Matrices with Hierarchical Low-Rank Structures

Daniel Kressner
Chair for Numerical Algorithms and HPC MATHICSE, EPFL
daniel.kressner@epfl.ch

Contents

- Introduction
- Low-rank approximation
- HODLR / \mathcal{H}-matrices
- HSS / \mathcal{H}^{2}-matrices

Introduction

- Limitations of (approximate) sparsity
- HODLR for (tridiagonal) ${ }^{-1}$
- HSS for (tridiagonal) ${ }^{-1}$

Sparse matrices

Discretized 2D Laplace (reord. by symamd)

Cholesky factor

- Cholesky factor (nearly) inherits sparsity.
- Look for nothing else when solving $A x=b$ for matrices A from 2D FE or FD discretizations.

Limitations of sparsity

Sparse factorizations are of limited use when:

- The matrix A itself is full. Examples:
- nonlocal operators: BEM, fractional PDEs;
- nonlocal basis functions (Trefftz-like methods).
- A^{-1} is explicitly needed. Examples:
- Inverse covariance matrix estimation;
- Matrix iterations for computing $f(A)$, for example sign function iteration;
- $\operatorname{diag}\left(A^{-1}\right)$ in electronic structure analysis.
- Cholesky/LU factors of (reordered) A have too much fill-in:
- FE discretizations of 3D PDEs;
- "random" sparsity.

Does approximate sparsity help?

A tridiagonal matrix

$$
A=(n+1)^{2}\left(\begin{array}{cccc}
2 & -1 & & \\
-1 & 2 & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right)+\sigma(n+1)^{2} I_{n}
$$

- $\sigma \geq 0$ is chosen to control $\kappa(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$.

Inverse of a tridiagonal matrix

Approximate sparsity of A^{-1} for $n=50$ and different values of σ :

(a) $\sigma=4, \kappa(A) \approx 2$
(b) $\sigma=1, \kappa(A) \approx 5$
(c) $\sigma=0, \kappa(A) \approx 10^{3}$

In accordance with result by [Demko et al.'1984]:

$$
\left|\left[A^{-1}\right]_{i j}\right| \leq C\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2|i-j|}, \quad C=\max \left\{\lambda_{\min }^{-1},\left(2 \lambda_{\max }\right)^{-1}(1+\sqrt{\kappa(A)})^{2}\right\}
$$

See also [Benzi/Razouk'2007].

Inverse of a tridiagonal matrix

- Idea: Exploit data-sparsity instead of sparsity.
- Low rank: $n \times n$ matrix M with rank $r \ll n$ can be represented with $2 n r$ parameters: $M=B C^{T}$.
- But: (tridiagonal) ${ }^{-1}$ does not have low rank \rightsquigarrow need for partitioning.

Assume A is tridiagonal spd and partition with $A_{11} \in \mathbb{R}^{n_{1} \times n_{1}}$, $A_{22} \in \mathbb{R}^{n_{2} \times n_{2}}$:

$$
A=\left(\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right)-a_{n_{1}, n_{1}+1}\binom{e_{n_{1}}}{-e_{1}}\binom{e_{n_{1}}}{-e_{1}}^{T}
$$

Inverse of a tridiagonal matrix

SMW implies

$$
A^{-1}=\left(\begin{array}{cc}
A_{11}^{-1} & 0 \\
0 & A_{22}^{-1}
\end{array}\right)+\frac{a_{n_{1}, n_{1}+1}}{1+e_{n_{1}}^{T} A_{11}^{-1} e_{n_{1}}+e_{1}^{T} A_{22}^{-1} e_{1}}\binom{w_{1}}{w_{2}}\binom{w_{1}}{w_{2}}^{T},
$$

with $w_{1}=A_{11}^{-1} e_{n_{1}}$ and $w_{2}=-A_{22}^{-1} e_{1}$.

- Off-diagonal blocks of A^{-1} have rank at most 1 .
- But: A_{11} and A_{22} are still large!
- \rightsquigarrow hierarchical partitioning.

