Matrices with Hierarchical Low-Rank Structures

Daniel Kressner

Chair for Numerical Algorithms and HPC MATHICSE, EPFL daniel.kressner@epfl.ch

Contents

- Introduction
- Low-rank approximation
- ► HODLR / *H*-matrices
- ► HSS / *H*²-matrices

Introduction

- Limitations of (approximate) sparsity
- ► HODLR for (tridiagonal)⁻¹
- HSS for (tridiagonal)⁻¹

Sparse matrices

- Cholesky factor (nearly) inherits sparsity.
- Look for nothing else when solving Ax = b for matrices A from 2D FE or FD discretizations.

Limitations of sparsity

Sparse factorizations are of limited use when:

- ► The matrix *A* itself is full. Examples:
 - nonlocal operators: BEM, fractional PDEs;
 - nonlocal basis functions (Trefftz-like methods).
- A^{-1} is explicitly needed. Examples:
 - Inverse covariance matrix estimation;
 - Matrix iterations for computing f(A), for example sign function iteration;
 - diag (A^{-1}) in electronic structure analysis.
- Cholesky/LU factors of (reordered) A have too much fill-in:
 - FE discretizations of 3D PDEs;
 - "random" sparsity.

Does approximate sparsity help?

A tridiagonal matrix

$$A = (n+1)^{2} \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{pmatrix} + \sigma(n+1)^{2} I_{n},$$

• $\sigma \ge 0$ is chosen to control $\kappa(A) = ||A||_2 ||A^{-1}||_2$.

Inverse of a tridiagonal matrix

Approximate sparsity of A^{-1} for n = 50 and different values of σ :

In accordance with result by [Demko et al.'1984]:

$$\left| [\boldsymbol{A}^{-1}]_{ij} \right| \leq C \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{2|i-j|}, \quad C = \max\left\{ \lambda_{\min}^{-1}, (2\lambda_{\max})^{-1} (1 + \sqrt{\kappa(\boldsymbol{A})})^2 \right\}.$$

See also [Benzi/Razouk'2007].

Inverse of a tridiagonal matrix

- Idea: Exploit data-sparsity instead of sparsity.
- ► Low rank: $n \times n$ matrix M with rank $r \ll n$ can be represented with 2nr parameters: $M = BC^{T}$.
- ► But: (tridiagonal)⁻¹ does not have low rank → need for partitioning.

Assume A is tridiagonal spd and partition with $A_{11} \in \mathbb{R}^{n_1 \times n_1}$, $A_{22} \in \mathbb{R}^{n_2 \times n_2}$:

$$A = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} - a_{n_1,n_1+1} \begin{pmatrix} e_{n_1} \\ -e_1 \end{pmatrix} \begin{pmatrix} e_{n_1} \\ -e_1 \end{pmatrix}^{T}.$$

Inverse of a tridiagonal matrix

SMW implies

$$A^{-1} = \begin{pmatrix} A_{11}^{-1} & 0 \\ 0 & A_{22}^{-1} \end{pmatrix} + \frac{a_{n_1,n_1+1}}{1 + e_{n_1}^T A_{11}^{-1} e_{n_1} + e_1^T A_{22}^{-1} e_1} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}^T,$$

with $w_1 = A_{11}^{-1} e_{n_1}$ and $w_2 = -A_{22}^{-1} e_1$.

- Off-diagonal blocks of A^{-1} have rank at most 1.
- But: A₁₁ and A₂₂ are still large!
- ▶ ~→ hierarchical partitioning.

Inverse of a tridiagonal matrix: Hierarchical partitioning

Suppose *n* is integer multiple of 4, partition

such that $A_{ij}^{(2)}, B_{ij}^{(2)} \in \mathbb{R}^{n/4 \times n/4} \rightsquigarrow$ all off-diagonal blocks have rank 1. Continuing recursively for $n = 2^k$:

$$2n/2 + 4n/4 + \dots + 2^k n/2^k + n = n \log_2 n + O(n)$$

storage for A^{-1} .

Inverse of a tridiagonal matrix: Nested bases

Goal: Remove log-factor in
$$n \log_2 n$$
.
Let $U_j^{(2)} \in \mathbb{R}^{n/4 \times 2}$, $j = 1, ..., 4$, be orthonormal bases such that
 $\operatorname{span} \left\{ (A_{jj}^{(2)})^{-1} e_1, (A_{jj}^{(2)})^{-1} e_{n/4} \right\} \subseteq \operatorname{range}(U_j^{(2)}).$
Applying SMW to $A_{11} = \begin{pmatrix} A_{11}^{(2)} & A_{12}^{(2)} \\ A_{21}^{(2)} & A_{22}^{(2)} \end{pmatrix}$ shows
 $A_{11}^{-1} e_1 \in \operatorname{range} \begin{pmatrix} U_1^{(2)} & 0 \\ 0 & U_2^{(2)} \end{pmatrix}, \quad A_{11}^{-1} e_{n/2} \in \operatorname{range} \begin{pmatrix} U_1^{(2)} & 0 \\ 0 & U_2^{(2)} \end{pmatrix}.$
Similarly,

$$A_{22}^{-1}e_1 \in \text{range}\begin{pmatrix} U_3^{(2)} & 0\\ 0 & U_4^{(2)} \end{pmatrix}, \quad A_{22}^{-1}e_{n/2} \in \text{range}\begin{pmatrix} U_3^{(2)} & 0\\ 0 & U_4^{(2)} \end{pmatrix}.$$

