

(
I − z

z − ξn+1
S

)
B(z), S = wvT

R

Theorem

The function B̃(z) coincides with the quadratic matrix polynomial
B̃(z) = B̃−1 + zB̃0 + z2B̃1 with matrix coefficients

B̃−1 = B−1, B̃0 = B0 + ξ−1m+1SB−1, B̃1 = (I − S)B1.

Moreover, the roots of B̃(z) are ξ1, . . . , ξm, ξm+2, . . . , ξ2m,∞.



Double shift
The right and left shifts can be combined together yielding a new
quadratic matrix polynomial B̃(z) with the same roots of B(z), except for
ξn and ξn+1, which are shifted to 0 and to infinity, respectively

Define the matrix function

B̃(z) =

(
I − z

z − ξm+1
S

)
B(z)

(
I +

ξm
z − ξm

Q

)
,

and find that B̃(z) = B̃−1 + zB̃0 + z2B̃1, with matrix coefficients

B̃−1 = B−1(I − Q),

B̃0 = B0 + ξmB1Q + ξ−1m+1SB−1 − ξ−1m+1SB−1Q =

B0 + ξmB1Q + ξ−1m+1SB−1 − ξmSB1Q

B̃1 = (I − S)B1.

The matrix polynomial B̃(z) has roots 0, ξ1, . . . , ξm−1, ξm+2, . . . , ξ2m,∞.
In particular, B̃(z) is nonsingular on the unit circle and on the annulus
|ξm−1| < |z | < |ξm+2|.



Shifts and canonical factorizations
We are able to shift eigenvalues of matrix polynomials. What about
eigenvalues? What about solutions to the 4 matrix equations?

We provide an answer to the following question

Under which conditions both the functions ϕ̃(z) and ϕ̃(z−1) obtained
after applying the shift have a (weak) canonical factorization?

In different words:

Under which conditions there exist the four minimal solutions to the
equations obtained after applying the shift where the matrices Ai are
replaced by Ãi , i = −1, 0, 1?

These matrix solutions will be denoted by G̃ , R̃,
˜̂
G ,
˜̂
R

They are the analogous of the solutions G ,R, Ĝ , R̂ to the original
equations

We examine the case of the shift to the right. The shift to the left can be
treated similarly

We will examine separately the case of the double shift



Independently of the recurrent or transient case, the canonical
factorization of ϕ̃(z) always exists

We have the following theorem concerning B̃(z) = B(z)(I + ξn
z−ξn Q),

Q = uGvT

Theorem

The function ϕ̃(z) = z−1B̃(z), has the following factorization

ϕ̃(z) = (I − zR)K (I − z−1G̃ ), G̃ = G − ξnQ

This factorization is canonical in the positive recurrent case, and weak
canonical otherwise.

The eigenvalues of G̃ are those of G , except for the eigenvalue ξn
which is replaced by zero

X = G̃ and Y = R are the solutions with minimal spectral radius of
the equations

B̃−1 + B̃0X + B̃1X 2 = 0, Y 2B̃−1 + Y B̃0 + B̃1 = 0



The case of ϕ̃(z−1)
In the positive recurrent case, the matrix polynomial B̃(z) is nonsingular
on the unit circle, so that the function ϕ̃(z−1) has a canonical factorization

Theorem (Positive recurrent)

If ξn = 1 < ξn+1 then the Laurent matrix polynomial ϕ̃(z−1) = zB̃(z−1),
has the canonical factorization

ϕ̃(z−1) = (I − z
˜̂
R)(

˜̂
U − I )(I − z−1

˜̂
G )

with
˜̂
R = W̃−1G̃ W̃ , G̃ = G − Q,

˜̂
G = W̃ RW̃−1,˜̂

U = B̃0 + B̃−1
˜̂
G = B̃0 +

˜̂
RB1, where W̃ = W − QWR. Moreover, X =

˜̂
G

and Y =
˜̂
R are the solutions with minimal spectral radius of the matrix

equations

B̃−1X 2 + B̃0X + B̃1 = 0, B̃−1 + X B̃0 + X 2B̃1 = 0,



Null recurrent case: double shift

Consider the matrix polynomial obtained with the double shift

B̃(z) = (I − z

z − ξn+1
S)B(z)(I +

ξn
z − ξn

Q), Q = uGvT , S = wvT
R

Theorem

The function ϕ̃(z) = z−1B̃(z) has the canonical factorization

ϕ̃(z) = (I − zR̃)K (I − z−1G̃ ), R̃ = R − ξn+1S , G̃ = G − ξnQ

The matrices G̃ and R̃ are the solutions with minimal spectral radius of
the equations Ã−1 + (Ã0 − I )X + Ã1X 2 = 0 and
X 2Ã−1 + X (Ã0 − I ) + Ã1 = 0, respectively



