
Matrices with
Hierarchical Low-Rank

Structures, Part II

Daniel Kressner
Chair for Numerical Algorithms and HPC

MATHICSE, EPFL
daniel.kressner@epfl.ch

1

Contents

I Introduction
I Low-rank approximation
I HODLR / H-matrices
I HSS / H2-matrices

2

Status

I Know how to do A ≈ UV T .
I Global approximation can be difficult for “nonsmooth” matrices.
I For matrices arising from discretization of functions: Know in

which blocks we can expect good low-rank approximability.

3

HODLR matrices
I Definition
I Addition of HODLR matrices
I Multiplication of HODLR matrices
I Factorization of HOLDR matrices

4

HODLR matrices: Definition
HODLR (Hierarchical Off-Diagonal Low-Rank) matrices are the fruit
flies of hierarchically partitioned low-rank matrices.

Partitioning of row/column indices of A ∈ Rn×n with n = 2pn0 (for
simplicity):

I Start: I0
1 := {1, . . . ,n}

I Level ` = 0: Partition

I0
1 = {1, . . . , n/2}︸ ︷︷ ︸

=I1
1

∪{n/2, . . . ,n}︸ ︷︷ ︸
=I1

2

I Level ` = 1: Partition

I1
1 = {1, . . . , n/4}︸ ︷︷ ︸

=I2
1

∪{n/4 + 1, . . . ,n/2}︸ ︷︷ ︸
=I2

2

I1
2 = {n/2 + 1, . . . , 3n/4}︸ ︷︷ ︸

=I2
1

∪{3n/4 + 1, . . . ,n}︸ ︷︷ ︸
=I2

2

...
5

HODLR matrices: Definition
General:

I`i = I`+1
2i−1 ∪ I`+1

2i , i = 1, . . . ,2`, ` = 1, . . . ,p − 1.

For each off-diagonal block A(I`i , I
`
j), i 6= j , assume rank at most k :

A(I`i , I
`
j) = U(`)

i (V (`)
j)T , U(`)

i ,V (`)
j ∈ Rm`×k ,

where m` := #I`i = #I`j = 2p−`n0.
Diagonal blocks are dense n0 × n0 matrices.

6

HODLR matrices: Storage complexity

For simplicity, assume identical ranks k and balanced partitioning.
Both can be relaxed (especially ranks).

I Storage requirements for off-diagonal blocks.
There are 2` off-diagonal blocks on level ` > 0:

2k
p∑
`=1

2`m` = 2kn0

p∑
`=1

2`2p−` = 2kn0p2p = 2knp = 2kn log2(n/n0)

I Storage requirements for diagonal blocks.

2pn2
0 = nn0

I Total. Assuming n0 = O(1) O(kn log n).

7

HODLR matrices: MatVec
Matrix-vector multiplication y = Ax performed recursively: On level
` = 1, compute

y(I1
1) = A(I1

1 , I
1
1)x(I1

1) + A(I1
1 , I

1
2)x(I1

2),

y(I1
2) = A(I1

2 , I
1
1)x(I1

1) + A(I1
2 , I

1
2)x(I1

2).

I In off-diagonal blocks A(I1
1 , I

1
2) and A(I1

2 , I
1
1), need to multiply

n/2× n/2 low-rank matrix with vector cost for each block

cLR·x (n/2) = 2nk .

I Diagonal blocks, are processed recursively total cost

cA·x (n) = 2cA·x (n/2) + 4kn + n.

Master theorem

cA·x (n) = (4k + 1) log2(n)n.

8

HODLR matrices: Addition
I Adding two equally partitioned HODLR matrices C = A + B

increases the ranks of off-diagonal blocks by a factor 2.
I Truncation needed:

C(I`i , I
`
j) := Tk (A(I`i , I

`
j) + B(I`i , I

`
j))

for off-diagonal block I`i × I`j . Cost

cLR+LR(n) = cSVD × (nk2 + k3).

(cSVD constant implied by method used for low-rank truncation)
I Total cost:

p∑
`=1

2`cLR+LR(m`) = cSVD

p∑
`=1

2`(k3 + m`k2)

≤ cSVD(2p+1k3 +

p∑
`=1

2`2p−`n0k2)

≤ cSVD(2nk3 + n log2(n)k2).