Inverse of a tridiagonal matrix: Nested bases If we let $U_j \in \mathbb{R}^{n/2 \times 2}$, j = 1, 2, be orthonormal basis such that

$$\operatorname{span}\left\{A_{jj}^{-1}e_{1},A_{jj}^{-1}e_{n/2}\right\}\subseteq\operatorname{range}(U_{j}),$$

then there exist $X_j \in \mathbb{R}^{4 \times 2}$ s.t. $U_j = \begin{pmatrix} U_{2j-1}^{(2)} & 0 \\ 0 & U_{2j}^{(2)} \end{pmatrix} X_j.$

- ▶ no need to store the bases $U_1, U_2 \in \mathbb{R}^{n/2 \times 2}$ explicitly
- availability of $U_j^{(2)}$ and the small matrices X_1, X_2 suffices Summary: Can represent A^{-1} as

for some matrices $S_{12}, S_{ij}^{(2)} \in \mathbb{R}^{2 \times 2}$. Storage requirements:

$$\underbrace{4 \times 2n/4}_{\text{for } U_{j}^{(2)}} + \underbrace{2 \times 8}_{\text{for } X_{j}} + \underbrace{(2+1) \times 4}_{\text{for } S_{12}, S_{12}^{(2)}, S_{34}^{(2)}}.$$

 $n = 2^k \rightsquigarrow O(n)$ total storage for A^{-1} .

Literature landscape of hierarchical low-rank

structures

Without nested bases:

- ► HODLR: Aminfar, Ambikasaran, Darve, Greengard, Hogg, O'Neil, ...
- ► *H*-matrices: Bebendorf, Grasedyck, Hackbusch, Khoromskij, ...
- Mosaic-Skeleton approximations: Tyrtyshnikov and collaborators

With nested bases:

- Semi-separable / quasi-separable matrices: Lots of classical and modern literature, including Bini, Chandrasekaran, Dewilde, Eidelman, Fasino, Gantmacher, Gemignani, Gohberg, Krein, Olshevsky, Pan, Rozsa, Tyrtyshnikov, Zhlobich. See survey papers and books by Vandebril/Van Barel/Mastronardi.
- HSS matrices: Chandrasekaran, Greengard, Martinsson, Rokhlin, Xia, Zorin, ...
- ► *H*²-matrices: Börm, Hackbusch, Mach, ...

Note: Red items not covered in this lecture.

Low-rank approximation

- SVD and best low-rank approximation
- Stability of SVD and low-rank approximation
- Algorithms: SVD, Lanczos, ACA, Randomized
- A priori approximation results

SVD

Theorem (SVD). Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. Then there are orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\boldsymbol{T}}, \quad \text{with} \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \\ & 0 & \end{pmatrix} \in \mathbb{R}^{m \times n}$$

and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$.

- $m \ge n$ for notational convenience only.
- MATLAB: [U, S, V] = svd(A, 'econ') computes economic SVD with O(mn²) ops.
- Pay attention to roundoff error: semilogy(svd(hilb(100))) vs. exponential decay established by [Beckermann'2000].
- Sometimes more accuracy possible: [DGESVD'1999], [Drmač/Veselić'2007].

SVD: low-rank approximation

Consider k < n and let

$$U_k := (u_1 \quad \cdots \quad u_k), \quad \Sigma_k := \operatorname{diag}(\sigma_1, \ldots, \sigma_k), \quad V_k := (u_1 \quad \cdots \quad u_k).$$

Then

$$\mathcal{T}_k(A) := U_k \Sigma_k V_k$$

has rank at most *k*. For any unitarily invariant norm $\|\cdot\|$:

$$\|\mathcal{T}_k(\mathbf{A}) - \mathbf{A}\| = \|\operatorname{diag}(\sigma_{k+1}, \ldots, \sigma_n)\|$$

In particular, for spectral norm and the Frobenius norm:

$$\|\boldsymbol{A} - \mathcal{T}_k(\boldsymbol{A})\|_2 = \sigma_{k+1}, \qquad \|\boldsymbol{A} - \mathcal{T}_k(\boldsymbol{A})\|_F = \sqrt{\sigma_{k+1}^2 + \cdots + \sigma_n^2}$$

SVD: best low-rank approximation

Theorem (Schmidt-Mirsky). Let $A \in \mathbb{R}^{m \times n}$. Then $\|A - \mathcal{T}_k(A)\| = \min \{ \|A - B\| : B \in \mathbb{R}^{m \times n} \text{ has rank at most } k \}$ holds for any unitarily invariant norm $\|\cdot\|$.

