### A strategy for updating an AINV preconditioner

#### F. Durastante<sup>1</sup> (joint work with D. Bertaccini<sup>2</sup>)

<sup>1</sup>Department of Science and High Technology Università degli Studi dell'Insubria fdurastante@uninsubria.it <sup>2</sup>Università di Roma "Tor Vergata" Department of Mathematics and Center for Biostatistics and Bioinformatics (CIBB) bertaccini@mat.uniroma2.it

> June 23, 2015 CIME-EMS Cetraro (CS) Summer School in applied mathematics



### Outline



#### Motivation

- The problem we're working on
- 2 AINV preconditioner
  - The symmetric case
  - The non symmetric case
- The Proposed Approach
  - The Starting Point
  - Theoretical Results (The Symmetric Case)
  - Numerical Results



The problem we're working on

#### Defining the Problem Succession of Sparse Linear System

We consider the efficient construction of **preconditioners** for sequences of linear systems of the form:

$$\begin{split} \boldsymbol{A}_{k} \boldsymbol{\mathbf{x}}_{k} &= \boldsymbol{\mathsf{b}}_{k}, \ k \geq 0, \ \{\boldsymbol{A}_{k}\}_{k \geq 0} \subset \mathbb{R}^{n \times n}, \\ & \{\boldsymbol{\mathbf{x}}_{k}\}_{k \geq 0}, \ \{\boldsymbol{\mathsf{b}}_{k}\}_{k \geq 0} \subset \mathbb{R}^{n}, \end{split}$$

where  $\{A\}_k$  is a **sparse matrix** for each  $k \ge 0$ . Possible sources for the problem are represented by:

- PDE discretization,
- Differential-Algebraic Equations,
- Eigenvalues and eigenvectors computation (*shift and invert* algorithms).



The problem we're working on

#### Defining the Problem Succession of Sparse Linear System

We consider the efficient construction of **preconditioners** for sequences of linear systems of the form:

$$\begin{split} \boldsymbol{A}_{k} \boldsymbol{\mathbf{x}}_{k} &= \boldsymbol{\mathsf{b}}_{k}, \ k \geq 0, \ \{\boldsymbol{A}_{k}\}_{k \geq 0} \subset \mathbb{R}^{n \times n}, \\ & \{\boldsymbol{\mathbf{x}}_{k}\}_{k \geq 0}, \ \{\boldsymbol{\mathsf{b}}_{k}\}_{k \geq 0} \subset \mathbb{R}^{n}, \end{split}$$

where  $\{A\}_k$  is a **sparse matrix** for each  $k \ge 0$ . Possible sources for the problem are represented by:

- PDE discretization,
- Differential-Algebraic Equations,
- Eigenvalues and eigenvectors computation (*shift and invert* algorithms).



The problem we're working on

#### Defining the Problem Succession of Sparse Linear System

We consider the efficient construction of **preconditioners** for sequences of linear systems of the form:

$$\begin{split} \boldsymbol{A}_{k} \mathbf{x}_{k} &= \mathbf{b}_{k}, \ k \geq 0, \ \{\boldsymbol{A}_{k}\}_{k \geq 0} \subset \mathbb{R}^{n \times n}, \\ & \{\mathbf{x}_{k}\}_{k \geq 0}, \ \{\mathbf{b}_{k}\}_{k \geq 0} \subset \mathbb{R}^{n}, \end{split}$$

where  $\{A\}_k$  is a **sparse matrix** for each  $k \ge 0$ . Possible sources for the problem are represented by:

- PDE discretization,
- Differential-Algebraic Equations,
- Eigenvalues and eigenvectors computation (*shift and invert* algorithms).



#### Defining the Problem Preconditioning Iterative Krylov Solvers

Our goal is to generate a **sequence of preconditioners**  $\{M_k\}_k$ , to improve the convergence properties, in terms of **execution time** and **number of iterations**, of the Krylov Solvers for the algebraically equivalent system  $M_k^{-1}A_k\mathbf{x}_k = M_k^{-1}\mathbf{b}_k$  i.e., such that the transformed linear systems presents a **cluster of eigenvalues**,



#### Figure: Cluster of Eigenvalues.



The **AINV preconditioner**[Benzi-Meyer-Tuma '96, Benzi-Cullum-Tuma 2000] is based on:

- an incomplete factorization of the matrix  $A^{-1}$ ,
- an A-conjugation process, starting from a set of conjugate directions {z<sub>i</sub>}<sub>i=1,...,n</sub> to write an SPD matrix A in the form: Z<sup>T</sup>AZ = D.

$$Z = \begin{pmatrix} \vdots & \vdots & \vdots \\ \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_n \\ \vdots & \vdots & & \vdots \end{pmatrix}, D = \begin{pmatrix} p_1 & 0 & \cdots & 0 \\ 0 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p_n \end{pmatrix}, \quad (1)$$

And so we have that:

•  $p_i = \mathbf{z}_i^T A \mathbf{z}_i$  and  $A^{-1} = Z D^{-1} Z^T$ .



The **AINV preconditioner**[Benzi-Meyer-Tuma '96, Benzi-Cullum-Tuma 2000] is based on:

- an incomplete factorization of the matrix  $A^{-1}$ ,
- an A-conjugation process, starting from a set of conjugate directions {z<sub>i</sub>}<sub>i=1,...,n</sub> to write an SPD matrix A in the form: Z<sup>T</sup>AZ = D.

$$Z = \begin{pmatrix} \vdots & \vdots & \vdots \\ \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_n \\ \vdots & \vdots & & \vdots \end{pmatrix}, D = \begin{pmatrix} p_1 & 0 & \cdots & 0 \\ 0 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p_n \end{pmatrix}, \quad (1)$$

And so we have that:

• 
$$p_i = \mathbf{z}_i^T A \mathbf{z}_i$$
 and  $A^{-1} = Z D^{-1} Z^T$ .