9

HODLR matrices: Matrix multiplication

Matrix-matrix multiplication performed recursively.

Set A(`)
i,j = A(I`i , I

`
j), B(`)

i,j = B(I`i , I
`
j). Then

AB =

[
A(1)

1,1 A(1)
1,2

A(1)
2,1 A(1)

2,2

][
B(1)

1,1 B(1)
1,2

B(1)
2,1 B(1)

2,2

]

=

[
A(1)

1,1B(1)
1,1 + A(1)

1,2B(1)
2,1 A(1)

1,1B(1)
1,2 + A(1)

1,2B(1)
2,2

A(1)
2,1B(1)

1,1 + A(1)
2,2B(1)

2,1 A(1)
2,1B(1)

1,2 + A(1)
2,2B(1)

2,2

]
.

Illustration of block structure:

· =

 · + · · + ·

· + · · + ·


is a n/2× n/2 HODLR matrix and is a low-rank block.

10

HODLR matrices: Matrix multiplication
Four different types of multiplications involved in 2× 2 block
matrix-matrix product:

1. · : multiplication of two HODLR matrices of size n/2,
2. · : multiplication of two low-rank blocks,
3. · : multiplication of a HODLR matrix with a low-rank block,
4. · : multiplication of a low-rank block with a HODLR matrix.

Case 1 and addition require truncation!
Cost recursively:

cH·H(n) = 2(cH·H(n/2) + cLR·LR(n/2) + cH·LR(n/2) + cLR·H(n/2)

+ cH+LR(n/2) + cLR+LR(n/2)),

where

cLR·LR(n) = 4nk2

cH·LR(n) = cLR·H(n) = kcH·v (n) = k(4k + 1) log2(n)n
cH+LR(n) = cH+H(n) = cSVD(nk3 + n log(n)k2)

Total cost:
cH·H(n) ∈ O(k3n log n + k2n log2 n).

11

HODLR matrices: Solution of linear systems

Approximate solution of linear system Ax = b with HODLR matrix A:
1. Approximate LU factorization A ≈ LU in HODLR format:

≈ ·

2. Forward/backward substitution to solve Ly = b, Ux = y .

12

HODLR matrices: Solution of linear systems
Forward substitution Ly = b with lower-triangular HODLR L:

L =

[
L11 0
L21 L22

]
, y =

[
y1
y2

]
, b =

[
b1
b2

]
,

Low-rank matrix L21 and HODLR matrices L11,L22.
1. Solve

L11y1 = b1.

2. Compute
b̃2 := b2 − L21y1

3. Solve
L22y2 = b̃2.

Cost recursively:

cforw(n) = 2cforw(n/2) + (2k + 1)n.

On level ` = p: Direct solution of 2p = n/n0 linear systems of size
n0 × n0.
Total cost:

cforw(n) ∈ O(kn log(n)).

Backward substitution analogously.
13

HODLR matrices: Solution of linear systems
Approximate LU factorization. On level ` = 1:

A =

[
A11 A12
A21 A22

]
, L =

[
L11 0
L21 L22

]
, U =

[
U11 U12
0 U22

]
,

m

A11 = L11U11, A12 = L11U12, A21 = L21U11, A22 = L21U12+L22U22.

Algorithm:
1. compute LU factors L11,U11 of A11,
2. compute U12 = L−1

11 A12 by forward substitution,

3. compute L21 = A21U−1
11 by backward substitution,

4. compute LU factors L22,U22 of A22 − L21U12.

Analysis of cost analogous to matrix-matrix mult:

cLU(n) . cH·H(n) = O(k3n log n + k2n log2 n).

14

Hierarchical matrices
(H matrices)

I Clustering
I 3D Example

15

General clustering/partitioning philosophy

Find partitioning such that:
(a) Ranks of all matrix blocks are small.
(b) Total number of matrix blocks is small.

Main approaches to balance both goals:
I Geometric clustering.
I Algebraic clustering.

16

1D Example

1D integral equation: Find u : Ω→ R such that∫ 1

0
log |x − y |u(y)dy = f (x), x ∈ Ω = [0,1],

for f : Ω→ R.
For n = 2p, subdivide interval [0,1] into subintervals

τi := [(i − 1)h, ih], 1 ≤ i ≤ n, h = 1/n.

