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Introduction
I Limitations of (approximate) sparsity
I HODLR for (tridiagonal)−1

I HSS for (tridiagonal)−1
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Sparse matrices
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I Cholesky factor (nearly) inherits sparsity.
I Look for nothing else when solving Ax = b for matrices A from

2D FE or FD discretizations.
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Limitations of sparsity

Sparse factorizations are of limited use when:
I The matrix A itself is full. Examples:

I nonlocal operators: BEM, fractional PDEs;
I nonlocal basis functions (Trefftz-like methods).

I A−1 is explicitly needed. Examples:
I Inverse covariance matrix estimation;
I Matrix iterations for computing f (A), for example sign function

iteration;
I diag(A−1) in electronic structure analysis.

I Cholesky/LU factors of (reordered) A have too much fill-in:
I FE discretizations of 3D PDEs;
I “random” sparsity.

Does approximate sparsity help?
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A tridiagonal matrix

A = (n + 1)2


2 −1

−1 2
. . .

. . . . . . −1
−1 2

+ σ(n + 1)2In,

I σ ≥ 0 is chosen to control κ(A) = ‖A‖2‖A−1‖2.
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Inverse of a tridiagonal matrix
Approximate sparsity of A−1 for n = 50 and different values of σ:

(a) σ = 4, κ(A) ≈ 2 (b) σ = 1, κ(A) ≈ 5 (c) σ = 0, κ(A) ≈ 103

In accordance with result by [Demko et al.’1984]:

∣∣[A−1]ij
∣∣ ≤ C

(√
κ− 1√
κ+ 1

)2|i−j|

, C = max
{
λ−1

min, (2λmax)−1(1+
√
κ(A))2}.

See also [Benzi/Razouk’2007].
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Inverse of a tridiagonal matrix

I Idea: Exploit data-sparsity instead of sparsity.
I Low rank: n × n matrix M with rank r � n can be represented

with 2nr parameters: M = BCT .
I But: (tridiagonal)−1 does not have low rank need for

partitioning.

Assume A is tridiagonal spd and partition with A11 ∈ Rn1×n1 ,
A22 ∈ Rn2×n2 :

A =

(
A11 0
0 A22

)
− an1,n1+1

(
en1

−e1

)(
en1

−e1

)T

.
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Inverse of a tridiagonal matrix

SMW implies

A−1 =

(
A−1

11 0
0 A−1

22

)
+

an1,n1+1

1 + eT
n1

A−1
11 en1 + eT

1 A−1
22 e1

(
w1
w2

)(
w1
w2

)T

,

with w1 = A−1
11 en1 and w2 = −A−1

22 e1.

I Off-diagonal blocks of A−1 have rank at most 1.
I But: A11 and A22 are still large!
I  hierarchical partitioning.
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Inverse of a tridiagonal matrix: Hierarchical partitioning
Suppose n is integer multiple of 4, partition

A =


A(2)

11 A(2)
12

A(2)
21 A(2)

22

A12

A21
A(2)

33 A(2)
34

A(2)
43 A(2)

44

 ,

A−1 =


B(2)

11 B(2)
12

B(2)
21 B(2)

22

B12

B34
B(2)

33 B(2)
34

B(2)
43 B(2)

44

 ,

such that A(2)
ij ,B

(2)
ij ∈ Rn/4×n/4  all off-diagonal blocks have rank 1.

Continuing recursively for n = 2k :

2n/2 + 4n/4 + · · ·+ 2k n/2k + n = n log2 n + O(n)

storage for A−1.
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Inverse of a tridiagonal matrix: Nested bases

Goal: Remove log-factor in n log2 n.

Let U(2)
j ∈ Rn/4×2, j = 1, . . . ,4, be orthonormal bases such that

span
{

(A(2)
jj )−1e1, (A

(2)
jj )−1en/4

}
⊆ range(U(2)

j ).

Applying SMW to A11 =

(
A(2)

11 A(2)
12

A(2)
21 A(2)

22

)
shows

A−1
11 e1 ∈ range

(
U(2)

1 0
0 U(2)

2

)
, A−1

11 en/2 ∈ range

(
U(2)

1 0
0 U(2)

2

)
.