Proof for $\|\cdot\|_2$: For any $B \in \mathbb{R}^{m \times n}$ of rank $\leq k$, null space kernel(B) has dimension $\geq n - k$. Hence, $\exists w \in \text{kernel}(B) \cap \text{range}(V_{k+1})$ with $\|w\|_2 = 1$. Then

$$\begin{split} \|A - B\|_{2}^{2} &\geq \|(A - B)w\|_{2}^{2} = \|Aw\|_{2}^{2} = \|AV_{k+1}V_{k+1}^{T}w\|_{2}^{2} \\ &= \|U_{k+1}\Sigma_{k+1}V_{k+1}^{T}w\|_{2}^{2} \\ &= \sum_{j=1}^{r+1} \sigma_{j}|v_{j}^{T}w|^{2} \geq \sigma_{k+1}\sum_{j=1}^{r+1}|v_{j}^{T}w|^{2} = \sigma_{k+1}. \end{split}$$

Stability of SVD

Weyl's inequality (see, e.g., [Horn/Johnson'2013]):

 $\sigma_{i+j-1}(A + E) \le \sigma_i(A) + \sigma_j(E), \quad 1 \le i, j \le n, \quad i+j \le q+1.$ Setting $j = 1 \rightsquigarrow$

 $\sigma_i(\boldsymbol{A}+\boldsymbol{E}) \leq \sigma_i(\boldsymbol{A}) + \|\boldsymbol{E}\|_2, \qquad i=1,\ldots,n.$

Singular vectors tend to be less stable! Example:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 + \varepsilon \end{pmatrix}, \qquad E = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & -\varepsilon \end{pmatrix}.$$

A has right singular vectors ¹₀, ⁰₁.
 A + E has right singular vectors ¹/_{√2} ¹₁, ¹/_{√2} ¹₋₁

Stability of SVD

Theorem (Wedin). Let k < n and assume $\delta := \sigma_k (A + E) - \sigma_{k+1}(A) > 0.$ Let $\mathcal{U}_k / \tilde{\mathcal{U}}_k / \tilde{\mathcal{V}}_k / \tilde{\mathcal{V}}_k$ denote subspaces spanned by first k left/right singular vectors of A / A + E. Then $\sqrt{\|\sin \Theta(\mathcal{U}_k, \tilde{\mathcal{U}}_k)\|_F^2} + \|\sin \Theta(\mathcal{V}_k, \tilde{\mathcal{V}}_k)\|_F^2} \le \sqrt{2} \frac{\|E\|_F}{\delta}.$ (1) Θ : diagonal matrix containing canonical angles between two subspaces.

- ▶ Perturbation on input multiplied by $\delta^{-1} \approx [\sigma_k(A) \sigma_{k+1}(A)]^{-1}$.
- Bad news?

Stability of low-rank approximation

Lemma (folklore / Hackbusch). Let $A \in \mathbb{R}^{m \times n}$ have rank $\leq k$. Then

 $\|\mathcal{T}_k(A+E)-A\| \leq C\|E\|$

holds with C = 2 for any unitarily invariant norm $\|\cdot\|$. For the Frobenius norm, the constant can be improved to $C = (1 + \sqrt{5})/2$.

Proof. Schmidt-Mirsky gives $\|\mathcal{T}_k(A+E) - (A+E)\| \le E$. Triangle inequality implies

$$\|\mathcal{T}_k(A+E) - (A+E) + (A+E) - A\| \le 2\|E\|.$$

See [Hackbusch'2014] for second part.

Implication for general matrix A:

$$\begin{aligned} \|\mathcal{T}_k(\boldsymbol{A}+\boldsymbol{E})-\mathcal{T}_k(\boldsymbol{A})\| &= \|\mathcal{T}_k(\mathcal{T}_k(\boldsymbol{A})+(\boldsymbol{A}-\mathcal{T}_k(\boldsymbol{A}))+\boldsymbol{E})-\mathcal{T}_k(\boldsymbol{A})\|\\ &\leq C\|(\boldsymbol{A}-\mathcal{T}_k(\boldsymbol{A}))+\boldsymbol{E}\|\leq C(\|\boldsymbol{A}-\mathcal{T}_k(\boldsymbol{A})\|+\|\boldsymbol{E}\|). \end{aligned}$$

Perturbations on the level of truncation error pose no danger.

Stability of low-rank approximation: Application

Consider partitioned matrix

$$\boldsymbol{A} = \begin{pmatrix} \boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\ \boldsymbol{A}_{21} & \boldsymbol{A}_{22} \end{pmatrix}, \qquad \boldsymbol{A}_{ij} \in \mathbb{R}^{m_i \times n_j},$$

and desired rank $k \leq m_i, n_j$. Let $\varepsilon := \|\mathcal{T}_k(A) - A\|$.

$$E_{ij} := \mathcal{T}_k(A_{ij}) - A_{ij} \qquad \Rightarrow \qquad \|E_{ij}\| \leq \varepsilon.$$

By stability of low-rank approximation,

$$\left\| \mathcal{T}_{k} \begin{pmatrix} \mathcal{T}_{k}(A_{11}) & \mathcal{T}_{k}(A_{12}) \\ \mathcal{T}_{k}(A_{21}) & \mathcal{T}_{k}(A_{22}) \end{pmatrix} - A \right\|_{F} = \left\| \mathcal{T}_{k} \begin{pmatrix} A + \begin{pmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{pmatrix} \right) - A \right\|_{F} \leq C\varepsilon,$$
with $C = \frac{3}{2}(1 + \sqrt{5}).$

Algorithms for low-rank approximation

Three main classes of algorithms:

- 1. All entries of A (cheaply) available and $\min\{m, n\}$ small \rightsquigarrow svd. *Related situation:* A large but has small rank.
- 2. Large *m*, *n* and matvec possible ↔ Lanczos-based methods and randomized algorithms.
- 3. Entries of *A* expensive to compute → adaptive cross approximation and its cousins.