The **AINV preconditioner**[Benzi-Meyer-Tuma '96, Benzi-Cullum-Tuma 2000] is based on:

- an incomplete factorization of the matrix  $A^{-1}$ ,
- an A-conjugation process, starting from a set of conjugate directions {z<sub>i</sub>}<sub>i=1,...,n</sub> to write an SPD matrix A in the form: Z<sup>T</sup>AZ = D.

$$Z = \begin{pmatrix} \vdots & \vdots & \vdots \\ \mathbf{z}_1 & \mathbf{z}_2 & \dots & \mathbf{z}_n \\ \vdots & \vdots & & \vdots \end{pmatrix}, D = \begin{pmatrix} p_1 & 0 & \cdots & 0 \\ 0 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p_n \end{pmatrix}, \quad (1)$$

And so we have that:

• 
$$p_i = \mathbf{z}_i^T A \mathbf{z}_i$$
 and  $A^{-1} = Z D^{-1} Z^T$ .



The symmetric case The non symmetric case

#### The AINV preconditioner Incomplete Factorization Preconditioner

To obtain a preconditioner  $M^{-1} = ZD^{-1}Z^T$ , a dropping strategy for going from *Z* to its sparse approximation  $\tilde{Z}$  is needed.



Figure: AINV dropping example.



It's possible to go from a symmetric *A*-conjugation algorithm to a full *A*-biconjugation, [Benzi-Tuma 98, Benzi-Haws-Tuma 2000]. To obtain this we need:

• two family of A-orthogonal direction

and then the factorization is of the form:

$$W^{T}AZ = D = \begin{pmatrix} p_{1} & 0 & \cdots & 0 \\ 0 & p_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p_{n} \end{pmatrix},$$
(2)

where  $p_i = \mathbf{w}_i^t A \mathbf{z}_i \neq 0$ , and W and Z are **non singular** and **orthogonal triangular** matrices.



It's possible to go from a symmetric *A*-conjugation algorithm to a full *A*-biconjugation, [Benzi-Tuma 98, Benzi-Haws-Tuma 2000]. To obtain this we need:

• two family of A-orthogonal direction

and then the factorization is of the form:

$$W^{T}AZ = D = \begin{pmatrix} p_{1} & 0 & \cdots & 0 \\ 0 & p_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p_{n} \end{pmatrix},$$
(2)

where  $p_i = \mathbf{w}_i^t A \mathbf{z}_i \neq 0$ , and W and Z are **non singular** and **orthogonal triangular** matrices.



It's possible to go from a symmetric *A*-conjugation algorithm to a full *A*-biconjugation, [Benzi-Tuma 98, Benzi-Haws-Tuma 2000]. To obtain this we need:

• two family of A-orthogonal direction

and then the factorization is of the form:

$$W^{T}AZ = D = \begin{pmatrix} p_{1} & 0 & \cdots & 0 \\ 0 & p_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p_{n} \end{pmatrix},$$
(2)

where  $p_i = \mathbf{w}_i^t A \mathbf{z}_i \neq 0$ , and W and Z are **non singular** and **orthogonal triangular** matrices.



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### Construction of the Preconditioner Update An AINV update strategy

The construction of the strategies proposed here is developed starting on the observations stated in the conclusion of [Benzi-Bertaccini 2003] for:

$$A_{\alpha}\mathbf{x} = \mathbf{b}, \ A_{\alpha} = A + \alpha B, \ \alpha \in [\alpha_1, \alpha_2],$$
 (3)

#### where *A*, *B* are **symmetric**, **positive definite** and **sparse**. As in [Benzi-Bertacini 2003, Bertaccini 2004] we are going to start with an AINV preconditioner for the $A_{\alpha_1}$ matrix and generate the order *k*-preconditioner for the sequence, setting $\tilde{Z}_k = \text{diag}(\tilde{Z}, k)$ .



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### Construction of the Preconditioner Update An AINV update strategy

The construction of the strategies proposed here is developed starting on the observations stated in the conclusion of [Benzi-Bertaccini 2003] for:

$$A_{\alpha}\mathbf{x} = \mathbf{b}, \ A_{\alpha} = A + \alpha B, \ \alpha \in [\alpha_1, \alpha_2],$$
 (3)

where *A*, *B* are **symmetric**, **positive definite** and **sparse**. As in [Benzi-Bertacini 2003, Bertaccini 2004] we are going to start with an AINV preconditioner for the  $A_{\alpha_1}$  matrix and generate the order *k*-preconditioner for the sequence, setting  $\tilde{Z}_k = \text{diag}(\tilde{Z}, k)$ .



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

## Construction of the Preconditioner Update

#### The starting update strategy is:

$$M_{\alpha,k}^{-1} = \tilde{Z}(\tilde{D} + \alpha E_k)^{-1} \tilde{Z}^T, \ E_k = \begin{cases} 0 & k = -1, \\ B & k = 0, \\ \tilde{Z}_k^T B \tilde{Z}_k & k \ge 1, \end{cases}$$
(4)

Now what we want is to **modify also** the Z-factor of the factorization accordingly to further improve the convergence of the underlying Krylov method.