Similarly,

A−1
22 e1 ∈ range

(
U(2)

3 0
0 U(2)

4

)
, A−1

22 en/2 ∈ range

(
U(2)

3 0
0 U(2)

4

)
.
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Inverse of a tridiagonal matrix: Nested bases
If we let Uj ∈ Rn/2×2, j = 1,2, be orthonormal basis such that

span
{

A−1
jj e1,A−1

jj en/2

}
⊆ range(Uj ),

then there exist Xj ∈ R4×2 s.t. Uj =

(
U(2)

2j−1 0
0 U(2)

2j

)
Xj .

I no need to store the bases U1,U2 ∈ Rn/2×2 explicitly
I availability of U(2)

j and the small matrices X1,X2 suffices
Summary: Can represent A−1 as B(2)

11 U(2)
1 S(2)

12 (U(2)
2 )T

U(2)
2 (S(2)

12 )T (U(2)
1 )T B(2)

22

U1S12UT
2

U2ST
12UT

1
B(2)

33 U(2)
3 S(2)

34 (U(2)
4 )T

U(2)
4 (S(2)

34 )T (U(2)
3 )T B(2)

44


for some matrices S12,S

(2)
ij ∈ R2×2. Storage requirements:

4× 2n/4︸ ︷︷ ︸
for U(2)

j

+ 2× 8︸ ︷︷ ︸
for Xj

+ (2 + 1)× 4︸ ︷︷ ︸
for S12,S

(2)
12 ,S

(2)
34

.

n = 2k  O(n) total storage for A−1.
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Literature landscape of hierarchical low-rank
structures

Without nested bases:
I HODLR: Aminfar, Ambikasaran, Darve, Greengard, Hogg,

O’Neil, . . .
I H-matrices: Bebendorf, Grasedyck, Hackbusch, Khoromskij, . . .
I Mosaic-Skeleton approximations: Tyrtyshnikov and collaborators

With nested bases:
I Semi-separable / quasi-separable matrices: Lots of classical and

modern literature, including Bini, Chandrasekaran, Dewilde,
Eidelman, Fasino, Gantmacher, Gemignani, Gohberg, Krein,
Olshevsky, Pan, Rozsa, Tyrtyshnikov, Zhlobich. See survey
papers and books by Vandebril/Van Barel/Mastronardi.

I HSS matrices: Chandrasekaran, Greengard, Martinsson,
Rokhlin, Xia, Zorin, . . .

I H2-matrices: Börm, Hackbusch, Mach, . . .

Note: Red items not covered in this lecture.
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Low-rank approximation
I SVD and best low-rank approximation
I Stability of SVD and low-rank approximation
I Algorithms: SVD, Lanczos, ACA, Randomized
I A priori approximation results
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SVD
Theorem (SVD). Let A ∈ Rm×n with m ≥ n. Then there are
orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV T , with Σ =


σ1

. . .
σn

0

 ∈ Rm×n

and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

I m ≥ n for notational convenience only.
I MATLAB: [U,S,V] = svd(A,’econ’) computes economic

SVD with O(mn2) ops.
I Pay attention to roundoff error: semilogy(svd(hilb(100)))

vs. exponential decay established by [Beckermann’2000].
I Sometimes more accuracy possible: [DGESVD’1999],

[Drmač/Veselić’2007].
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SVD: low-rank approximation

Consider k < n and let

Uk :=
(
u1 · · · uk

)
, Σk := diag(σ1, . . . , σk ), Vk :=

(
u1 · · · uk

)
.

Then
Tk (A) := Uk Σk Vk

has rank at most k . For any unitarily invariant norm ‖ · ‖:

‖Tk (A)− A‖ =
∥∥diag(σk+1, . . . , σn)

∥∥
In particular, for spectral norm and the Frobenius norm:

‖A− Tk (A)‖2 = σk+1, ‖A− Tk (A)‖F =
√
σ2

k+1 + · · ·+ σ2
n .
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SVD: best low-rank approximation

Theorem (Schmidt-Mirsky). Let A ∈ Rm×n. Then

‖A− Tk (A)‖ = min
{
‖A− B‖ : B ∈ Rm×n has rank at most k

}
holds for any unitarily invariant norm ‖ · ‖.