Inverse of a tridiagonal matrix: Hierarchical partitioning

Suppose n is integer multiple of 4, partition

$$
\begin{aligned}
A & =\left(\right), \\
A^{-1} & =\left(, .\right.
\end{aligned}
$$

such that $A_{i j}^{(2)}, B_{i j}^{(2)} \in \mathbb{R}^{n / 4 \times n / 4} \rightsquigarrow$ all off-diagonal blocks have rank 1 .
Continuing recursively for $n=2^{k}$:

$$
2 n / 2+4 n / 4+\cdots+2^{k} n / 2^{k}+n=n \log _{2} n+O(n)
$$

storage for A^{-1}.

Inverse of a tridiagonal matrix: Nested bases

Goal: Remove log-factor in $n \log _{2} n$.
Let $U_{j}^{(2)} \in \mathbb{R}^{n / 4 \times 2}, j=1, \ldots, 4$, be orthonormal bases such that

$$
\operatorname{span}\left\{\left(A_{j j}^{(2)}\right)^{-1} e_{1},\left(A_{j j}^{(2)}\right)^{-1} e_{n / 4}\right\} \subseteq \operatorname{range}\left(U_{j}^{(2)}\right)
$$

Applying SMW to $A_{11}=\left(\begin{array}{ll}A_{11}^{(2)} & A_{12}^{(2)} \\ A_{21}^{(2)} & A_{22}^{(2)}\end{array}\right)$ shows

$$
A_{11}^{-1} e_{1} \in \text { range }\left(\begin{array}{cc}
U_{1}^{(2)} & 0 \\
0 & U_{2}^{(2)}
\end{array}\right), \quad A_{11}^{-1} e_{n / 2} \in \text { range }\left(\begin{array}{cc}
U_{1}^{(2)} & 0 \\
0 & U_{2}^{(2)}
\end{array}\right)
$$

Similarly,

$$
A_{22}^{-1} e_{1} \in \operatorname{range}\left(\begin{array}{cc}
U_{3}^{(2)} & 0 \\
0 & U_{4}^{(2)}
\end{array}\right), \quad A_{22}^{-1} e_{n / 2} \in \text { range }\left(\begin{array}{cc}
U_{3}^{(2)} & 0 \\
0 & U_{4}^{(2)}
\end{array}\right)
$$

Inverse of a tridiagonal matrix: Nested bases

If we let $U_{j} \in \mathbb{R}^{n / 2 \times 2}, j=1,2$, be orthonormal basis such that

$$
\operatorname{span}\left\{A_{j j}^{-1} e_{1}, A_{i j}^{-1} e_{n / 2}\right\} \subseteq \operatorname{range}\left(U_{j}\right),
$$

then there exist $X_{j} \in \mathbb{R}^{4 \times 2}$ s.t. $U_{j}=\left(\begin{array}{cc}U_{2 j-1}^{(2)} & 0 \\ 0 & U_{2 j}^{(2)}\end{array}\right) X_{j}$.

- no need to store the bases $U_{1}, U_{2} \in \mathbb{R}^{n / 2 \times 2}$ explicitly
- availability of $U_{j}^{(2)}$ and the small matrices X_{1}, X_{2} suffices

Summary: Can represent A^{-1} as

for some matrices $S_{12}, S_{i j}^{(2)} \in \mathbb{R}^{2 \times 2}$. Storage requirements:

$$
\underbrace{4 \times 2 n / 4}_{\text {for } U_{j}^{(2)}}+\underbrace{2 \times 8}_{\text {for } X_{j}}+\underbrace{(2+1) \times 4}_{\text {for } S_{12}, S_{12}^{(2)}, S_{34}^{(2)}} .
$$

$n=2^{k} \rightsquigarrow O(n)$ total storage for A^{-1}.