Galerkin discretisation with piecewise constant basis functions
A ∈ Rn×n defined by

A(i , j) :=

∫ 1

0

∫ 1

0
ϕi (x) log |x − y |ϕj (y)dydx =

∫
τi

∫
τj

log |x − y |dydx .

17

1D Example

I log |x − y | has singularity at x = y can only expect good
low-rank approximations for a subblock if all indices i , j contained
in the subblock are sufficiently far apart.

I Cluster tree: Subdivide index set I = {1, . . . ,n} by binary tree TI
such that neighbouring indices are hierarchically grouped
together. Driven by subdivision of the domain Ω = [0,1]:

{1,2,3,4,5,6,7,8}

{1,2,3,4} {5,6,7,8}

{1,2} {3,4} {5,6} {7,8}

{1}{2}{3}{4}{5}{6}{7}{8}

[0,1]

[0, 1
2] [1

2 ,1]

[0, 1
4] [1

4 ,
1
2] [1

2 ,
3
4] [3

4 ,1]

[0, 1
8][1

8 ,
1
4][1

4 ,
3
8][3

8 ,
1
2][1

2 ,
5
8][5

8 ,
3
4][3

4 ,
7
8][7

8 ,1]

18

Admissibility condition

I Consider general domain Ω ∈ Rd and consider integral equation
with ‘diagonal” singularity at x = y .

I For s ⊂ I, Ωs is part of the domain containing support of all basis
functions associated with s.

I Admissibility condition motivated by interpolation error estimates:
Let η > 0 be a given constant and let s, t ⊂ I. Matrix block (s, t)
is called admissible if

max{diam(Ωs),diam(Ωt)} ≤ ηdist(Ωs,Ωt),

where

diam(Ω) := max
x,y∈Ω

‖x − y‖2,

dist(Ωs,Ωt) := min
x∈Ωs,y∈Ωt

‖x − y‖2.

19

Partitioning algorithm

I Assume cluster tree TI on I = {1, . . . ,n}
I Call BuildBlocks({1, . . . ,n}, {1, . . . ,n})

BuildBlocks(s, t)
1: if (s, t) is admissible or both s and t have no sons then
2: Fix block (s, t)
3: else
4: for all sons s′ of s and all sons t ′ of t do
5: BuildBlocks(s′, t ′)
6: end for
7: end if

20

1D Example

Block subdivision with admissibility constant η = 1:

p = 2 p = 3 p = 4

21

Summary of H matrices

I Similar to HODLR but more general partitioning driven by cluster
tree + admissibility condition.

I Generality offered by partitioning can greatly reduce ranks (but
much more difficult to program).

I HODLR ideas for performing operations (addition, multiplication,
factorization) extend to H matrices. Recursions derived from
cluster tree.

I Complexity estimates for HODLR extend to H matrices under
certain assumptions (e.g., balanced cluster tree).

I See www.hlib.org and www.hlibpro.com for software.

22

www.hlib.org
www.hlibpro.com

3D Example

Let Ω = (0,1)3 and consider finite difference discretization of

−∆u = f in Ω,

u = 0 on ∂Ω.

I Nonzero entries in Cholesky factor of A (after reordering) ∼ n5/3.
I Limits use of sparse direct methods.

23

3D Example: Cholesky factors

24

Cholesky factor LH in H matrix arithmetic for n =
8000 and rank truncation tolerance ε = 10−4.

25

3D Example: Performance

I Use hierachical Cholesky factor as preconditioner in CG.
I Stop preconditioned CG when accuracy 10−8 is reached.

n ε ‖I − (LHLT
H)−1A‖2 CG steps stor(LH) [MB] time(chol) [s] time(solve) [s]

27000 1e-01 7.82e-01 8 64 1.93 0.35
1e-02 5.54e-02 3 85 3.28 0.21
1e-03 3.88e-03 2 107 4.61 0.18
1e-04 2.98e-04 2 137 6.65 0.22
1e-05 2.32e-05 1 172 10.31 0.17

64000 1e-01 9.11e-01 8 174 5.82 0.88
1e-02 9.66e-02 4 255 10.22 0.62
1e-03 6.56e-03 2 330 15.15 0.48
1e-04 5.51e-04 2 428 23.78 0.54
1e-05 4.53e-05 1 533 34.81 0.46

125000 1e-01 1.15e+00 9 373 14.26 2.09
1e-02 1.57e-01 4 542 25.21 1.32
1e-03 1.19e-02 3 764 44.33 1.33
1e-04 9.12e-04 2 991 65.86 1.19
1e-05 7.37e-05 1 1210 97.62 1.01

For comparison: Sparse Cholesky factor for n = 125 000 requires 964
MB memory and 8 seconds.