Proof for ‖ · ‖2: For any B ∈ Rm×n of rank ≤ k , null space kernel(B)
has dimension ≥ n − k . Hence, ∃w ∈ kernel(B) ∩ range(Vk+1) with
‖w‖2 = 1. Then

‖A− B‖2
2 ≥ ‖(A− B)w‖2

2 = ‖Aw‖2
2 = ‖AVk+1V T

k+1w‖2
2

= ‖Uk+1Σk+1V T
k+1w‖2

2

=
r+1∑
j=1

σj |vT
j w |2 ≥ σk+1

r+1∑
j=1

|vT
j w |2 = σk+1.
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Stability of SVD

Weyl’s inequality (see, e.g., [Horn/Johnson’2013]):

σi+j−1(A + E) ≤ σi (A) + σj (E), 1 ≤ i , j ≤ n, i + j ≤ q + 1.

Setting j = 1 

σi (A + E) ≤ σi (A) + ‖E‖2, i = 1, . . . ,n.

Singular vectors tend to be less stable! Example:

A =

(
1 0
0 1 + ε

)
, E =

(
0 ε
ε −ε

)
.

I A has right singular vectors
(

1
0

)
,

(
0
1

)
.

I A + E has right singular vectors 1√
2

(
1
1

)
, 1√

2

(
1
−1

)
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Stability of SVD

Theorem (Wedin). Let k < n and assume

δ := σk (A + E)− σk+1(A) > 0.

Let Uk/Ũk/Vk/Ṽk denote subspaces spanned by first k left/right
singular vectors of A / A + E . Then√∥∥ sin Θ(Uk , Ũk )

∥∥2
F +

∥∥ sin Θ(Vk , Ṽk )
∥∥2

F ≤
√

2
‖E‖F

δ
. (1)

Θ: diagonal matrix containing canonical angles between two
subspaces.

I Perturbation on input multiplied by δ−1 ≈ [σk (A)− σk+1(A)]−1.
I Bad news?
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Stability of low-rank approximation
Lemma (folklore / Hackbusch). Let A ∈ Rm×n have rank ≤ k . Then

‖Tk (A + E)− A‖ ≤ C‖E‖

holds with C = 2 for any unitarily invariant norm ‖ · ‖. For the
Frobenius norm, the constant can be improved to C = (1 +

√
5)/2.

Proof. Schmidt-Mirsky gives ‖Tk (A + E)− (A + E)‖ ≤ E . Triangle
inequality implies

‖Tk (A + E)− (A + E) + (A + E)− A‖ ≤ 2‖E‖.

See [Hackbusch’2014] for second part.

Implication for general matrix A:

‖Tk (A + E)− Tk (A)‖ =
∥∥Tk
(
Tk (A) + (A− Tk (A)) + E

)
− Tk (A)

∥∥
≤ C‖(A− Tk (A)) + E‖ ≤ C(‖A− Tk (A)‖+ ‖E‖).

Perturbations on the level of truncation error pose no danger.
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Stability of low-rank approximation: Application

Consider partitioned matrix

A =

(
A11 A12
A21 A22

)
, Aij ∈ Rmi×nj ,

and desired rank k ≤ mi ,nj . Let ε := ‖Tk (A)− A‖.

Eij := Tk (Aij )− Aij ⇒ ‖Eij‖ ≤ ε.

By stability of low-rank approximation,∥∥∥∥Tk

(
Tk (A11) Tk (A12)
Tk (A21) Tk (A22)

)
− A

∥∥∥∥
F

=

∥∥∥∥Tk

(
A +

(
E11 E12
E21 E22

))
− A

∥∥∥∥
F
≤ Cε,

with C = 3
2 (1 +

√
5).
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Algorithms for low-rank approximation

Three main classes of algorithms:
1. All entries of A (cheaply) available and min{m,n} small svd.