Literature landscape of hierarchical low-rank

structures

Without nested bases:

- HODLR: Aminfar, Ambikasaran, Darve, Greengard, Hogg, O'Neil, ...
- H-matrices: Bebendorf, Grasedyck, Hackbusch, Khoromskij, ...
- Mosaic-Skeleton approximations: Tyrtyshnikov and collaborators

With nested bases:

- Semi-separable / quasi-separable matrices: Lots of classical and modern literature, including Bini, Chandrasekaran, Dewilde, Eidelman, Fasino, Gantmacher, Gemignani, Gohberg, Krein, Olshevsky, Pan, Rozsa, Tyrtyshnikov, Zhlobich. See survey papers and books by Vandebril/Van Barel/Mastronardi.
- HSS matrices: Chandrasekaran, Greengard, Martinsson, Rokhlin, Xia, Zorin, ...
- \mathcal{H}^{2}-matrices: Börm, Hackbusch, Mach, ...

Note: Red items not covered in this lecture.

Low-rank approximation

- SVD and best low-rank approximation
- Stability of SVD and low-rank approximation
- Algorithms: SVD, Lanczos, ACA, Randomized
- A priori approximation results

SVD

Theorem (SVD). Let $A \in \mathbb{R}^{m \times n}$ with $m \geq n$. Then there are orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

$$
A=U \Sigma V^{T}, \text { with } \Sigma=\left(\begin{array}{ccc}
& \ddots & \\
& & \sigma_{n}
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$.

- $m \geq n$ for notational convenience only.
- MATLAB: $[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}\left(\mathrm{A},{ }^{\prime}\right.$ econ') computes economic SVD with $O\left(m n^{2}\right)$ ops.
- Pay attention to roundoff error: semilogy (svd (hilb(100))) vs. exponential decay established by [Beckermann'2000].
- Sometimes more accuracy possible: [DGESVD'1999], [Drmač/Veselić'2007].

SVD: low-rank approximation

Consider $k<n$ and let
$U_{k}:=\left(\begin{array}{lll}u_{1} & \cdots & u_{k}\end{array}\right), \quad \Sigma_{k}:=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right), \quad V_{k}:=\left(\begin{array}{lll}u_{1} & \cdots & u_{k}\end{array}\right)$.
Then

$$
\mathcal{T}_{k}(A):=U_{k} \Sigma_{k} V_{k}
$$

has rank at most k. For any unitarily invariant norm $\|\cdot\|$:

$$
\left\|\mathcal{T}_{k}(A)-A\right\|=\left\|\operatorname{diag}\left(\sigma_{k+1}, \ldots, \sigma_{n}\right)\right\|
$$

In particular, for spectral norm and the Frobenius norm:

$$
\left\|A-\mathcal{T}_{k}(A)\right\|_{2}=\sigma_{k+1}, \quad\left\|A-\mathcal{T}_{k}(A)\right\|_{F}=\sqrt{\sigma_{k+1}^{2}+\cdots+\sigma_{n}^{2}} .
$$

SVD: best low-rank approximation

Theorem (Schmidt-Mirsky). Let $A \in \mathbb{R}^{m \times n}$. Then

$$
\left\|A-\mathcal{T}_{k}(A)\right\|=\min \left\{\|A-B\|: B \in \mathbb{R}^{m \times n} \text { has rank at most } k\right\}
$$

holds for any unitarily invariant norm $\|\cdot\|$.
Proof for $\|\cdot\|_{2}$: For any $B \in \mathbb{R}^{m \times n}$ of rank $\leq k$, null space kernel(B) has dimension $\geq n-k$. Hence, $\exists w \in \operatorname{kernel}(B) \cap \operatorname{range}\left(V_{k+1}\right)$ with $\|w\|_{2}=1$. Then

$$
\begin{aligned}
\|A-B\|_{2}^{2} & \geq\|(A-B) w\|_{2}^{2}=\|A w\|_{2}^{2}=\left\|A V_{k+1} V_{k+1}^{T} w\right\|_{2}^{2} \\
& =\left\|U_{k+1} \Sigma_{k+1} V_{k+1}^{T} w\right\|_{2}^{2} \\
& =\sum_{j=1}^{r+1} \sigma_{j}\left|v_{j}^{\top} w\right|^{2} \geq \sigma_{k+1} \sum_{j=1}^{r+1}\left|v_{j}^{\top} w\right|^{2}=\sigma_{k+1} .
\end{aligned}
$$