SVD for recompression

SVD frequently used for recompression. Suppose that

$$A = BC^{T}$$
, with $B \in \mathbb{R}^{m \times K}, C \in \mathbb{R}^{n \times K}$, (2)

where K > k, but still (much) smaller than m, n. Typical example: Sum of *J* matrices of rank *k*:

$$A = \sum_{j=1}^{J} \underbrace{B_{i}}_{\in \mathbb{R}^{m \times k}} \underbrace{C_{i}}_{\in \mathbb{R}^{n \times k}}^{T} = \underbrace{(B_{1} \cdots B_{J})}_{\mathbb{R}^{m \times Jk}} \underbrace{(C_{1} \cdots C_{J})}_{\mathbb{R}^{m \times Jk}}^{T}.$$
 (3)

Algorithm to recompress A:

- 1. Compute (economic) QR decomps $B = Q_B R_B$ and $C = Q_C R_C$.
- 2. Compute truncated SVD $\mathcal{T}_k(R_B R_C^T) = \tilde{U}_k \Sigma_k \tilde{V}_k$.

3. Set
$$U_k = Q_B \tilde{U}_k$$
, $V_k = Q_C \tilde{V}_k$ and return $\mathcal{T}_k(A) := U_k \Sigma_k V_k^T$.

Returns best rank-*k* approximation of *A* with $O((m + n)K^2)$ ops.

Normalized starting vector u₁. Consider Krylov subspaces

$$\begin{aligned} \mathcal{K}_{K+1}(AA^T, u_1) &= \text{span} \{ u_1, AA^T u_1, \dots, (AA^T)^K u_1 \}, \\ \mathcal{K}_{K+1}(A^T A, v_1) &= \text{span} \{ v_1, A^T A v_1, \dots, (A^T A)^K v_1 \}, \end{aligned}$$

with $v_1 = A^T u_1 / ||A^T u_1||_2$.

Two-sided Lanczos process

1:
$$\tilde{v} \leftarrow A^T u_1, \alpha_1 \leftarrow \|\tilde{v}\|_2, v_1 \leftarrow \tilde{v}/\alpha_1.$$

2: for $j = 1, ..., K$ do
3: $\tilde{u} \leftarrow Av_j - \alpha_j u_j, \beta_{j+1} \leftarrow \|\tilde{u}\|_2, u_{j+1} \leftarrow \tilde{u}/\beta_{j+1}.$
4: $\tilde{v} \leftarrow A^T u_{j+1} - \beta_{j+1} v_j, \alpha_{j+1} \leftarrow \|\tilde{v}\|_2, v_{j+1} \leftarrow \tilde{v}/\beta_{j+1}.$
5: end for

- ► Returns orthonormal bases $U_{K+1} \in \mathbb{R}^{m \times (K+1)}$, $V_{K+1} \in \mathbb{R}^{n \times (K+1)}$ of $\mathcal{K}_{K+1}(AA^T, u_1)$, $\mathcal{K}_{K+1}(A^TA, v_1)$
- Reorthogonalization assumed.

Collect scalars from Gram-Schmidt into bidiagonal matrix:

$$B_{K} = \begin{pmatrix} \alpha_{1} & & & \\ \beta_{2} & \alpha_{2} & & \\ & \ddots & \ddots & \\ & & \beta_{K} & \alpha_{K} \end{pmatrix}.$$
 (4)

→ two-sided Lanczos decomposition

$$A^{\mathsf{T}}U_{\mathsf{K}} = V_{\mathsf{K}}B_{\mathsf{K}}^{\mathsf{T}}, \qquad AV_{\mathsf{K}} = U_{\mathsf{K}}B_{\mathsf{K}} + \beta_{\mathsf{K}+1}u_{\mathsf{K}+1}e_{\mathsf{K}}^{\mathsf{T}},$$

Assuming $K \ge k$: How to extract rank-*k* approximation to *A*?

Do not use svds, eigs, PROPACK, or anything else that aims at computing singular vectors!

[Simon/Zha'2000]:

 $\mathcal{T}_k(A) \approx A_K := U_K \mathcal{T}_k(B_K) V_K^T.$

Cheap error estimate in Frobenius norm:

Lemma.

$$\|A_{\mathcal{K}} - A\|_{\mathcal{F}} \leq \sqrt{\sigma_{k+1}(B_{\mathcal{K}})^2 + \cdots + \sigma_{\mathcal{K}}(B_{\mathcal{K}})^2 + \omega_{\mathcal{K}}}$$

where $\omega_{K}^{2} = \|A\|_{F}^{2} - \alpha_{1}^{2} \sum_{j=2}^{K} (\alpha_{j}^{2} + \beta_{j}^{2}).$