Related situation: A large but has small rank.
2. Large m,n and matvec possible 

Lanczos-based methods and randomized algorithms.
3. Entries of A expensive to compute adaptive cross

approximation and its cousins.
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SVD for recompression
SVD frequently used for recompression. Suppose that

A = BCT , with B ∈ Rm×K ,C ∈ Rn×K , (2)

where K > k , but still (much) smaller than m,n.
Typical example: Sum of J matrices of rank k :

A =
J∑

j=1

Bi︸︷︷︸
∈Rm×k

Ci︸︷︷︸
∈Rn×k

T
=
(
B1 · · · BJ

)︸ ︷︷ ︸
Rm×Jk

(
C1 · · · CJ

)︸ ︷︷ ︸
Rm×Jk

T
. (3)

Algorithm to recompress A:
1. Compute (economic) QR decomps B = QBRB and C = QCRC .
2. Compute truncated SVD Tk (RBRT

C ) = Ũk Σk Ṽk .

3. Set Uk = QBŨk , Vk = QCṼk and return Tk (A) := Uk Σk V T
k .

Returns best rank-k approximation of A with O((m + n)K 2) ops.
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Lanczos for low-rank approximation

Normalized starting vector u1. Consider Krylov subspaces

KK+1(AAT ,u1) = span
{

u1,AAT u1, . . . , (AAT )K u1
}
,

KK+1(AT A, v1) = span
{

v1,AT Av1, . . . , (AT A)K v1
}
,

with v1 = AT u1/‖AT u1‖2.

Two-sided Lanczos process
1: ṽ ← AT u1, α1 ← ‖ṽ‖2, v1 ← ṽ/α1.
2: for j = 1, . . . ,K do
3: ũ ← Avj − αjuj , βj+1 ← ‖ũ‖2, uj+1 ← ũ/βj+1.
4: ṽ ← AT uj+1 − βj+1vj , αj+1 ← ‖ṽ‖2, vj+1 ← ṽ/βj+1.
5: end for

I Returns orthonormal bases UK+1 ∈ Rm×(K+1), VK+1 ∈ Rn×(K+1)

of KK+1(AAT ,u1), KK+1(AT A, v1)

I Reorthogonalization assumed.
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Lanczos for low-rank approximation

Collect scalars from Gram-Schmidt into bidiagonal matrix:

BK =


α1
β2 α2

. . . . . .
βK αK

 . (4)

 two-sided Lanczos decomposition

AT UK = VK BT
K , AVK = UK BK + βK+1uK+1eT

K ,

Assuming K ≥ k :
How to extract rank-k approximation to A?
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Lanczos for low-rank approximation
I Do not use svds, eigs, PROPACK, or anything else that aims at

computing singular vectors!

[Simon/Zha’2000]:

Tk (A) ≈ AK := UKTk (BK )V T
K .

Cheap error estimate in Frobenius norm:
Lemma.

‖AK − A‖F ≤
√
σk+1(BK )2 + · · ·+ σK (BK )2 + ωK .

where ω2
K = ‖A‖2

F − α2
1
∑K

j=2(α2
j + β2

j ).

Proof. By the triangular inequality

‖AK − A‖F ≤
∥∥UK (Tk (BK )− BK )V T

K + UK BK V T
K − A

∥∥
F

≤
√
σk+1(BK )2 + · · ·+ σK (BK )2 + ‖UK BK V T

K − A
∥∥

F .

‖A‖2
F = ‖BK‖2

F + ‖UK BK V T
K − A

∥∥2
F because of orthogonality.
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Lanczos for low-rank approximation

Two 100× 100 matrices:
(a) The Hilbert matrix A defined by A(i , j) = 1/(i + j − 1).
(b) The matrix A defined by A(i , j) = exp(−γ|i − j |/n) with γ = 0.1.