Stability of SVD

Weyl's inequality (see, e.g., [Horn/Johnson'2013]):

$$
\sigma_{i+j-1}(A+E) \leq \sigma_{i}(A)+\sigma_{j}(E), \quad 1 \leq i, j \leq n, \quad i+j \leq q+1 .
$$

Setting $j=1 \rightsquigarrow$

$$
\sigma_{i}(A+E) \leq \sigma_{i}(A)+\|E\|_{2}, \quad i=1, \ldots, n .
$$

Singular vectors tend to be less stable! Example:

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & 1+\varepsilon
\end{array}\right), \quad E=\left(\begin{array}{cc}
0 & \varepsilon \\
\varepsilon & -\varepsilon
\end{array}\right) .
$$

- A has right singular vectors $\binom{1}{0},\binom{0}{1}$.
- $A+E$ has right singular vectors $\frac{1}{\sqrt{2}}\binom{1}{1}, \frac{1}{\sqrt{2}}\binom{1}{-1}$

Stability of SVD

Theorem (Wedin). Let $k<n$ and assume

$$
\delta:=\sigma_{k}(A+E)-\sigma_{k+1}(A)>0 .
$$

Let $\mathcal{U}_{k} / \tilde{\mathcal{U}}_{k} / \mathcal{V}_{k} / \tilde{\mathcal{V}}_{k}$ denote subspaces spanned by first k left/right singular vectors of $A / A+E$. Then

$$
\begin{equation*}
\sqrt{\left\|\sin \Theta\left(\mathcal{U}_{k}, \tilde{\mathcal{U}}_{k}\right)\right\|_{F}^{2}+\left\|\sin \Theta\left(\mathcal{V}_{k}, \tilde{\mathcal{V}}_{k}\right)\right\|_{F}^{2}} \leq \sqrt{2} \frac{\|E\|_{F}}{\delta} . \tag{1}
\end{equation*}
$$

Θ : diagonal matrix containing canonical angles between two subspaces.

- Perturbation on input multiplied by $\delta^{-1} \approx\left[\sigma_{k}(A)-\sigma_{k+1}(A)\right]^{-1}$.
- Bad news?

Stability of low-rank approximation

Lemma (folklore / Hackbusch). Let $A \in \mathbb{R}^{m \times n}$ have rank $\leq k$. Then

$$
\left\|\mathcal{T}_{k}(A+E)-A\right\| \leq C\|E\|
$$

holds with $C=2$ for any unitarily invariant norm $\|\cdot\|$. For the Frobenius norm, the constant can be improved to $C=(1+\sqrt{5}) / 2$.
Proof. Schmidt-Mirsky gives $\left\|\mathcal{T}_{k}(A+E)-(A+E)\right\| \leq E$. Triangle inequality implies

$$
\left\|\mathcal{T}_{k}(A+E)-(A+E)+(A+E)-A\right\| \leq 2\|E\|
$$

See [Hackbusch'2014] for second part.
Implication for general matrix A :

$$
\begin{aligned}
\left\|\mathcal{T}_{k}(A+E)-\mathcal{T}_{k}(A)\right\| & =\left\|\mathcal{T}_{k}\left(\mathcal{T}_{k}(A)+\left(A-\mathcal{T}_{k}(A)\right)+E\right)-\mathcal{T}_{k}(A)\right\| \\
& \leq C\left\|\left(A-\mathcal{T}_{k}(A)\right)+E\right\| \leq C\left(\left\|A-\mathcal{T}_{k}(A)\right\|+\|E\|\right)
\end{aligned}
$$

Perturbations on the level of truncation error pose no danger.