Null recurrent case: double shift

Theorem

Let Q = uGvT
Ĝ

and S = uR̂vT
R , with uT

G vĜ = 1 and vT
R uR̂ = 1. Then

ϕ̃(z−1) = (I − z−1
˜̂
R)
˜̂
K (I − z

˜̂
G )

where ˜̂
R = R̂ − γu

R̂
vT
Ĝ

K̂−1,
˜̂
G = Ĝ − γK̂−1u

R̂
vT
Ĝ
,

γ = 1/(vT
Ĝ

K̂−1u
R̂

)

K̂ = A−1Ĝ + A0 − I ,
˜̂
K = Ã−1

˜̂
G + Ã0 − I



Applications
The Poisson problem for a QBD consists in solving the equation

(I − P)x = q + ze, e = (1, 1 . . .)T

where q is an infinite vector, x and z are the unknowns and

P =


A0 + A1 − I A1

A−1 A0 − I A1

A−1 A0 − I A1

. . .
. . .

. . .


where A−1,A0,A1 are nonnegative and A−1 + A0 + A1 is stochastic

If ξn < 1 < ξn+1 then the general solution of this equation can be explicitly
expressed in terms of the solutions of a suitable matrix difference equations

The shift technique provides a way o represent the solution by means of
the solution of a suitable matrix difference equation even in the case of
null recurrent models



Generalizations

The shift technique explained in the previous sections can be generalized
in order to shift to zero or to infinity a set of selected eigenvalues, leaving
unchanged the remaining eigenvalues.

This generalization is particularly useful when one has to move a pair of
conjugate complex eigenvalues to zero or to infinity still maintaining real
arithmetic.

Potential application:

Deflation of already approximated roots within a polynomial rootfinder

Potential use in MPSolve http://numpi.dm.unipi.it/mpsolve a
package for high precision computation of roots of polynomials of large
degree

http://numpi.dm.unipi.it/mpsolve


Let Y be a full rank n× k matrix such that GY = Y Λ, where Λ is a k × k
matrix. The eigenvalues of Λ are a subset of the eigenvalues of G .

Let V be an n × k matrix such that V TY = Ik . Define

B̃(z) = B(z)
(

I + Y Λ(zIk − Λ)−1V T
)
.

We have the following

Theorem

The function B̃(z) coincides with the quadratic matrix polynomial
B̃(z) = B̃−1 + zB̃0 + z2B̃1 with matrix coefficients

B̃−1 = B−1(I − YV T ), B̃0 = B0 + B1Y ΛV T , B̃1 = B1.

Moreover, the roots B̃(z) are the same as those of B(z) except for the
eigenvalues of Λ which are replaced by 0.



Concerning the canonical factorization of the function ϕ̃(z) = z−1B̃(z) we
have the following result

Theorem

The function ϕ̃(z) = z−1B̃(z), with B̃(z) has the following (weak)
canonical factorization

ϕ̃(z) = (I − zR)K (I − z−1G̃ )

where G̃ = G − Y ΛV T . Moreover, the eigenvalues of G̃ are those of G ,
except for the eigenvalues of Λ which are replaced by zero; the matrices G̃
and R are solutions with minimal spectral radius of the equations
B̃−1 + B̃0X + B̃1X 2 = 0 and X 2B̃−1 + X B̃0 + B̃1 = 0, respectively.
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Available software

There exists a matlab package and a Fortran 95 package, with a GUI,
where the fast algorithms for solving structured Markov chains have been
implemented

SMCSolver: A MATLAB Toolbox for solving M/G/1, GI/M/1, QBD, and
Non-Skip-Free type Markov chains
http://win.ua.ac.be/~vanhoudt/tools/

Fortran 95 version at
http://bezout.dm.unipi.it:SMCSolver

http://win.ua.ac.be/~vanhoudt/tools/
http://bezout.dm.unipi.it:SMCSolver


Tree-like processes

P =


C0 Λ1 Λ2 . . . Λd

V1 W 0 . . . 0

V2 0 W
. . .