0 20 40 60 80 100
10

−20

10
−10

10
0

10
10

 

 
Computed omega (1)
Computed omega (2)
Best approximation

0 20 40 60 80 100
10

−4

10
−2

10
0

10
2

 

 
Computed omega (1)
Computed omega (2)
Best approximation

1. Excellent convergence.
2. Formula for ωK from lemma suffers from cancellation.
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Lanczos for low-rank approximation

Two open problems:
1. Convergence theory that explains excellent convergence.

Specifically, show that

‖A2k − A‖F ≤ 2‖Tk (A)− A‖F

under mild conditions on u1. (Hint: Do not proceed via
convergence of singular vectors.)

2. Derive cheap, accurate, and reliable error estimates for
‖ · ‖F , ‖ · ‖2.
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Adaptive Cross Approximation (ACA)
Idea: Construct low-rank approximation from rows and columns of A.

I Which columns and rows? How?

Theorem (Goreinov/Tyrtyshnikov/Zamarshkin’1997).
Let ε := σk+1(A). Then there exist row indices r ⊂ {1, . . . ,m} and
column indices c ⊂ {1, . . . ,n} and a matrix S ∈ Rk×k such that

‖A− A(:, c)SA(r , :)‖2 ≤ ε(1 + 2
√

k(
√

m +
√

n)).

I Consider k dominant left/right singular vectors Uk ,Vk . Proof
proceeds by showing that ∃submatrices of Uk ,Vk such that

σmin(Uk (c, :)) ≥
(√

k(m − k) + 1
)−1/2

σmin(Vk (r , :)) ≥
(√

k(n − k) + 1
)−1/2

Choice of S not difficult but technical, and involves full matrix A.
I By no means constructive.
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Adaptive Cross Approximation (ACA)

Choice of S = (A(r , c))−1 in ACA Remainder term

R := A− A(:, c)(A(r , c))−1A(r , :)

has zero rows at r and zero columns at c.

Cross approximation:
1 3 6

2

4

7

1 3 6
2
4
7

≈
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Adaptive Cross Approximation (ACA)

Another brave attempt to find a good cross..
Theorem (Goreinov/Tyrtyshnikov’2001). Suppose that

A =

[
A11 A12
A21 A22

]
where A11 ∈ Rk×k has maximal volume (i.e., max abs(det)) among
all k × k submatrices of A. Then

‖A22 − A21A−1
11 A12‖C ≤ (k + 1)σk+1(A),

where ‖M‖C := maxi,j |M(i , j)|

Unfortunately, finding A11 is NP hard [Çivril/Magdon-Ismail’2013].
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Adaptive Cross Approximation (ACA)
Proof of theorem for (k + 1)× (k + 1) matrices. Consider

A =

(
A11 a12
a21 a22

)
, A11 ∈ Rk×k , a12 ∈ Rk×1, a21 ∈ R1×k , a22 ∈ R,

with invertible A11. Using the Schur complement,

|(A−1)k+1,k+1| =
1

|a22 − a12A−1
11 a21|

=
|det A|
|det A11|

.

If |det A11| is maximal among all possible selections of k × k
submatrices of A |(A−1)k+1,k+1| = ‖A−1‖C := maxi,j

∣∣(A−1)ij
∣∣.

σk+1(A)−1 = ‖A−1‖2 = max
x

‖A−1x‖2

‖x‖2

≥ 1
k + 1

max
x

‖A−1x‖∞
‖x‖1

=
1

k + 1
‖A−1‖C

and thus

|a22 − a12A−1
11 a21| =

1
‖A−1‖C

≤ (k + 1)σk+1(A).
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Adaptive Cross Approximation (ACA)

ACA with full pivoting [Bebendorf/Tyrtyshnikov’2000]

1: Set R0 := A, r := {}, c := {}, k := 0
2: repeat
3: k := k + 1
4: (i∗, j∗) := arg maxi,j |Rk−1(i , j)|
5: r := r ∪ {i∗}, c := c ∪ {j∗}
6: δk := Rk−1(i∗, j∗)
7: uk := Rk−1(:, j∗), vk := Rk−1(i∗, :)T/δk
8: Rk := Rk−1 − uk vT

k
9: until ‖Rk‖F ≤ ε‖A‖F

I This is greedy for maxvol. (Proof on next slide.)
I Still too expensive.
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Adaptive Cross Approximation (ACA)

Lemma (Bebendorf’2000). Let rk = {i1, . . . , ik} and ck = {j1, . . . , jk}
be the row/column index sets constructed in step k of the algorithm.
Then

det(A(rk , ck )) = R0(i1, j1) · · ·Rk−1(ik , jk ).

