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What is a tensor?
Tensor is a multi-dimensional array of numbers.

A d-th order tensor X of size n1 × n2 × · · · × nd is a d-dimensional
array with entries

Xi1,i2,...,id , iµ ∈ {1, . . . ,nµ} for µ = 1, . . . ,d .

X ∈ Rn1×n2×···×nd .

Multi-index notation:

I = {1, . . . ,n1} × {1, . . . ,n2} × · · · × {1, . . . ,nd}.

Then i ∈ I is a tuple of d indices:

i = (i1, i2, . . . , id ).

Allows to write entries of X as Xi for i ∈ I.



Tensors from multivariate functions

Discretization of function f (ξ1, . . . , ξd )
on hypercube tensor of order d



High-dimensional elliptic PDEs: 3D model problem
I Consider

−∆u = f in Ω, u|∂Ω = 0,

on unit cube Ω = [0,1]3.
I Discretize on tensor grid.

Uniform grid for simplicity:

ξ(j)
µ = jh, h =

1
n + 1

for µ = 1,2,3.

I Approximate solution tensor U ∈ Rn×n×n:

Ui1,i2,i3 ≈ u
(
ξ

(i1)
1 , ξ

(i2)
2 , ξ

(i3)
3

)
.



High-dimensional elliptic PDEs: Arbitrary dimensions
Finite difference discretization of model problem

−∆u = f in Ω, u|∂Ω = 0

for Ω = [0,1]d takes the form

( d∑
j=1

I ⊗ · · · ⊗ I ⊗ A⊗ I ⊗ · · · ⊗ I
)

u = f.

To obtain such Kronecker structure in general:
I tensorized domain;
I highly structured grid;
I coefficients that can be written/approximated as sum of

separable functions.

Low-rank approximation of solution tensor:
Highly active research area.



Tensors from Taylor expansion

f : Rm → Rn sufficiently smooth:

f (x + h) = f (x) + f ′(x)h +
1
2

f ′′(x)[h,h] +
1
3!

f (3)(x)[h,h,h]

+
1
4!

f (4)(x)[h,h,h,h] +
1
5!

f (5)(x)[h,h,h,h,h] + · · ·

with multilinear map f (k) : Rm×···×m → Rn represented by
(k + 1)-dimensional tensor.

Low-rank approximation of f (k) used in:
I Model reduction and simulation of nonlinear circuits

[Liu/Daniel/Wong’2015]
I Approximate representation and computation of random fields in

UQ [DK/Kumar/Nobile/Tobler’2015], [Bonizzoni/Nobile/DK’2014].



Tensors from interconnected systems

subsystem

state

I Set of subsystems with finite number of states interacting with
each other.

I State of whole system characterized by combined states of
subsystems.

I d subsystems with n states nd states in total!

Low rank tensors in reliability analysis:
I Approximation of d-dimensional tensors containing joint

probability distributions.
I [Buchholz’2011], [DK/Macedo’2014].



Low-rank tensor techniques
I Emerged during last 5 – 10 years in numerical analysis.
I Successfully applied to:

I parameter-dependent / multi-dimensional integrals;
I electronic structure calculations: Hartree-Fock / DFT;
I stochastic and parametric PDEs;
I high-dimensional Boltzmann / chemical master / Fokker-Planck /

Schrödinger equations;
I micromagnetism;
I rational approximation problems;
I computational homogenization;
I computational finance;
I multivariate regression and machine learning;
I queuing models;
I . . .

I For references on these applications, see
I W. Hackbusch (2012). Tensor Spaces and Numerical Tensor

Calculus, Springer.
I L. Grasedyck, DK, Ch. Tobler (2013). A literature survey of low-

rank tensor approximation techniques. GAMM-Mitteilungen, 36(1).



Rank of a tensor
Rank-1 tensor = outer product of vectors:

X = a ◦ b ◦ c.

CANDECOMP/PARAFAC (CP) decomposition =
(seemingly) natural extension:

X = a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2 + · · ·+ ar ◦ br ◦ cr .

c1

a1

b1

cr

ar

br

X



CP decomposition
I CP decomposition offers low data-complexity; for constant r :

linear complexity in d .

Theoretical issues:

For tensors of order d ≥ 3:
I tensor rank r is not upper

semi-continuous 

lack of closedness

I successive rank-1 approximations fail
I all algorithms based on optimization

techniques (ALS, Gauss-Newton)
Picture taken from [Kolda/Bader’2009].Practical issues:

I No SVD-based compression possible.
I CP ignores locality of interactions!