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

## Construction of the Preconditioner Update

#### The starting update strategy is:

$$M_{\alpha,k}^{-1} = \tilde{Z}(\tilde{D} + \alpha E_k)^{-1} \tilde{Z}^T, \ E_k = \begin{cases} 0 & k = -1, \\ B & k = 0, \\ \tilde{Z}_k^T B \tilde{Z}_k & k \ge 1, \end{cases}$$
(4)

Now what we want is to **modify also** the *Z*-factor of the factorization accordingly to further improve the convergence of the underlying Krylov method.



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### Construction of the Preconditioner Update The New Preconditioner Definition

#### We start computing two reference preconditioner:

$$\begin{split} M_{(1)}^{-1} = & \tilde{Z}_1 \tilde{D}_1^{-1} \tilde{Z}_1^T \approx A_{\alpha_1}^{-1} = (A + \alpha_1 B)^{-1}, \\ M_{(2)}^{-1} = & \tilde{Z}_2 \tilde{D}_2^{-1} \tilde{Z}_2^T \approx A_{\alpha_2}^{-1} = (A + \alpha_2 B)^{-1}. \end{split}$$

Then we are going to **define the updated matrix**  $\tilde{Z}_{\alpha}$  as:

$$\tilde{Z}_{\alpha} = \begin{cases} \frac{\alpha_2 - \alpha}{\alpha_2 - \alpha_1} \tilde{Z}_1 + \frac{\alpha - \alpha_1}{\alpha_2 - \alpha_1} \tilde{Z}_2 & \alpha \in [\alpha_1, \alpha_2], \\ l & \alpha > \alpha_2. \end{cases}$$



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

Construction of the Preconditioner Update The New Preconditioner Definition

We start computing two reference preconditioner:

$$\begin{split} M_{(1)}^{-1} = & \tilde{Z}_1 \tilde{D}_1^{-1} \tilde{Z}_1^T \approx A_{\alpha_1}^{-1} = (A + \alpha_1 B)^{-1}, \\ M_{(2)}^{-1} = & \tilde{Z}_2 \tilde{D}_2^{-1} \tilde{Z}_2^T \approx A_{\alpha_2}^{-1} = (A + \alpha_2 B)^{-1}. \end{split}$$

Then we are going to **define the updated matrix**  $\tilde{Z}_{\alpha}$  as:

$$\tilde{Z}_{\alpha} = \begin{cases} \frac{\alpha_2 - \alpha}{\alpha_2 - \alpha_1} \tilde{Z}_1 + \frac{\alpha - \alpha_1}{\alpha_2 - \alpha_1} \tilde{Z}_2 & \alpha \in [\alpha_1, \alpha_2], \\ I & \alpha > \alpha_2. \end{cases}$$



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### Construction of the Preconditioner Update The New Preconditioner Definition

The updated preconditioner is then defined as:

$$M_{\alpha,k}^{-1} = \tilde{Z}_{\alpha}(\tilde{D}_1 + \alpha E_k)^{-1} \tilde{Z}_{\alpha}^T \approx A_{\alpha}^{-1}, \ E_k = \begin{cases} 0 & k = -1, \\ B & k = 0, \\ \tilde{Z}_{\alpha,k}^T B \tilde{Z}_{\alpha,k} & k \ge 1, \end{cases}$$

where  $\tilde{Z}_{\alpha,k}$  is the matrix formed by the upper *k* diagonal of the  $Z_{\alpha}$  matrix.

The preconditioner defined in this way is such that:

- the update Z-matrix of the factorization fixes the pattern of the updated matrix,
- the condition number of the *Ž*<sub>α</sub> factor is under control (corollary of the norm bound for triangular factors in [Lemeire '75]):



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### Construction of the Preconditioner Update The New Preconditioner Definition

The updated preconditioner is then defined as:

$$M_{\alpha,k}^{-1} = \tilde{Z}_{\alpha}(\tilde{D}_1 + \alpha E_k)^{-1} \tilde{Z}_{\alpha}^T \approx A_{\alpha}^{-1}, \ E_k = \begin{cases} 0 & k = -1, \\ B & k = 0, \\ \tilde{Z}_{\alpha,k}^T B \tilde{Z}_{\alpha,k} & k \ge 1, \end{cases}$$

where  $\tilde{Z}_{\alpha,k}$  is the matrix formed by the upper *k* diagonal of the  $Z_{\alpha}$  matrix.

The preconditioner defined in this way is such that:

- the update Z-matrix of the factorization fixes the pattern of the updated matrix,
- the condition number of the *Ž*<sub>α</sub> factor is under control (corollary of the norm bound for triangular factors in [Lemeire '75]):



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

# Construction of the Preconditioner Update

#### Condition number bound

The condition number  $\kappa(Z_{\alpha})$  is bounded by the product of the constants:

$$\begin{split} \|Z_{\alpha}\| \leq &\sqrt{n + \frac{n(n+1)}{2}M_{Z}^{2}}, \\ \|Z_{\alpha}^{-1}\| \leq &\frac{\sqrt{(M_{Z}+1)^{2n} + 2n(M_{Z}+2) - 1}}{M_{Z} + 2}, \end{split}$$
  
where  $M_{Z} = \max \left\{ \max_{i < j} |\tilde{z}_{i,j}^{\alpha_{1}}|, \max_{i < j} |\tilde{z}_{i,j}^{\alpha_{2}}| \right\}. \end{split}$ 



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### Construction of the Preconditioner Update Theorem (Eigenvalues Clustering)

**Theorem.** Consider the sequence of linear systems in equation (3) and that there exists a  $\delta \ge 0$  such that the eigenvalues of the matrix  $Z_{\alpha}^{-T} E_k Z_{\alpha}^{-1} - B$  are:

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_t \geq \delta > \sigma_{t+1} \geq \ldots \geq \sigma_n,$$

and  $t \ll n$ . Then if we have that:

$$\max_{\alpha\in(\alpha_1,\alpha_2)}|\alpha|\|D^{-1}E_k\|<\frac{1}{2}$$

we have that there exists matrices  $C_{\alpha}$ ,  $\Delta$  and F and a constant  $c_{\alpha}$  such that:

$$M_{\alpha,k}^{-1}A_{\alpha}=I+M_{\alpha,k}^{-1}C_{\alpha}+\Delta+F,$$



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### Construction of the Preconditioner Update Theorem (Eigenvalues Clustering)

where  $Rank(\Delta) = t \le n$ , independently from  $\alpha$ , and:

$$\|F\|_2 \leq \frac{2|\alpha|\boldsymbol{c}_{\alpha}\delta}{\lambda_{\min}(\boldsymbol{A}_{\alpha_1})} \left(\frac{\|Z_{\alpha_2}\|_2}{\min_{r=1,2,\dots,n} \boldsymbol{z}_{\cdot,r}^{\alpha_1}}\right)^2,$$

where  $Z_{\alpha_1} = (\mathbf{z}_{:,1}^{\alpha_1}, \dots, \mathbf{z}_{:,n}^{\alpha_1})$ . Besides we have that:

$$\|M_{\alpha,k}^{-1}C_{\alpha}\|_{2} \leq \|M_{\alpha,k}^{-1}A_{\alpha_{1}}\| + \max_{r=1,2,...,n} \frac{\lambda_{\max}(A_{\alpha_{1}})\|\mathbf{z}_{:,r}^{\alpha_{1}}\|_{2}^{2}}{\lambda_{\min}(A_{\alpha_{2}})\|\mathbf{z}_{:,r}^{\alpha_{2}}\|_{2}^{2}} \|M_{\alpha,k}^{-1}A_{\alpha_{2}}\|.$$

where  $Z_{\alpha_2} = (\mathbf{z}_{:,1}^{\alpha_2}, \dots, \mathbf{z}_{:,n}^{\alpha_2}).$ 



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

# Construction of the Preconditioner Update

#### The results of the theorem is that,

#### Theorem (Eigenvalues Clustering):

We have written the product  $M_{\alpha,k}^{-1}A_{\alpha}$  as the sum of some small norm matrices and a small rank matrix.  $\Rightarrow$  the spectrum presents at least a **cluster** with **some outlier eigenvalues**.

Working with this framework we also have that if  $A_{\alpha_1}$  and  $A_{\alpha_2}$  are SPD with  $Z_{\alpha}$  factors of bandwidth  $m_1$  and  $m_2$  we have

$$egin{aligned} |Z_{i,j}^lpha| &\leq \sqrt{\mathcal{d}_j^{(lpha_1)}} c_2^{(lpha_1)} t_{(lpha_1)}^{j-i} + \sqrt{\mathcal{d}_j^{(lpha_2)}} c_2^{(lpha_2)} t_{(lpha_2)}^{j-i}, \ t_{(lpha)} &= \left(rac{\sqrt{\kappa(\mathcal{A}_lpha)}-1}{\sqrt{\kappa(\mathcal{A}_lpha)}+1}
ight)^rac{1}{n}. \end{aligned}$$



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

# Construction of the Preconditioner Update

#### The results of the theorem is that,

#### Theorem (Eigenvalues Clustering):

We have written the product  $M_{\alpha,k}^{-1}A_{\alpha}$  as the sum of some small norm matrices and a small rank matrix.  $\Rightarrow$  the spectrum presents at least a **cluster** with **some outlier eigenvalues**.

Working with this framework we also have that if  $A_{\alpha_1}$  and  $A_{\alpha_2}$  are SPD with  $Z_{\alpha}$  factors of bandwidth  $m_1$  and  $m_2$  we have

$$egin{aligned} |Z_{i,j}^lpha| &\leq \sqrt{oldsymbol{d}_j^{(lpha_1)}}oldsymbol{c}_2^{(lpha_1)}t_{(lpha_1)}^{j-i} + \sqrt{oldsymbol{d}_j^{(lpha_2)}}oldsymbol{c}_2^{(lpha_2)}t_{(lpha_2)}^{j-i}, \ t_{(lpha)} &= \left(rac{\sqrt{\kappa(oldsymbol{A}_lpha)}-1}{\sqrt{\kappa(oldsymbol{A}_lpha)}+1}
ight)^rac{1}{n}. \end{aligned}$$



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### Towards the non-symmetrical case .... (A case that we are still analyzing)

Adapting the strategy to the non symmetric case,

$$\begin{split} M_{(1)}^{-1} = & \tilde{Z}_1 \tilde{D}_1^{-1} \tilde{W}_1^T \approx A_{\alpha_1}^{-1} = (A + \alpha_1 B)^{-1}, \\ M_{(2)}^{-1} = & \tilde{Z}_2 \tilde{D}_2^{-1} \tilde{W}_2^T \approx A_{\alpha_2}^{-1} = (A + \alpha_2 B)^{-1}. \end{split}$$