Proof. From lines 7 and 8, it follows that the last column of A(rk , ck ) is
a linear combination of the columns of the matrix

Ãk := [A(rk , ck−1),Rk−1(rk , jk )] ∈ Rk×k ,

which implies det(Ãk ) = det(A(rk , ck )). However, Ãk (i , jk ) = 0 for all
i = i1, . . . , ik−1 and hence

det(Ãk ) = Rk−1(ik , jk ) det(A(rk−1, ck−1)).

Since det A(r1, c1) = A(i1, j1) = R0(i1, j1), the result follows by
induction.
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Adaptive Cross Approximation (ACA)

ACA with partial pivoting
1: Set R0 := A, r := {}, c := {}, k := 1, i∗ := 1
2: repeat
3: j∗ := arg maxj |Rk−1(i∗, j)|
4: δk := Rk−1(i∗, j∗)
5: if δk = 0 then
6: if #r = min{m,n} − 1 then
7: Stop
8: end if
9: else

10: uk := Rk−1(:, j∗), vk := Rk−1(i∗, :)T/δk
11: Rk := Rk−1 − uk vT

k
12: k := k + 1
13: end if
14: r := r ∪ {i∗}, c := c ∪ {j∗}
15: i∗ := arg maxi,i /∈r |uk (i)|
16: until stopping criterion is satisfied
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Adaptive Cross Approximation (ACA)

ACA with partial pivoting. Remarks:
I Rk is never formed explicitly. Entries of Rk are computed from

Rk (i , j) = A(i , j)−
k∑
`=1

u`(i)v`(j).

I Ideal stopping criterion ‖uk‖2‖vk‖2 ≤ ε‖A‖F elusive.
Replace ‖A‖F by ‖Ak‖F , recursively computed via

‖Ak‖2
F = ‖Ak−1‖2

F + 2
k−1∑
j=1

uT
k ujvT

j vk + ‖uk‖2
2‖vk‖2

2.
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Adaptive Cross Approximation (ACA)

Two 100× 100 matrices:
(a) The Hilbert matrix A defined by A(i , j) = 1/(i + j − 1).
(b) The matrix A defined by A(i , j) = exp(−γ|i − j |/n) with γ = 0.1.

5 10 15 20 25 30

10
−15

10
−10

10
−5

10
0

k

‖
A

−
Ã
‖
2
/
‖
A
‖
2

Hilbert matrix

 

 

Full pivoting
Partial pivoting
SVD

20 40 60 80 100
10

−6

10
−4

10
−2

10
0

k
‖
A

−
Ã
‖
2
/
‖
A
‖
2

Exponential matrix

 

 

Full pivoting
Partial pivoting
SVD

1. Excellent convergence for Hilbert matrix.
2. Slow singular value decay impedes partial pivoting.
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ACA is Gaussian elimination

We have

Rk = Rk−1 − δk Rk−1ek eT
k Rk−1 = (I − δk Rk−1ek eT

k )Rk−1 = Lk Rk−1,

where Lk ∈ Rm×m is given by

Lk =



1
. . .

1
0

`k+1,k 1
...

. . .
`m,k 1


, `i,k = −

eT
i Rk−1ek

eT
k Rk−1ek

.

for i = k + 1, . . . ,m.
Matrix Lk differs only in position (k , k) from usual lower triangular
factor in Gaussian elimination.
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Benefits from spd

For symmetric positive semi-definite matrix A ∈ Rn×n:
I SVD becomes spectral decomposition.
I Can replace two-sided Lanczos by standard Lanczos.
I Can use trace instead of Frobenius norm to control error.
I Choice of rows/columns, e.g., by largest diagonal element of Rk .
I ACA becomes

= Cholesky (with diagonal pivoting). Analysis in [Higham’1990].
= Nyström method [Williams/Seeger’2001].
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Randomized algorithms for low-rank approximation
Must read: Halko/Martinsson/Tropp’2010: Finding Structure with
Randomness...