26

HSS matrices
I Definition
I Mat-vec product

27

HSS matrices: Definition

HSS matrix = HODLR matrix + nestedness of low-rank factors in
off-diagonal blocks.

Consider off-diagonal block on level `:

A(I`i , I
`
j) = U(`)

i S(`)
i,j (V (`)

j)T , S(`)
i,j ∈ Rk×k .

HSS: There exist matrices X (`)
i ∈ R2k×k ,Y (`)

j ∈ R2k×k such that

U(`)
i =

[
U(`+1)

2i−1 0
0 U(`+1)

2i

]
X (`)

i , V (`)
j =

[
V (`+1)

2j−1 0
0 V (`+1)

2j

]
Y (`)

j .

I Only need to store low-rank factors on lowest level, 2k × k
matrices X (`)

i ,Y (`)
j , and k × k matrices S(`)

i,j on each level.
I O(kn) storage.

28

HSS matrices: Matrix-vector product
1: On level ` = p:

xp
i = (V (p)

i)T x(Ip
i), i = 1, . . . ,2p

2: for level ` = p − 1, . . . ,1 do

3: x`i = (Y (`)
i)T

[
x`+1

2i−1
x`+1

2i

]
, i = 1, . . . ,2`

4: end for
5: for level ` = 1, . . . ,p − 1 do

6:

[
y (`)

2i−1
y `2i

]
=

[
0 S(`)

2i−1,2i

S(`)
2i,2i−1 0

] [
x`2i−1
x`2i

]
, i = 1, . . . ,2`−1

7: end for
8: for level ` = 1, . . . ,p − 1 do

9:

[
y `+1

2i−1
y `+1

2i

]
=

[
y `+1

2i−1
y `+1

2i

]
+ X (`)

i y `i , i = 1, . . . ,2`

10: end for
11: On level ` = p:

y(Ip
i) = U(p)

i yp
i + A(Ip

i , I
p
i)x(Ip

i), i = 1, . . . ,2p

I O(n) operations
I Closely related to fast multipole method.

29

HSS matrices: Summary

I Operations and factorizations for HSS matrices in
[Sheng/Dewilde/Chandrasekaran: Algorithms to Solve
Hierarchically Semi-separable Systems, 2007].

I LU factorization / solving linear systems has complexity O(n).
I H2-matrices

30

A kaleidoscope of
applications

31

Applications related to discretizations of
differential/integral equations

I H matrix based preconditioning for FE discretization of 3D
Maxwell [Ostrowski et al.’2010].

I Matrix sign function iteration in H-arithmetic for solving matrix
Lyapunov and Riccati equations
[Grasedyck/Hackbusch/Khoromskij’2004].

I HSS methods for integral equations [Martinsson, Rokhlin and
collaborators’2005–2015].

I Contour integral+H matrices for matrix functions [Gavrilyuk et
al.’2002].

I HODLR for approximating frontal matrices in sparse direct fact of
3D [Aminfar et al.’2014].

I HSS in sparse direct fact [Xiaoye Sherry Li and
collaborators’2011–2015].

I H matrix approximation of BEM matrices
[Hackbusch/Sauter/...’1990ies].

I . . .

32

Other applications

I H matrices for fast sparse covariance matrix estimation
[Ballani/DK’2014, Greengard et al.’2014].

I Block low-rank approximation of kernel matrices
[Si/Hsieh/Dhillon’2014, Wang et al.’2015].

I H2 matrix approximations for ensemble Kalman filters [Li et
al.’2014].

I Clustered low-rank approximation of graphs
[Savas/Dhillon’2011].

I . . .

33