therefore,

$$\tilde{Z}_{\alpha} = \frac{\alpha_{2} - \alpha}{\alpha_{2} - \alpha_{1}} \tilde{Z}_{1} + \frac{\alpha - \alpha_{1}}{\alpha_{2} - \alpha_{1}} \tilde{Z}_{2} \quad \alpha \in [\alpha_{1}, \alpha_{2}], \quad I, \alpha > \alpha_{2}$$
$$\tilde{W}_{\alpha} = \frac{\alpha_{2} - \alpha}{\alpha_{2} - \alpha_{1}} \tilde{W}_{1} + \frac{\alpha - \alpha_{1}}{\alpha_{2} - \alpha_{1}} \tilde{W}_{2} \quad \alpha \in [\alpha_{1}, \alpha_{2}], \quad I, \alpha > \alpha_{2}$$

finally we have,  $M_{\alpha,k}^{-1} = \tilde{Z}_{\alpha}(\tilde{D}_1 + \alpha E_k)^{-1} \tilde{W}_{\alpha}^T$ , where the matrix  $E_k = \tilde{Z}_{\alpha,k}^T B \tilde{W}_{\alpha,k}$  for  $k \ge 1$ .



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### Numerical Results The Set of Matrices

To test the proposed strategy with symmetric matrices we consider the sequence:

$$(\boldsymbol{A} + \alpha \boldsymbol{B}) \boldsymbol{x}_{\alpha} = \boldsymbol{b}_{\alpha}, \ \alpha \in (\boldsymbol{0}, \alpha_{2}),$$
(5)

where B is the matrix representing the 5-point discretization of the laplacian operator with null Dirichlet boundary conditions.

| Matrix name | e <i>nnz</i> (A) Size |      | $\kappa$   | Results |  |
|-------------|-----------------------|------|------------|---------|--|
| msc01050    | 26198                 | 1050 | 8.9970e+15 | 2       |  |
| nasa1824    | 39208                 | 1824 | 6.6264e+06 | 3       |  |

Table: Matrices from University of Florida Sparse Matrix Collection.

#### More experiments and details are in,

F. Durastante, *Interpolant Update of Preconditioners for Sequences of Large Linear Systems*, Mathematical Methods, Computational Techniques and Intelligent Systems (MAMECTIS '15). Vol 41, pp. 40-47, 2015, WSEAS Press.



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

## Numerical Results

The symmetric case

-

| SYMMETRIC TEST MATRIX FROM MSC/NASTRAN STARF8.OUT2 |                      |                           |                  |                            |                   |                    |         |     |  |
|----------------------------------------------------|----------------------|---------------------------|------------------|----------------------------|-------------------|--------------------|---------|-----|--|
|                                                    |                      | CG                        |                  | <i>ILU</i> (0)             |                   | AINV               |         |     |  |
| $\alpha$                                           | $\kappa(A)$          | Т                         | IT               | Т                          | IT                | Т                  | IT      |     |  |
| 0.00e+00                                           | 9.03e+15             | 0.41634                   | 901 <sup>†</sup> | 0.50552                    | 994 <sup>†</sup>  | 0.04636            | 194     |     |  |
| 1.49e-05                                           | 1.65e+06             | 0.28591                   | 1050†            | 0.48536                    | 1050†             | 0.25033            | 1050†   |     |  |
| 2.38e-04                                           | 1.89e+05             | 0.13340                   | 491              | 0.49070                    | 1050†             | 0.24848            | 1050†   |     |  |
| 1.50e-03                                           | 2.54e+04             | 0.08251                   | 303              | 0.49052                    | 1050†             | 0.25081            | 1050†   |     |  |
| 3.10e-02                                           | 4.56e+03             | 0.05304                   | 192              | 0.49249                    | 1046 <sup>†</sup> | 0.25032            | 1050†   |     |  |
| 2.40e-01                                           | 3.68e+03             | 0.06115                   | 222              | 0.48309                    | 1042              | 0.24669            | 1050    |     |  |
|                                                    |                      | $M_{\alpha,1}^{-1}$ shift |                  | $M_{\alpha,1}^{-1}$ interp |                   | AINV <sub>rc</sub> |         |     |  |
| α                                                  | $\kappa(A)$          | Т                         | IT               | ΙT                         | IT                | Т                  | т       | IT  |  |
| 0.00e+00                                           | 9.03e+15             | 0.04602                   | 194              | 0.04616                    | 194               | 53.58705           | 0.04560 | 194 |  |
| 1.49e-05                                           | 1.65e+06             | 0.06667                   | 274              | 0.07622                    | 274               | 52.54392           | 0.01359 | 59  |  |
| 2.38e-04                                           | 1.89e+05             | 0.06082                   | 240              | 0.06610                    | 239               | 51.45668           | 0.01009 | 45  |  |
| 1.50e-03                                           | 2.54e+04             | 0.05809                   | 239              | 0.06611                    | 235               | 51.49022           | 0.00889 | 40  |  |
| 3.100-02<br>2.40e-01                               | 4.000+03<br>3.68e±03 | 0.08082                   | 332<br>549       | 0.00974                    | ∠30<br>32         | 50.76489           | 0.00789 | 30  |  |
| 2.406-01                                           | 0.000+00             | 0.10024                   | 545              | 0.00742                    | 52                | 30.42413           | 0.00705 | 52  |  |

Table: Matrix Boeing/msc01050 - Preconditioner Update.