SVD-based formats
Aggregate interconnected system into two sub-systems
=̂ matricization of tensor X .

n1 · · · nk

nk+1 · · · nd

Aggregation of 1, ..., k , and k + 1, ...,d .



SVD-based formats

I Singular value decay of matricization for ’large overflow model’.
I First two systems mapped to rows⇒ Rn1n2×n3n4 matrix.
I n1 = n2 = n3 = n4 = 40, plot first 80 (from a total of 1600)

singular values.
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SVD-based formats

Low-rank approximation of matricization:

n1 · · · nk

nk+1 · · · nd

≈

Insufficient for high dimensions.

Solution:
Consider tensor format based on aggregations into {1, ..., k} and
{k + 1, ...,d}, for all k = 1, ...,d .

 TT format.



Tensor network diagrams



Tensor network diagrams

I Introduced by Roger Penrose.
I Heavily used in quantum mechanics (spin networks).



This is a scalar γ ∈ R



This is a vector x ∈ Rn



These are two vectors x , y ∈ Rn



This is the inner product between x , y ∈ Rn

〈x , y〉 =
n∑

i=1

xiyi



These are two matrices A,B



This is the matrix product C = AB

Cij =
r∑

k=1

Aik Bkj



This is the matrix product C = UΣV T

Cij =
r∑

k=1

r∑
`=1

Uik Σk`Vj`

If r � n: Implicit representation of C via smaller matrices U,V ,Σ.



This is a tensor X of order 3



This is a tensor X of order 3 in Tucker decomposition

Xijk =

r1∑
`1=1

r2∑
`2=1

r3∑
`3=1

C`1`2`3Ui`1Vj`2Wk`3

Implicit representation of X via
I r1 × r2 × r3 core tensor C
I n1 × r1 matrix U spans first mode
I n2 × r2 matrix V spans second mode
I n3 × r3 matrix W spans third mode.



Tucker decomposition & multilinear rank

Reshape tensor into matrix by slicing, e.g. for first dimension:

X =  X(1) = ∈ Rn1×(n2·n3)

Multilinear rank of tensor X ∈ Rn1×n2×n3 defined by tuple

r = (r1, r2, r3), with ri = rank
(
X(i)
)
.

X =
U

W

V

C

Representation of rank-r-tensor:
Tucker decomposition:

X = C ×1 U ×2 V ×3 W

U ∈ Rn1×r1 , V ∈ Rn2×r2 , W ∈ Rn3×r3 , and
core tensor C ∈ Rr1×r2×r3



Six-dimensional tensor X in TT format

I X implicitly represented by four r × n × r tensors and two n × r
matrices

I Quantum mechanics: MPS (matrix product states)
I Matrix-based tensor formats introduced in numerical analysis by

Grasedyck, Hackbusch, Kühn, Oseledets, Tyrtishnikov.



Six-dimensional tensor X in TT format

This partition corresponds to low-rank factorization

X (1,2,3) = UV T , X (1,2,3) ∈ Rn1n2n3×n4n5n6 , U ∈ Rn1n2n3×r3 , V ∈ Rn4n5n6×r3

X (1,2,3) is matricization of X :

Merge multi-indices (1,2,3) into row indices and
multi-indices (4,5,6) into column indices

The ranks of X (1,...,µ) for µ = 1, . . . ,d − 1 are the TT ranks of X .



Inner product of two tensors in TT format

I Carrying out contractions requires O(dnr4) instead of O(nd )
operations for tensors of order d .



Operations with tensors in TT format
Easy:

I inner product, 2-norm
I multiplication with Kronecker structured A
I recompression/truncation
I (partial) contractions
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Hard:
I almost everything else



Operations with tensors in TT format
Easy:

I inner product, 2-norm
I multiplication with Kronecker structured A
I recompression/truncation
I (partial) contractions

Hard:
I almost everything else

2 classes of algorithms for solving (linear algebra) problems:
I iterate and truncate
I constrain and optimize

All under the assumption that ranks stay small!



TT format for function-related tensors
I When to expect good low-rank approximations?

I Approximation error from separation wrt to {x1, . . . , xa}:

f (x1, . . . , xa, xa+1, . . . , xd ) ≈
r∑

k=1

gk (x1, . . . , xa)hk (xa+1, . . . , xd )

for a = 1, . . . ,d − 1.
I For analytic functions

error . exp(−rmax{1/a,1/(d−a)}).