Proof. By the triangular inequality

$$\begin{aligned} \|A_{\mathcal{K}} - A\|_{F} &\leq & \left\|U_{\mathcal{K}}(\mathcal{T}_{k}(B_{\mathcal{K}}) - B_{\mathcal{K}})V_{\mathcal{K}}^{\mathsf{T}} + U_{\mathcal{K}}B_{\mathcal{K}}V_{\mathcal{K}}^{\mathsf{T}} - A\right\|_{F} \\ &\leq & \sqrt{\sigma_{k+1}(B_{\mathcal{K}})^{2} + \cdots + \sigma_{\mathcal{K}}(B_{\mathcal{K}})^{2}} + \left\|U_{\mathcal{K}}B_{\mathcal{K}}V_{\mathcal{K}}^{\mathsf{T}} - A\right\|_{F}. \end{aligned}$$

 $\|A\|_F^2 = \|B_K\|_F^2 + \|U_K B_K V_K^T - A\|_F^2$ because of orthogonality.

- 1. Excellent convergence.
- 2. Formula for ω_K from lemma suffers from cancellation.

Two open problems:

1. Convergence theory that explains excellent convergence. Specifically, show that

$$\|oldsymbol{A}_{2k}-oldsymbol{A}\|_{F}\leq 2\|\mathcal{T}_{k}(oldsymbol{A})-oldsymbol{A}\|_{F}$$

under mild conditions on u_1 . (Hint: Do *not* proceed via convergence of singular vectors.)

2. Derive cheap, accurate, and reliable error estimates for $\|\cdot\|_F, \|\cdot\|_2$.

Idea: Construct low-rank approximation from rows and columns of A.

Which columns and rows? How?

Theorem (Goreinov/Tyrtyshnikov/Zamarshkin'1997). Let $\varepsilon := \sigma_{k+1}(A)$. Then there exist row indices $r \subset \{1, \ldots, m\}$ and column indices $c \subset \{1, \ldots, n\}$ and a matrix $S \in \mathbb{R}^{k \times k}$ such that

 $\|\boldsymbol{A} - \boldsymbol{A}(:, \boldsymbol{c})\boldsymbol{S}\boldsymbol{A}(\boldsymbol{r}, :)\|_{2} \leq \varepsilon(1 + 2\sqrt{k}(\sqrt{m} + \sqrt{n})).$

Consider k dominant left/right singular vectors U_k, V_k. Proof proceeds by showing that ∃submatrices of U_k, V_k such that

$$\sigma_{\min}(U_k(c,:)) \geq (\sqrt{k(m-k)+1})^{-1/2}$$

 $\sigma_{\min}(V_k(r,:)) \geq (\sqrt{k(n-k)+1})^{-1/2}$

Choice of S not difficult but technical, and involves full matrix A.

By no means constructive.

Choice of $S = (A(r, c))^{-1}$ in ACA \rightsquigarrow Remainder term

 $R := A - A(:, c)(A(r, c))^{-1}A(r, :)$

has zero rows at r and zero columns at c.

Cross approximation:

Another brave attempt to find a good cross..

Theorem (Goreinov/Tyrtyshnikov'2001). Suppose that

$$\mathsf{A} = \begin{bmatrix} \mathsf{A}_{11} & \mathsf{A}_{12} \\ \mathsf{A}_{21} & \mathsf{A}_{22} \end{bmatrix}$$

where $A_{11} \in \mathbb{R}^{k \times k}$ has maximal volume (i.e., max abs(det)) among all $k \times k$ submatrices of A. Then

$$\|A_{22} - A_{21}A_{11}^{-1}A_{12}\|_{\mathcal{C}} \le (k+1)\sigma_{k+1}(A),$$

where $||M||_{C} := \max_{i,j} |M(i,j)|$

Unfortunately, finding A₁₁ is NP hard [Çivril/Magdon-Ismail'2013].

Adaptive Cross Approximation (ACA) Proof of theorem for $(k + 1) \times (k + 1)$ matrices. Consider

$$\boldsymbol{A} = \begin{pmatrix} \boldsymbol{A}_{11} & \boldsymbol{a}_{12} \\ \boldsymbol{a}_{21} & \boldsymbol{a}_{22} \end{pmatrix}, \quad \boldsymbol{A}_{11} \in \mathbb{R}^{k \times k}, \ \boldsymbol{a}_{12} \in \mathbb{R}^{k \times 1}, \ \boldsymbol{a}_{21} \in \mathbb{R}^{1 \times k}, \ \boldsymbol{a}_{22} \in \mathbb{R},$$

with invertible A_{11} . Using the Schur complement,

$$|(A^{-1})_{k+1,k+1}| = \frac{1}{|a_{22} - a_{12}A_{11}^{-1}a_{21}|} = \frac{|\det A|}{|\det A_{11}|}.$$

If $|\det A_{11}|$ is maximal among all possible selections of $k \times k$ submatrices of $A \rightsquigarrow |(A^{-1})_{k+1,k+1}| = ||A^{-1}||_{\mathcal{C}} := \max_{i,j} |(A^{-1})_{ij}|$.