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

## Numerical Results

The symmetric case

| STRUCTURE FROM NASA LANGLEY, 1824 DEGREES OF FREEDOM |             |                           |                   |                            |                   |                    |         |     |  |
|------------------------------------------------------|-------------|---------------------------|-------------------|----------------------------|-------------------|--------------------|---------|-----|--|
|                                                      |             | CG                        |                   | ILU(                       | <i>ILU</i> (0)    |                    | V       |     |  |
| $\alpha$                                             | $\kappa(A)$ | Т                         | IT                | Т                          | IT                | Т                  | IT      |     |  |
| 0.00e+00                                             | 6.63e+06    | 0.61787                   | 1822 <sup>†</sup> | 0.22174                    | 267               | 0.12274            | 348     |     |  |
| 1.49e-05                                             | 3.99e+05    | 0.61250                   | 1818 <sup>†</sup> | 0.15446                    | 250               | 0.06663            | 188     |     |  |
| 2.38e-04                                             | 5.22e+04    | 0.25546                   | 742               | 0.24582                    | 404               | 0.08493            | 242     |     |  |
| 1.50e-03                                             | 1.70e+04    | 0.15175                   | 438               | 0.42829                    | 703               | 0.14167            | 401     |     |  |
| 3.10e-02                                             | 7.33e+03    | 0.10462                   | 294               | 1.11249                    | 1824 <sup>†</sup> | 0.47047            | 1363    |     |  |
| 2.40e-01                                             | 6.92e+03    | 0.12123                   | 286               | 1.10577                    | 1824 <sup>†</sup> | 0.62818            | 1824    |     |  |
|                                                      |             | $M_{\alpha,1}^{-1}$ shift |                   | $M_{\alpha,1}^{-1}$ interp |                   | AINV <sub>rc</sub> |         |     |  |
| α                                                    | $\kappa(A)$ | T                         | IT                | T                          | IT                | Т                  | Т       | IT  |  |
| 0.00e+00                                             | 6.63e+06    | 0.11800                   | 348               | 0.11991                    | 348               | 227.82443          | 0.11829 | 348 |  |
| 1.49e-05                                             | 3.99e+05    | 0.06363                   | 184               | 0.06929                    | 183               | 227.92061          | 0.06174 | 183 |  |
| 2.38e-04                                             | 5.22e+04    | 0.03801                   | 111               | 0.04261                    | 111               | 226.65847          | 0.02739 | 84  |  |
| 1.50e-03                                             | 1.70e+04    | 0.04110                   | 120               | 0.04575                    | 119               | 226.58604          | 0.01801 | 55  |  |
| 3.10e-02                                             | 7.33e+03    | 0.09412                   | 277               | 0.07543                    | 203               | 225.86866          | 0.01579 | 53  |  |
| 2.40e-01                                             | 6.92e+03    | 0.19569                   | 560               | 0.01949                    | 64                | 225.43537          | 0.01892 | 61  |  |

Table: Matrix Nasa/nasa1824 - Preconditioner Update.



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

## Numerical Results

The symmetric case



Figure: Pattern of the  $\tilde{Z}_{\alpha}$  matrix.



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### The non definite and non symmetric case Preliminary Results

The matrix  $A = \hat{A} + \beta I$ , with *I* the identity matrix and  $\beta \in \mathbb{R}$  such that **some of the eigenvalues** of  $\hat{A}$  has **negative real part**, see Table 4. The sequence of matrices is given by,

$$A_{lpha}\mathbf{x} = \mathbf{b}_{lpha}, \ A_{lpha} = A + lpha B,$$

and the *B* matrix is taken as the tridiagonal discretization of the laplacian operator.

| Matrix name          | nnz(A) | Size | κ        | Results | Spectrum |
|----------------------|--------|------|----------|---------|----------|
| DRIVCAV/cavity06     | 29675  | 1182 | 3.28e+03 | 5       | 4        |
| DRIVCAV/cavity06 (D) | 29675  | 1182 | 3.28e+03 | 6       | 5        |
| HB/jpwh-991          | 6021   | 991  | 3.76e+04 | 7       | 6        |
| HB/jpwh-991 (D)      | 6021   | 991  | 5.62e+04 | 8       | 7        |

Table: Numerical experiments for non symmetric matrices.



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### The non definite and non symmetric case Preliminary Results

| Driven Cavity 10 x 10, Reynolds number: 200 |               |                           |         |                            |                |                    |         |      |  |
|---------------------------------------------|---------------|---------------------------|---------|----------------------------|----------------|--------------------|---------|------|--|
|                                             |               | GMRES                     |         | ILU(                       | <i>ILU</i> (0) |                    | IV      |      |  |
| α                                           | $\kappa(A)$   | Т                         | IT      | Т                          | IT             | Т                  | IT      |      |  |
| 0.00e+00                                    | 3.57e+03      | 16.84182 <sup>†</sup>     | 1120 40 | 22.06934 <sup>†</sup>      | 1032 40        | 0.04598            | 3 20    |      |  |
| 1.49e-07                                    | 3.57e+03      | 16.92518 <sup>†</sup>     | 983 40  | 21.76088 <sup>†</sup>      | 210 40         | 0.04580            | 3 20    |      |  |
| 2.38e-06                                    | 3.56e+03      | 16.86784 <sup>†</sup>     | 288 40  | 21.88902 <sup>†</sup>      | 143 40         | 0.04609            | 3 20    |      |  |
| 1.50e-05                                    | 3.56e+03      | 16.72715 <sup>†</sup>     | 132 40  | 21.77816 <sup>†</sup>      | 534 40         | 0.04656            | 3 21    |      |  |
| 3.10e-04                                    | 3.44e+03      | 16.89740 <sup>†</sup>     | 1051 40 | 21.78865 <sup>†</sup>      | 588 40         | 0.04708            | 3 22    |      |  |
| 2.40e-03                                    | 3.42e+03      | 16.84590 <sup>†</sup>     | 60 40   | 0.59367                    | 32 39          | 0.03776            | 2 38    |      |  |
|                                             |               | $M_{\alpha,1}^{-1}$ shift |         | $M_{\alpha,1}^{-1}$ interp |                | AINV <sub>rc</sub> |         |      |  |
| α                                           | к( <b>A</b> ) | Т                         | IT      | Т                          | IT             | Г                  | Т       | IT   |  |
| 0.00e+00                                    | 3.57e+03      | 0.06119                   | 3 20    | 0.04599                    | 3 20           | 54.70533           | 0.04726 | 3 20 |  |
| 1.49e-07                                    | 3.57e+03      | 0.05981                   | 3 20    | 0.04548                    | 3 20           | 54.70862           | 0.04720 | 3 17 |  |
| 2.38e-06                                    | 3.56e+03      | 0.05987                   | 3 20    | 0.04560                    | 3 20           | 54.68270           | 0.04753 | 3 15 |  |
| 1.50e-05                                    | 3.56e+03      | 0.06044                   | 3 21    | 0.04523                    | 3 20           | 54.82130           | 0.04784 | 3 18 |  |
| 3.100-04                                    | 3.440+03      | 0.05939                   | 3 19    | 0.04477                    | 3 18           | 54.73084           | 0.04184 | 39   |  |
| 2.408-03                                    | 3.428+03      | 0.04049                   | 2 30    | 0.03000                    | 2 39           | 34.07037           | 0.04049 | 2 39 |  |