I [Temlyakov’1992, Uschmajew/Schneider’2013]: For f ∈ Bs,mix

error . r−2s(log r)2s(max{a,d−a}−1).

Smoothness is neither sufficient nor necessary for high dimensions!



ALS-based algorithms



2D eigenvalue problem
I −4u(x) + V (x)u = λu(x) in Ω = [0,1]× [0,1]

with Dirichlet b.c. and Henon-Heiles potential V
I Regular discretization
I Reshaped ground state into matrix

Ground state Singular values
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Rayleigh quotients wrt low-rank matrices
Consider symmetric n2 × n2 matrix A. Then

λmin(A) = min
x 6=0

〈x ,Ax〉
〈x , x〉

.

We now...
I reshape vector x into n × n matrix X ;
I reinterpret Ax as linear operator A : X 7→ A(X ).



Rayleigh quotients wrt low-rank matrices
Consider symmetric n2 × n2 matrix A. Then

λmin(A) = min
X 6=0

〈X ,A(X )〉
〈X ,X 〉

with matrix inner product 〈·, ·〉. We now...
I restrict X to low-rank matrices.



Rayleigh quotients wrt low-rank matrices
Consider symmetric n2 × n2 matrix A. Then

λmin(A)≈ min
X=UV T 6=0

〈X ,A(X )〉
〈X ,X 〉

.

I Approximation error governed by low-rank approximability of X .
I Solved by Riemannian optimization techniques or ALS.



ALS
ALS for solving

λmin(A)≈ min
X=UV T 6=0

〈X ,A(X )〉
〈X ,X 〉

.

Initially:
I fix target rank r
I U ∈ Rm×r ,V n×r randomly, such that V is ONB

λ̃− λ = 6× 103

residual = 3× 103



ALS
ALS for solving

λmin(A)≈ min
X=UV T 6=0

〈X ,A(X )〉
〈X ,X 〉

.

Fix V , optimize for U.

〈X ,A(X )〉 = vec(UV T )TA vec(UV T )

= vec(U)T (V ⊗ I)TA(V ⊗ I)vec(U)

 Compute smallest eigenvalue of reduced matrix (rn × rn) matrix

(V ⊗ I)TA(V ⊗ I).

Note: Computation of reduced matrix benefits from Kronecker
structure of A.



ALS
ALS for solving

λmin(A)≈ min
X=UV T 6=0

〈X ,A(X )〉
〈X ,X 〉

.

Fix V , optimize for U.

λ̃− λ = 2× 103

residual = 2× 103



ALS
ALS for solving

λmin(A)≈ min
X=UV T 6=0

〈X ,A(X )〉
〈X ,X 〉

.

Orthonormalize U, fix U, optimize for V .

〈X ,A(X )〉 = vec(UV T )TA vec(UV T )

= vec(V T )(I ⊗ U)TA(I ⊗ U)vec(V T )

 Compute smallest eigenvalue of reduced matrix (rn × rn) matrix

(I ⊗ U)TA(I ⊗ U).

Note: Computation of reduced matrix benefits from Kronecker
structure of A.



ALS
ALS for solving

λmin(A)≈ min
X=UV T 6=0

〈X ,A(X )〉
〈X ,X 〉

.

Orthonormalize U, fix U, optimize for V .

λ̃− λ = 1.5× 10−7

residual = 7.7×10−3



ALS
ALS for solving

λmin(A)≈ min
X=UV T 6=0

〈X ,A(X )〉
〈X ,X 〉

.

Orthonormalize V , fix V , optimize for U.

λ̃− λ = 1× 10−12

residual = 6× 10−7



ALS
ALS for solving

λmin(A)≈ min
X=UV T 6=0

〈X ,A(X )〉
〈X ,X 〉

.

Orthonormalize U, fix U, optimize for V .

λ̃− λ = 7.6× 10−13

residual = 7.2×10−8



ALS for TT format

Originates from quantum mechanics = one-site DMRG.

Goal:
min

{ 〈X ,A(X )〉
〈X ,X〉

: X ∈Mr, X 6= 0
}

Mr =

ALS: Choose one node t , fix all other nodes, set new tensor at node t
to minimize Rayleigh quotient 〈X ,A(X )〉

〈X ,X〉 . This is done for all nodes (a
sweep), and sweeps are continued until convergence.



Numerical Experiments - Sine potential, d = 10

ALS
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Size = 12810 ≈ 1021. Maximal TT rank 40.