$$\sigma_{k+1}(A)^{-1} = \|A^{-1}\|_2 = \max_x \frac{\|A^{-1}x\|_2}{\|x\|_2}$$

$$\geq \frac{1}{k+1} \max_x \frac{\|A^{-1}x\|_\infty}{\|x\|_1} = \frac{1}{k+1} \|A^{-1}\|_C$$

and thus

$$|a_{22}-a_{12}A_{11}^{-1}a_{21}|=\frac{1}{\|A^{-1}\|_{\mathcal{C}}}\leq (k+1)\sigma_{k+1}(A).$$

ACA with full pivoting [Bebendorf/Tyrtyshnikov'2000]

1: Set
$$R_0 := A$$
, $r := \{\}$, $c := \{\}$, $k := 0$

2: repeat

3: k := k + 1

4:
$$(i^*, j^*) := \arg \max_{i,j} |R_{k-1}(i, j)|$$

5:
$$r := r \cup \{i^*\}, c := c \cup \{j^*\}$$

$$6: \quad \delta_k := R_{k-1}(i^*, j^*)$$

7:
$$u_k := R_{k-1}(:, j^*), v_k := R_{k-1}(i^*, :)^T / \delta_k$$

8:
$$R_k := R_{k-1} - u_k v_k'$$

9: until
$$\|R_k\|_F \leq \varepsilon \|A\|_F$$

- This is greedy for maxvol. (Proof on next slide.)
- Still too expensive.

Lemma (Bebendorf'2000). Let $r_k = \{i_1, \ldots, i_k\}$ and $c_k = \{j_1, \ldots, j_k\}$ be the row/column index sets constructed in step *k* of the algorithm. Then

$$\det(A(r_k, c_k)) = R_0(i_1, j_1) \cdots R_{k-1}(i_k, j_k).$$

Proof. From lines 7 and 8, it follows that the last column of $A(r_k, c_k)$ is a linear combination of the columns of the matrix

$$\tilde{A}_k := [A(r_k, c_{k-1}), R_{k-1}(r_k, j_k)] \in \mathbb{R}^{k \times k},$$

which implies $det(\tilde{A}_k) = det(A(r_k, c_k))$. However, $\tilde{A}_k(i, j_k) = 0$ for all $i = i_1, \ldots, i_{k-1}$ and hence

$$\det(\tilde{A}_k) = R_{k-1}(i_k, j_k) \det(A(r_{k-1}, c_{k-1})).$$

Since det $A(r_1, c_1) = A(i_1, j_1) = R_0(i_1, j_1)$, the result follows by induction.

ACA with partial pivoting

1: Set $R_0 := A$, $r := \{\}$, $c := \{\}$, k := 1, $i^* := 1$ 2: repeat 3: $j^* := \arg \max_i |R_{k-1}(i^*, j)|$ 4: $\delta_k := R_{k-1}(i^*, i^*)$ 5: if $\delta_k = 0$ then 6: **if** $\#r = \min\{m, n\} - 1$ **then** Stop 7: end if 8: else 9: $U_k := R_{k-1}(:, j^*), V_k := R_{k-1}(i^*, :)^T / \delta_k$ 10: 11: $R_{k} := R_{k-1} - U_{k}V_{k}^{T}$ k := k + 112: 13: end if 14: $r := r \cup \{i^*\}, c := c \cup \{j^*\}$ 15: $i^* := \arg \max_{i,i \notin r} |u_k(i)|$ 16: until stopping criterion is satisfied

ACA with partial pivoting. Remarks:

► *R_k* is never formed explicitly. Entries of *R_k* are computed from

$$R_k(i,j) = A(i,j) - \sum_{\ell=1}^k u_\ell(i) v_\ell(j).$$

Ideal stopping criterion ||u_k||₂||v_k||₂ ≤ ε||A||_F elusive. Replace ||A||_F by ||A_k||_F, recursively computed via

$$\|A_k\|_F^2 = \|A_{k-1}\|_F^2 + 2\sum_{j=1}^{k-1} u_k^T u_j v_j^T v_k + \|u_k\|_2^2 \|v_k\|_2^2.$$

- 1. Excellent convergence for Hilbert matrix.
- 2. Slow singular value decay impedes partial pivoting.

ACA is Gaussian elimination

We have

$$\boldsymbol{R}_{k} = \boldsymbol{R}_{k-1} - \delta_{k} \boldsymbol{R}_{k-1} \boldsymbol{e}_{k} \boldsymbol{e}_{k}^{\mathsf{T}} \boldsymbol{R}_{k-1} = (\boldsymbol{I} - \delta_{k} \boldsymbol{R}_{k-1} \boldsymbol{e}_{k} \boldsymbol{e}_{k}^{\mathsf{T}}) \boldsymbol{R}_{k-1} = \boldsymbol{L}_{k} \boldsymbol{R}_{k-1},$$

where $L_k \in \mathbb{R}^{m \times m}$ is given by

for i = k + 1, ..., m.

Matrix L_k differs only in position (k, k) from usual lower triangular factor in Gaussian elimination.

Benefits from spd

For symmetric positive semi-definite matrix $A \in \mathbb{R}^{n \times n}$:

- SVD becomes spectral decomposition.
- Can replace two-sided Lanczos by standard Lanczos.
- Can use trace instead of Frobenius norm to control error.
- ▶ Choice of rows/columns, e.g., by largest diagonal element of *R_k*.
- ACA becomes
 - = Cholesky (with diagonal pivoting). Analysis in [Higham'1990].
 - = Nyström method [Williams/Seeger'2001].