Table: Results for matrix DRIVCAV/cavity06.



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### The non definite and non symmetric case Preliminary Results



Driven Cavity 10 x 10, Reynolds number: 200



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### The non definite and non symmetric case Preliminary Results

| Driven Cavity 10 x 10, Reynolds number: 200 |             |                           |         |                            |                |                    |         |      |  |
|---------------------------------------------|-------------|---------------------------|---------|----------------------------|----------------|--------------------|---------|------|--|
|                                             |             | GMR                       | ES      | ILU(                       | <i>ILU</i> (0) |                    | IV      |      |  |
| $\alpha$                                    | $\kappa(A)$ | Т                         | IT      | Т                          | IT             | Т                  | IT      |      |  |
| -2.40e-03                                   | 5.64e+03    | 16.83142 <sup>†</sup>     | 885 40  | 21.76976 <sup>†</sup>      | 1105 40        | 0.05713            | 3 37    |      |  |
| -3.10e-04                                   | 3.74e+03    | 17.00274 <sup>†</sup>     | 717 40  | 21.79849 <sup>†</sup>      | 613 40         | 0.04678            | 3 21    |      |  |
| -1.50e-05                                   | 3.57e+03    | 17.08578 <sup>†</sup>     | 352 40  | 21.78114 <sup>†</sup>      | 620 40         | 0.04632            | 3 20    |      |  |
| -2.38e-06                                   | 3.57e+03    | 17.07111 <sup>†</sup>     | 132 40  | 21.97115 <sup>†</sup>      | 1075 40        | 0.04597            | 3 20    |      |  |
| -1.49e-07                                   | 3.57e+03    | 17.06821 <sup>†</sup>     | 988 40  | 21.82080 <sup>†</sup>      | 173 40         | 0.04632            | 3 20    |      |  |
| 0.00e+00                                    | 3.57e+03    | 16.96038 <sup>†</sup>     | 1120 40 | 21.71738 <sup>†</sup>      | 1032 40        | 0.04585            | 3 20    |      |  |
|                                             |             | $M_{\alpha,1}^{-1}$ shift |         | $M_{\alpha,1}^{-1}$ interp |                | AINV <sub>rc</sub> |         |      |  |
| $\alpha$                                    | к(A)        | Т                         | IT      | Т                          | IT             | Т                  | Т       | IT   |  |
| -2.40e-03                                   | 5.64e+03    | 0.07605                   | 3 37    | 0.05553                    | 3 37           | 54.57021           | 0.06044 | 3 38 |  |
| -3.10e-04                                   | 3.74e+03    | 0.05888                   | 3 21    | 0.04549                    | 3 21           | 54.56038           | 0.05074 | 3 21 |  |
| -1.50e-05                                   | 3.57e+03    | 0.05813                   | 3 20    | 0.04487                    | 3 20           | 54.45571           | 0.04200 | 3 11 |  |
| -2.38e-06                                   | 3.57e+03    | 0.05887                   | 3 20    | 0.04483                    | 3 20           | 54.41646           | 0.05025 | 3 24 |  |
| -1.49e-07                                   | 3.57e+03    | 0.05836                   | 3 20    | 0.04495                    | 3 20           | 54.58939           | 0.04622 | 3 20 |  |
| 0.00e+00                                    | 3.57e+03    | 0.05868                   | 3 20    | 0.04477                    | 3 20           | 54.68699           | 0.04751 | 3 20 |  |

Table: Results for matrix DRIVCAV/cavity06 with  $\alpha$  < 0.