...
...

...
. . .

. . . 0
Vd 0 . . . 0 W


where C0 is m ×m, Λi = [Ai 0 0 . . .], V T

i = [DT
i 0 0 . . .] and the matrix

W is recursively defined by

W =


C Λ1 Λ2 . . . Λd

V1 W 0 . . . 0

V2 0 W
. . .

...
...

...
. . .

. . . 0
Vd 0 . . . 0 W





The matrix W can be factorized as W = UL where

U =


S Λ1 Λ2 . . . Λd

0 U 0 . . . 0

0 0 U
. . .

...
...

...
. . .

. . . 0
0 0 . . . o U

 , L =


I 0 0 . . . 0

Y1 L 0 . . . 0

Y2 0 L
. . .

...
...

...
. . .

. . . 0
Yd 0 . . . o L


where S is the minimal solution of

X +
d∑

i=1

AiX
−1Di = C

Once the matrix S is known, the vector π can be computed by using the
UL factorization of W



Solving the equation

Multiply

X +
d∑

i=1

AiX
−1Di = C

to the right by X−1Di for i = 1, . . . , d and get

Di + (C +
d∑

j=1, j 6=i

AjX
−1Dj)X−1Di + Ai (X−1Di )

2 = 0

that is, Xi := X−1Di solves

Di + (C +
d∑

j=1, j 6=i

AjXj)Xi + AiX
2
i = 0

We can prove that Xi is the minimal solution



Algorithm: fixed point

Set Xi ,0 = 0, i = 1, . . . , d
For k = 0, 1, 2, . . .

Sk = C +
d∑

i=1

AiXi ,k

Xi ,k+1 = −S−1k Di , i = 1, . . . , d

The sequences {Sk}k and {Xi ,k}k converge monotonically to S and to Xi ,
respectively [Latouche, Ramaswami 99]



Algorithm: CR + fixed point

Set Xi ,0 = 0, i = 1, . . . , d

• For k = 0, 1, 2, . . .

• For i = 1, . . . , d

set Fi ,k = C +
∑i−1

j=1 AjXj ,k +
∑d

j=i+1 AjXj ,k−1

compute by means of CR the minimal solution Xi ,k to

Di + Fi ,kX + AiX
2 = 0

The sequence {Xi ,k}k converges monotonically to Xi for i = 1, . . . , d



Newton’s iteration

• Set S0 = C

• For k = 0, 1, 2, . . .

compute Lk = Sk − C +
∑d

i=1 AiS
−1
k Di

compute the solution Yk of

X −
d∑

i=1

AiS
−1
k XS−1k Di = Lk

set Sk+1 = Sk − Yk

The sequence {Sk}k converges quadratically to S

Open issue: efficient solution of the above matrix equation





Vector equations
The extinction probability vector in a Markovian binary tree is given by the
minimal nonnegative solution x∗ of the vector equation

x = a + b(x , x)

where a = (ai ) is a probability vector, and w = b(u, v) is a bilinear form
defined by wk =

∑n
i=1

∑n
j=1 uivjbi ,j ,k

Besides the minimal nonnegative solution x∗, this equation has the vector
e = (1, . . . , 1) as solution.

Some algorithms [Bean, Kontoleon, Taylor, 2008], [Hautphenne,

Latouche, Remiche 2008]
1 xk+1 = a + b(xk , xk), depth algorithm
2 xk+1 = a + b(xk , xk+1), order algorithm
3 xk+1 = a + b(xk , xk+1), xk+2 = a + b(xk+2, xk+1), thickness algorithm
4 xk+1 = (I − b(xk , ·)− b(·, xk))−1(a− b(xk , xk)), Newton’s iteration

Convergence is monotonic with x0 = 0; iterations 1,2,3 have linear
convergence, iteration 4 has quadratic convergence

Converegnce turns to sublinear/linear when the problem is critical, i.e., if
ρ(R) = 1, R = B(I ⊗ e + e ⊗ I ), and B is the n × n2 matrix associated
with the bilinear form b(u, v)



An optimistic approach [Meini, Poloni 2011]

Define y = e − x the vector of survival probability. Then the vector
equation becomes

y = b(y , e) + b(e, y)− b(y , y)

we are interested in the solution y∗ such that 0 ≤ y∗ ≤ x∗

The equation can be rewritten as

y = Hhy , Hh = b(·, e) + b(e, ·)− b(y , ·)

Property: for 0 ≤ y < e, Hh is a nonnegative irreducible matrix. The
Perron-Frobenius theorem insures that exists a positive eigenvector

A new iteration
Yk+1 = PerronVector(Hyk )

Property: local convergence can be proved. Convergence is linear in the
noncritical case and superlinear in the critical case
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Exponential of a block triangular block Toeplitz
In the Erlangian approximation of Markovian fluid queues, one has to
compute

Y = eX =
∞∑
i=0

1

i !
X i

where

X =


X0 X1 . . . X`

. . .
. . .