Randomized algorithms for low-rank approximation

Must read: Halko/Martinsson/Tropp'2010: Finding Structure with Randomness...

Randomized Algorithm:

- 1. Choose standard Gaussian random matrix $\Omega \in \mathbb{R}^{n \times k}$.
- 2. Perform block mat-vec $Y = A\Omega$.
- 3. Compute (economic) QR decomposition Y = QR.
- 4. Form $B = Q^T A$.
- 5. Set $\mathcal{T}_k(A) \approx \widehat{A} := Q\mathcal{T}_k(B)$

Exact recovery: If A has rank k, we recover $\widehat{A} = A$ with probability 1.

Randomized algorithms for low-rank approximation

Must read: Halko/Martinsson/Tropp'2010: Finding Structure with Randomness...

Randomized Algorithm:

- 1. Choose standard Gaussian random matrix $\Omega \in \mathbb{R}^{n \times (k+p)}$.
- 2. Perform block mat-vec $Y = A\Omega$.
- 3. Compute (economic) QR decomposition Y = QR.
- 4. Form $B = Q^T A$.

5. Set
$$\mathcal{T}_k(A) \approx \widehat{A} := Q\mathcal{T}_k(B)$$

HMT'2010: If A is a general matrix then choosing k + p = 2k yields

$$\mathbb{E}\|\boldsymbol{A}-\widehat{\boldsymbol{A}}\|_{2} \leq \left(2+4\sqrt{\frac{2\min\{m,n\}}{k-1}}\right)\sigma_{k+1}.$$

Bound can be improved (dramatically) by performing a few steps of subspace iteration on Y.

Randomized algorithms for low-rank approximation

Two 100×100 matrices:

(a) The Hilbert matrix A defined by A(i,j) = 1/(i+j-1). k = 5:

Exact	<i>p</i> = 0	<i>p</i> = 1	<i>p</i> = 5
1.88×10 ⁻³	2.82×10 ⁻³	1.89×10 ⁻³	1.88×10 ⁻³

(b) The matrix A defined by $A(i,j) = \exp(-\gamma |i-j|/n)$ with $\gamma = 0.1$. k = 40:

Exact	ho=0	<i>p</i> = 10	p = 40	p = 80
1.45×10 ⁻³	5×10 ⁻³	4×10 ⁻³	1.6×10 ⁻³	1.45×10 ⁻³

A priori approximation results

Need to know *a priori* which matrices admit good low-rank approximations.

Why?

- Know which situations call for (hierarchical) low-rank approximations.
- Drive clustering/partitioning of matrix.

Schmidt-Mirsky: Equivalently, establish (quick) decay of singular values.

Singular values of random matrices

No reasonable low-rank approximation possible

Singular values of smooth function

- Discretized smooth bivariate function.
- Arranged function values into a matrix.

Excellent rank-10 approximation possible

Exceptional case: Singularities along coordinate axes

Rule of thumb: Smoothness helps, but not always needed.

Discretization of bivariate function

- ▶ Bivariate function: f(x, y) : $[x_{\min}, x_{\max}] \times [y_{\min}, y_{\max}] \rightarrow \mathbb{R}$.
- Function values on tensor grid $[x_1, \ldots, x_n] \times [y_1, \ldots, y_m]$:

 $F = \begin{bmatrix} f(x_1, y_1) & f(x_1, y_2) & \cdots & f(x_1, y_n) \\ f(x_2, y_1) & f(x_2, y_2) & \cdots & f(x_2, y_n) \\ \vdots & \vdots & & \vdots \\ f(x_m, y_1) & f(x_m, y_2) & \cdots & f(x_m, y_n) \end{bmatrix}$

Basic but crucial observation: $f(x, y) = g(x)h(y) \rightsquigarrow$

$$F = \begin{bmatrix} g(x_1)h(y_1) & \cdots & g(x_1)h(y_n) \\ \vdots & & \vdots \\ g(x_m)h(y_1) & \cdots & g(x_m)h(y_n) \end{bmatrix} = \begin{bmatrix} g(x_1) \\ \vdots \\ g(x_m) \end{bmatrix} \begin{bmatrix} h(y_1) & \cdots & h(y_n) \end{bmatrix}$$

Separability implies rank 1.

Separability and low rank

Approximation by sum of separable functions

$$f(x,y) = \underbrace{g_1(x)h_1(y) + \dots + g_k(x)h_k(y)}_{=:f_k(x,y)} + \operatorname{error},$$

or (not more generally)

$$f(x, y) = \underbrace{\sum_{j=1}^{k} s_{ij}g_i(x)h_j(y)}_{=:f_k(x,y)} + \text{error}$$

Define

$$F_k = \begin{bmatrix} f_k(x_1, y_1) & \cdots & f_k(x_1, y_n) \\ \vdots & & \vdots \\ f_k(x_m, y_1) & \cdots & f_k(x_m, y_n) \end{bmatrix}$$

Then F_k has rank $\leq k$ and $||F - F_k||_F \leq \sqrt{mn} \times \text{error}$.

$$\rightsquigarrow \sigma_{k+1}(F) \leq \|F - F_k\|_2 \leq \|F - F_k\|_F \leq \sqrt{mn} \times \text{error}.$$

Semi-separable approximation implies low-rank approximation.