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### The non definite and non symmetric case Preliminary Results





The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### The non definite and non symmetric case Preliminary Results

| UNSYMMETRIC MATRIX FROM PHILIPS LTD, J.P.WHELAN, 1978.                    |                                                                              |                                                                     |                                                            |                                                                     |                                                            |                                                                           |                                                                     |                                                    |  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|--|
|                                                                           |                                                                              | GMRES                                                               |                                                            | <i>ILU</i> (0)                                                      |                                                            | AINV                                                                      |                                                                     |                                                    |  |
| α<br>0.00e+00<br>1.49e-07                                                 | κ(A)<br>3.76e+04<br>3.77e+04                                                 | T<br>4.07420<br>4.10995                                             | IT<br>309 20<br>310 31                                     | T<br>0.05846<br>0.05518                                             | IT<br>4 18<br>4 18                                         | T<br>0.02263<br>0.02405                                                   | IT<br>1 38<br>1 38                                                  |                                                    |  |
| 2.38e-06<br>1.50e-05<br>3.10e-04<br>2.40e-03                              | 3.78e+04<br>3.86e+04<br>9.03e+04<br>9.30e+03                                 | 3.44219<br>1.82131<br>1.85225<br>0.18288                            | 262 35<br>139 36<br>142 40<br>14 33                        | 0.05557<br>0.05373<br>0.04806<br>0.02685                            | 4 18<br>4 17<br>3 37<br>2 28                               | 0.02324<br>0.02258<br>0.02299<br>0.01955                                  | 1 38<br>1 38<br>1 38<br>1 33                                        |                                                    |  |
|                                                                           |                                                                              | $M_{\alpha,1}^{-1}$ shift                                           |                                                            | $M_{\alpha,1}^{-1}$ interp                                          |                                                            | AINV <sub>rc</sub>                                                        |                                                                     |                                                    |  |
| α<br>0.00e+00<br>1.49e-07<br>2.38e-06<br>1.50e-05<br>3.10e-04<br>2.40e-03 | κ(A)<br>3.76e+04<br>3.77e+04<br>3.78e+04<br>3.86e+04<br>9.03e+04<br>9.30e+03 | T<br>0.02975<br>0.02898<br>0.02881<br>0.02943<br>0.02885<br>0.02306 | IT<br>1 38<br>1 38<br>1 38<br>1 38<br>1 38<br>1 38<br>1 32 | T<br>0.02249<br>0.02343<br>0.02235<br>0.02248<br>0.02211<br>0.01686 | IT<br>1 38<br>1 38<br>1 38<br>1 38<br>1 38<br>1 38<br>1 32 | T<br>36.76922<br>36.68682<br>37.05723<br>36.67420<br>36.91389<br>36.66777 | T<br>0.02439<br>0.02783<br>0.02867<br>0.02854<br>0.02748<br>0.02177 | IT<br>1 38<br>1 38<br>1 39<br>1 39<br>1 38<br>1 32 |  |

Table: Results for matrix HB/jpwh-991.



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### The non definite and non symmetric case Preliminary Results



UNSYMMETRIC MATRIX FROM PHILIPS LTD, J.P.WHELAN, 1978.

Figure: Specturm of the matrix HB/jpwh-991.



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### The non definite and non symmetric case Preliminary Results

| UNSYMMETRIC MATRIX FROM PHILIPS LTD, J.P.WHELAN, 1978.                         |                                                                              |                                                                     |                                                              |                                                                     |                                                     |                                                                           |                                                                     |                                                   |  |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|--|
|                                                                                |                                                                              | GMF                                                                 | GMRES                                                        |                                                                     | <i>ILU</i> (0)                                      |                                                                           | AINV                                                                |                                                   |  |
| α<br>-2.40e-03<br>-3.10e-04<br>-1.50e-05<br>-2.38e-06<br>-1.49e-07<br>0.00e+00 | κ(A)<br>5.62e+04<br>6.94e+04<br>2.30e+04<br>3.75e+04<br>3.76e+04<br>3.76e+04 | T<br>2.14150<br>4.91671<br>2.99612<br>3.55586<br>4.00763<br>4.00790 | IT<br>169 37<br>390 1<br>232 3<br>275 28<br>307 35<br>309 20 | T<br>0.20322<br>0.07041<br>0.05641<br>0.05669<br>0.05733<br>0.05592 | IT<br>13 26<br>5 15<br>4 21<br>4 20<br>4 19<br>4 18 | T<br>0.03826<br>0.02445<br>0.02406<br>0.02247<br>0.02276<br>0.02270       | IT<br>2 27<br>1 40<br>1 39<br>1 38<br>1 38<br>1 38<br>1 38          |                                                   |  |
|                                                                                |                                                                              | $M_{\alpha,1}^{-1}$ shift                                           |                                                              | $M_{\alpha,1}^{-1}$ interp                                          |                                                     | AINV <sub>rc</sub>                                                        |                                                                     |                                                   |  |
| α<br>-2.40e-03<br>-3.10e-04<br>-1.50e-05<br>-2.38e-06<br>-1.49e-07<br>0.00e+00 | κ(A)<br>5.62e+04<br>6.94e+04<br>2.30e+04<br>3.75e+04<br>3.76e+04<br>3.76e+04 | T<br>0.04714<br>0.03075<br>0.02894<br>0.02745<br>0.02800<br>0.02770 | IT<br>2 25<br>2 1<br>1 39<br>1 38<br>1 38<br>1 38<br>1 38    | T<br>0.03617<br>0.02440<br>0.02265<br>0.02193<br>0.02187<br>0.02180 | IT<br>2 25<br>2 1<br>1 39<br>1 38<br>1 38<br>1 38   | T<br>37.13643<br>36.45920<br>36.60496<br>37.00270<br>39.16368<br>42.80209 | T<br>0.04999<br>0.02890<br>0.02439<br>0.02841<br>0.02576<br>0.03300 | IT<br>2 30<br>2 1<br>1 39<br>1 39<br>1 38<br>1 38 |  |

Table: Results for matrix HB/jpwh-991 with  $\alpha < 0$ ..



The Starting Point Theoretical Results (The Symmetric Case) Numerical Results

#### The non definite and non symmetric case Preliminary Results





### Thanks for your attention!