...
X0 X1

X0

 , m ×m blocks X0, . . . ,X`,

X has negative diagonal entries, nonnegative off-diagonal entries, the sum
of the entries in each row is nonpositive

Clearly, since block triangular Toeplitz matrices form a matrix algebra then
Y is still block triangular Toeplitz

What is the most convenient way to compute Y in terms of CPU time and
error?



Embed X into an infinite block triangular block Toeplitz matrix X∞
obtained by completing the sequence X0,X1, . . . ,X` with zeros

X∞ =


X0 . . . X` 0 . . . . . .

X0
. . . X` 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .


Denote Y0,Y1, . . . the blocks defining Y∞ = eX∞

Then Y is the (`+ 1)× (`+ 1) principal submatrix of Y∞

We can prove the following decay property

‖Yi‖∞ ≤ eα(σ
`−1−1)σ−i , ∀σ > 1

where α = maxj(−(X0)j ,j).
This property is fundamental to prove error bounds of the following
different algorithms



Using ε-circulant matrices
Approximate X with an ε-circulant matrix X (ε) and approximate Y with
Y (ε) = eX

(ε)
. We can prove that if, β = ‖[X1, . . . ,X`]‖∞ then

‖Y − Y (ε)‖∞ ≤ e |ε|β − 1 = |ε|β + O(|ε|2)

and, if ε is purely imaginary then

‖Y − Y (ε)‖∞ ≤ e |ε|
2β − 1 = |ε|2β + O(|ε|4)

Using circulant matrices
Embed X into a K × K block circulant matrix X (K) for K > ` large, and
approximate Y with the (`+ 1)× (`+ 1) submatrix Y (K) of eX

(K)
.

We can prove the following bound

‖[Y0 − Y
(K)
0 , . . . ,Y` − Y

(K)
` ]‖∞ ≤ (eβ − 1)eα(σ

`−1−1) σ
−K+`

1− σ−1 , σ > 1



Method based on Taylor expansion
The matrix Y is approximated by truncating the series expansion to r
terms

Y (r) =
r∑

i=0

1

i !
X i

In all the three aproaches, the computation remains inside a matrix
algebra, more specifically:

block ε-circulant matrices of fixed size `

block circulant matrices of variable size K > `

block triangular Toeplitz of fixed size `
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Open issues

Can we prove that the exponential of a general block Toeplitz matrix does
not differ much from a block Toeplitz matrix? Numerical experiments
confirm this fact but a proof is missing.
Can we design effective ad hoc algorithms for the case of general block
Toeplitz matrices?
Can we apply the decay properties of Benzi, Boito 2014 ?

,

Figure : Graph of a Toeplitz matrix subgenerator, and of its matrix exponential



Conclusions

Matrix structures are the matrix counterpart of specific features of
the model

Their detection and exploitation is fundamental to design efficient
algorithms

Markov chains and queuing model offer a wide variety of structures

Toeplitz, Hessenberg, Toeplitz-like, multilevel, quasiseparable are the
main structures encountered

the interplay between matrices, polynomials and power series,
together with FFT and analytic function theory provide powerful tools
for algorithm design

these algorithms are the fastest currently available

the computational tools designed in this framework, together with the
methodologies on which they rely, have more general applications and
can be used in different contexts


	Introduction
	Structures
	Markov chains and queuing models

	Fundamentals on structured matrices
	Toeplitz matrices
	Rank structured matrices

	Algorithms for structured Markov chains: the finite case
	Block tridiagonal matrices
	Block Hessenberg matrices
	A functional interpretation
	Some special cases

	Algorithms for structured Markov Chains: the infinite case
	Wiener-Hopf factorization
	Solving matrix equations
	Shifting techniques
	Tree-like processes
	Vector equations

	Exponential of a block triangular block Toeplitz matrix