Randomized Algorithm:
1. Choose standard Gaussian random matrix Ω ∈ Rn×k .
2. Perform block mat-vec Y = AΩ.
3. Compute (economic) QR decomposition Y = QR.
4. Form B = QT A.
5. Set Tk (A) ≈ Â := QTk (B)

Exact recovery: If A has rank k , we recover Â = A with probability 1.

40



Randomized algorithms for low-rank approximation
Must read: Halko/Martinsson/Tropp’2010: Finding Structure with
Randomness...

Randomized Algorithm:
1. Choose standard Gaussian random matrix Ω ∈ Rn×(k+p).
2. Perform block mat-vec Y = AΩ.
3. Compute (economic) QR decomposition Y = QR.
4. Form B = QT A.
5. Set Tk (A) ≈ Â := QTk (B)

HMT’2010: If A is a general matrix then choosing k + p = 2k yields

E‖A− Â‖2 ≤

(
2 + 4

√
2 min{m,n}

k − 1

)
σk+1.

Bound can be improved (dramatically) by performing a few steps of
subspace iteration on Y .
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Randomized algorithms for low-rank approximation

Two 100× 100 matrices:
(a) The Hilbert matrix A defined by A(i , j) = 1/(i + j − 1).

k = 5:
Exact p = 0 p = 1 p = 5

1.88×10−3 2.82×10−3 1.89×10−3 1.88×10−3

(b) The matrix A defined by A(i , j) = exp(−γ|i − j |/n) with γ = 0.1.
k = 40:

Exact p = 0 p = 10 p = 40 p = 80
1.45×10−3 5×10−3 4×10−3 1.6×10−3 1.45×10−3
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A priori approximation results

Need to know a priori which matrices admit good low-rank
approximations.

Why?

I Know which situations call for (hierarchical) low-rank
approximations.

I Drive clustering/partitioning of matrix.

Schmidt-Mirsky: Equivalently, establish (quick) decay of singular
values.

43



Singular values of random matrices

A = rand(200);
semilogy(svd(A))

A

50 100 150 200

50

100

150

200

Singular values

0 50 100 150 200
10

−2

10
−1

10
0

10
1

10
2

No reasonable low-rank approximation possible
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Singular values of smooth function

I Discretized smooth bivariate function.
I Arranged function values into a matrix.

Smooth function Singular values

0 100 200 300
10

−20

10
−15

10
−10

10
−5

10
0

Excellent rank-10 approximation possible
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Exceptional case: Singularities along coordinate axes
Rule of thumb: Smoothness helps, but not always needed.
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Discretization of bivariate function
I Bivariate function: f (x , y) :

[
xmin, xmax

]
×
[
ymin, ymax

]
→ R.

I Function values on tensor grid [x1, . . . , xn]× [y1, . . . , ym]:

F =


f (x1, y1) f (x1, y2) · · · f (x1, yn)
f (x2, y1) f (x2, y2) · · · f (x2, yn)

...
...

...
f (xm, y1) f (xm, y2) · · · f (xm, yn)


Basic but crucial observation: f (x , y) = g(x)h(y) 

F =

 g(x1)h(y1) · · · g(x1)h(yn)
...

...
g(xm)h(y1) · · · g(xm)h(yn)

 =

 g(x1)
...

g(xm)

 [ h(y1) · · · h(yn) ]

Separability implies rank 1.
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Separability and low rank
Approximation by sum of separable functions

f (x , y) = g1(x)h1(y) + · · ·+ gk (x)hk (y)︸ ︷︷ ︸
=:fk (x,y)

+ error,

or (not more generally)

f (x , y) =
k∑

j=1

sijgi (x)hj (y)

︸ ︷︷ ︸
=:fk (x,y)

+error

Define

Fk =

 fk (x1, y1) · · · fk (x1, yn)
...