Numerical Experiments - Henon-Heiles, d = 20

ALS
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Size = 12820 ≈ 1042. Maximal TT rank 40.



Numerical Experiments - 1/‖ξ‖2 potential, d = 20

ALS
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Size = 12820 ≈ 1042. Maximal TT rank 30.



Manifold-based algorithms



Robust low-rank tensor completion

minimize
X

f (X ) :=
1
2
‖PΩ(X −A)‖2

subject to X ∈Mr

Applications:
I Completion of multidimensional data,

e.g. hyperspectral images, CT Scans
I Compression of multivariate

functions with singularities
I Non-intrusive methods for stochastic

PDEs
I Context-aware recommender

systems
I . . .



Manifold of low-rank tensors

Mr :=
{
X ∈ Rn1×...×nd : rank(X ) = r

}
I Mr is a smooth manifold for TT format and its variants.

[Holtz/Rohwedder/Schneider’2012], [Uschmajew/Vandereycken’2012]

I Riemannian with metric induced by standard inner product
〈X ,Y〉 = 〈X(1),Y(1)〉 (sum of element-wise product)

Manifold structure used in
I dynamical low-rank approximation

[Koch/Lubich’2010], [Arnold/Jahnke’2012],
[Lubich/Rohwedder/Schneider/Vandereycken’2012],
[Khoromskij/Oseledets/Schneider’2012], . . .

I best multilinear approximation [Eldén/Savas’2009], [Ishteva/Absil/Van
Huffel/De Lathauwer’2011], [Curtef/Dirr/Helmke’2012]

I robust tensor completion [DK/Steinlechner/Vandereycken’2013]



Riemannian optimization in a nutshell

I optimize in direction of Riemannian gradient
I combine different directions using vector

transport

Retraction Vector transport



Geometric nonlinear CG for tensor completion

Input: Initial guess X0 ∈Mr.
η0 ← −grad f (X0)
α0 ← argminα f (X0 + αη0)
X1 ← RX0 (α0η0)

for i = 1,2, . . . do
Compute gradient:
ξi ← grad f (Xi )
Conjugate direction by PR+ updating rule:
ηi ← −ξi + βiTXi−1→Xi f (ηi−1)
Initial step size from linearized line search:
αi ← argminα f (Xi + αηi )
Armijo backtracking for sufficient decrease:
Find smallest integer m ≥ 0 such that
f (Xi )− f (RXi (2

−mαiηi )) ≥ −1 · 10−4〈ξi ,2−mαiηi〉
Obtain next iterate:
Xi+1 ← RXi (2

−mαiηi )
end for Cost/iteration: O(nrd + |Ω|rd−1) ops.



Reconstruction of CT Scan
199× 199× 150 tensor from scaled CT data set “INCISIX”,
(taken from OSIRIX MRI/CT data base
[www.osirix-viewer.com/datasets/])

Slice of original tensor HOSVD approx. of rank 21

Sampled tensor (6.7%) Low-rank completion of rank 21

Compares very well with existing results w.r.t. low-rank recovery and
speed, e.g., [Gandy/Recht/Yamada/’2011].



Hyperspectral Image
Set of photographs, (204× 268 px) taken across a large range of
wavelengths. 33 samples from ultraviolet to infrared [Image data:
Foster et al.’2004]
Stacked into a tensor of size 204× 268× 33

Completed Tensor, 16th Slice
Final Rank is k = [50 50 6]

10% of the Original Hyperspectral Imega Tensor, 16th Slice
Size of Tensor is [204, 268, 33]

Here: Only 10% of entries known; [Signoretti et al.’2011] use 50%.



How many samples do
we need?

Matrix case:
O(n · logβ n) samples suffice!
[Candès/Tao’2009]
⇒ Completion of tensor by
applying matrix completion to
matricization: O(n2 log(n)). Gives
upper bound!

Tensor case:
Certainly: |Ω| � O(n2)
In all cases of convergence
 exact reconstruction.

Conjecture: |Ω| = O(n · logβ n)
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Conclusions and Outlook
I Scientific computing with low-rank tensors rapidly evolving field

and highly technical.
I Low-rank tensors successfully solve certain classes of

high-dimensional problems.
I Precise scope of applications far from clear; many applications

remain to be explored. More analysis needed!

Software packages:
I MATLAB: Tensor toolbox, N-way toolbox, Tensorlab, TT-toolbox,
htucker

I Python: ttpy
I C/C++: ALPS, TensorCalculus library
I Julia: TensorOperations.jl
I . . .