Semi-separable approximation by Taylor

Example: 1D integral operator with shift-invariant kernel

$$f(x,y) := \begin{cases} g(x-y) & \text{if } x > y, \\ g(y-x) & \text{if } y > x, \\ 0 & \text{otherwise}, \end{cases}$$

with $g(z) = \log(z)$.

Taylor expansion of *g* around $z_0 > 0$:

$$g(z) \approx g_k(z) := \sum_{i=0}^{k-1} \frac{g^{(i)}(z_0)}{i!} (z-z_0)^i.$$

 \rightarrow polynomial expansion of *f* around (x_0, y_0) with $z_0 = x_0 - y_0$:

$$f(x,y) \approx g_k(x-y) = \sum_{i=0}^{k-1} \sum_{j=0}^{k-1-i} (-1)^j f^{(i+j)}(x_0-y_0) \frac{(x-x_0)^i}{i!} \frac{(y-y_0)^j}{j!}$$

Semi-separable approximation by Taylor

Summary:

(discr.
$$f$$
) \approx (discr. $(\mathbf{x} - \mathbf{x}_0)^i$) \times $(f^{(i+j)}(\mathbf{x}_0 - \mathbf{y}_0)) \times$ (discr. $(\mathbf{y} - \mathbf{y}_0)^j$)^T

 \rightsquigarrow rank-k approximation with approximation error governed by Tayor remainder

$$|g(z) - g_k(z)| \le \max_{\xi \in [a,b]} \left| \frac{f^{(k)}(\xi)}{k!} (z - z_0)^k \right| \le \frac{1}{k} \left(\frac{b-a}{2a} \right)^k$$

for all $0 < a \le z \le b$ with $z_0 = (a+b)/2$.

Semi-separable approximation by Taylor

Corollary. Consider real intervals I_x , I_y and $0 < \eta < 1$ such that

 $\operatorname{diam}(I_x) + \operatorname{diam}(I_y) \leq 2\eta \cdot \operatorname{dist}(I_x, I_y).$

Then

$$|f(x,y)-f_k(x,y)|\leq \frac{1}{k}\eta^k$$

Proof. For z = x - y with $x \in I_x$, $y \in I_y$, we have $z \in [a, b]$ with

$$\frac{b-a}{2a} = \frac{\mathsf{diam}(I_x) + \mathsf{diam}(I_y)}{2\mathsf{dist}(I_x, I_y)} \le \eta$$

Semi-separable approximation by interpolation

Solution of approximation problem

 $f(x,y) = g_1(x)h_1(y) + \cdots + g_k(x)h_k(y) + \text{error.}$

by tensorized polynomial interpolation.

General construction:

1. Lagrange interpolation of f(x, y) in y-coordinate:

$$\mathcal{I}_{\boldsymbol{y}}[f](\boldsymbol{x},\boldsymbol{y}) = \sum_{j=1}^{k} f(\boldsymbol{x},\theta_j) L_j(\boldsymbol{y})$$

with Lagrange polynomials L_j of degree k - 1 on \mathcal{I}_y .

2. Interpolation of $\mathcal{I}_{\gamma}[f]$ in *x*-coordinate:

$$\mathcal{I}_{x}[\mathcal{I}_{y}[f]](x,y) = \sum_{i,j=1}^{k} f(\xi_{i},\theta_{j})L_{i}(x)L_{j}(y).$$

Semi-separable approximation by interpolation

Summary:

$$ig(ext{discr. } fig)pproxig(ext{discr. } L_i(m{x})ig) imesig(f(\xi_i, heta_j)ig) imesig(ext{discr. } L_j(m{y})ig)^T$$

→ rank-k approximation with approximation error governed by

error
$$\leq \|f - \mathcal{I}_x[\mathcal{I}_y[f]]\|_{\infty}$$

 $= \|f - \mathcal{I}_x[f] + \mathcal{I}_x[f] - \mathcal{I}_x[\mathcal{I}_y[f]]\|_{\infty}$
 $\leq \|f - \mathcal{I}_x[f]\|_{\infty} + \|\mathcal{I}_x\|_{\infty}\|f - \mathcal{I}_y[f]\|_{\infty}$

with Lebesgue constant $\|\mathcal{I}_x\|_{\infty} \sim \log r$ when using Chebyshev interpolation nodes.

Interpolation usually much better than Taylor [Börm'2010] $\rightsquigarrow \eta$ can be choosen smaller (roughly half) in adminissibility condition.

Semi-separable approximation: further results

If we do not insist on polynomials:

- For f(x, y) = 1/(x − y) and similar functions, much better approximation by sum of exponentials [Hackbusch'2010].
- [Temlyakov'1992, Uschmajew/Schneider'2013]:

$$\sup_{f\in B^s} \inf \left\|f(x,y) - \sum_{k=1}^r g_k(x)h_k(y)\right\|_{L^2} \sim r^{-s},$$

with Sobolev space B^s of periodic functions with partial derivatives up to order *s*.