...
fk (xm, y1) · · · fk (xm, yn)

.
Then Fk has rank ≤ k and ‖F − Fk‖F ≤

√
mn × error.

 σk+1(F ) ≤‖F − Fk‖2 ≤ ‖F − Fk‖F ≤
√

mn × error.

Semi-separable approximation implies low-rank approximation.
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Semi-separable approximation by Taylor
Example: 1D integral operator with shift-invariant kernel

f (x , y) :=

 g(x − y) if x > y ,
g(y − x) if y > x ,

0 otherwise,

with g(z) = log(z).

Taylor expansion of g around z0 > 0:

g(z) ≈ gk (z) :=
k−1∑
i=0

g(i)(z0)

i!
(z − z0)i .

 polynomial expansion of f around (x0, y0) with z0 = x0 − y0:

f (x , y) ≈ gk (x − y) =
k−1∑
i=0

k−1−i∑
j=0

(−1)j f (i+j)(x0 − y0)
(x − x0)i

i!
(y − y0)j

j!
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Semi-separable approximation by Taylor

Summary:(
discr. f

)
≈
(
discr. (x − x0)i)× (f (i+j)(x0 − y0)

)
×
(
discr. (y − y0)j)T

 rank-k approximation with approximation error governed by Tayor
remainder

|g(z)− gk (z)| ≤ max
ξ∈[a,b]

∣∣∣∣ f (k)(ξ)

k !
(z − z0)k

∣∣∣∣ ≤ 1
k

(
b − a

2a

)k

for all 0 < a ≤ z ≤ b with z0 = (a + b)/2.
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Semi-separable approximation by Taylor

Corollary. Consider real intervals Ix , Iy and 0 < η < 1 such that

diam(Ix ) + diam(Iy ) ≤ 2η · dist(Ix , Iy ).

Then
|f (x , y)− fk (x , y)| ≤ 1

k
ηk

Proof. For z = x − y with x ∈ Ix , y ∈ Iy , we have z ∈ [a,b] with

b − a
2a

=
diam(Ix ) + diam(Iy )

2dist(Ix , Iy )
≤ η.
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Semi-separable approximation by interpolation
Solution of approximation problem

f (x , y) = g1(x)h1(y) + · · ·+ gk (x)hk (y) + error.

by tensorized polynomial interpolation.

General construction:
1. Lagrange interpolation of f (x , y) in y -coordinate:

Iy [f ](x , y) =
k∑

j=1

f (x , θj )Lj (y)

with Lagrange polynomials Lj of degree k − 1 on Iy .

2. Interpolation of Iy [f ] in x-coordinate:

Ix [Iy [f ]](x , y) =
k∑

i,j=1

f (ξi , θj )Li (x)Lj (y).
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Semi-separable approximation by interpolation

Summary:(
discr. f

)
≈
(
discr. Li (x)

)
×
(
f (ξi , θj )

)
×
(
discr. Lj (y)

)T

 rank-k approximation with approximation error governed by

error ≤ ‖f − Ix [Iy [f ]]‖∞
= ‖f − Ix [f ] + Ix [f ]− Ix [Iy [f ]]‖∞
≤ ‖f − Ix [f ]‖∞ + ‖Ix‖∞‖f − Iy [f ]‖∞

with Lebesgue constant ‖Ix‖∞ ∼ log r when using Chebyshev
interpolation nodes.

Interpolation usually much better than Taylor [Börm’2010] 
η can be choosen smaller (roughly half) in adminissibility condition.
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Semi-separable approximation: further results

If we do not insist on polynomials:
I For f (x , y) = 1/(x − y) and similar functions, much better

approximation by sum of exponentials [Hackbusch’2010].
I [Temlyakov’1992, Uschmajew/Schneider’2013]:

sup
f∈Bs

inf
∥∥∥f (x , y)−

r∑
k=1

gk (x)hk (y)
∥∥∥

L2
∼ r−s,

with Sobolev space Bs of periodic functions with partial
derivatives up to order s.
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