Stability of low-rank approximation: Application

Consider partitioned matrix

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad A_{i j} \in \mathbb{R}^{m_{i} \times n_{j}},
$$

and desired rank $k \leq m_{i}, n_{j}$. Let $\varepsilon:=\left\|\mathcal{T}_{k}(A)-A\right\|$.

$$
E_{i j}:=\mathcal{T}_{k}\left(A_{i j}\right)-A_{i j} \quad \Rightarrow \quad\left\|E_{i j}\right\| \leq \varepsilon .
$$

By stability of low-rank approximation,
$\left\|\mathcal{T}_{k}\left(\begin{array}{ll}\mathcal{T}_{k}\left(A_{11}\right) & \mathcal{T}_{k}\left(A_{12}\right) \\ \mathcal{T}_{k}\left(A_{21}\right) & \mathcal{T}_{k}\left(A_{22}\right)\end{array}\right)-A\right\|_{F}=\left\|\mathcal{T}_{k}\left(A+\left(\begin{array}{ll}E_{11} & E_{12} \\ E_{21} & E_{22}\end{array}\right)\right)-A\right\|_{F} \leq C \varepsilon$, with $C=\frac{3}{2}(1+\sqrt{5})$.

Algorithms for low-rank approximation

Three main classes of algorithms:

1. All entries of A (cheaply) available and $\min \{m, n\}$ small $\rightsquigarrow s v d$. Related situation: A large but has small rank.
2. Large m, n and matvec possible \rightsquigarrow

Lanczos-based methods and randomized algorithms.
3. Entries of A expensive to compute \rightsquigarrow adaptive cross approximation and its cousins.

SVD for recompression

SVD frequently used for recompression. Suppose that

$$
\begin{equation*}
A=B C^{T}, \quad \text { with } \quad B \in \mathbb{R}^{m \times K}, C \in \mathbb{R}^{n \times K} \tag{2}
\end{equation*}
$$

where $K>k$, but still (much) smaller than m, n.
Typical example: Sum of J matrices of rank k :

$$
A=\sum_{j=1}^{J} \underbrace{B_{i}}_{\in \mathbb{R}^{m \times k}} \underbrace{C_{i}^{T}}_{\in \mathbb{R}^{n \times k}}=\underbrace{\left(\begin{array}{lll}
B_{1} & \cdots & B_{J}
\end{array}\right)}_{\mathbb{R}^{m \times J k}} \underbrace{\left.\begin{array}{lll}
C_{1} & \cdots & C_{J} \tag{3}
\end{array}\right)^{T} .}_{\mathbb{R}^{m \times J k}}
$$

Algorithm to recompress A :

1. Compute (economic) $Q R$ decomps $B=Q_{B} R_{B}$ and $C=Q_{C} R_{C}$.
2. Compute truncated SVD $\mathcal{T}_{k}\left(R_{B} R_{C}^{T}\right)=\tilde{U}_{k} \Sigma_{k} \tilde{V}_{k}$.
3. Set $U_{k}=Q_{B} \tilde{U}_{k}, V_{k}=Q_{C} \tilde{V}_{k}$ and return $\mathcal{T}_{k}(A):=U_{k} \Sigma_{k} V_{k}^{T}$.

Returns best rank- k approximation of A with $O\left((m+n) K^{2}\right)$ ops.

Lanczos for low-rank approximation

Normalized starting vector u_{1}. Consider Krylov subspaces

$$
\begin{aligned}
\mathcal{K}_{K+1}\left(A A^{T}, u_{1}\right) & =\operatorname{span}\left\{u_{1}, A A^{T} u_{1}, \ldots,\left(A A^{T}\right)^{K} u_{1}\right\}, \\
\mathcal{K}_{K+1}\left(A^{T} A, v_{1}\right) & =\operatorname{span}\left\{v_{1}, A^{T} A v_{1}, \ldots,\left(A^{T} A\right)^{K} v_{1}\right\},
\end{aligned}
$$

with $v_{1}=A^{T} u_{1} /\left\|A^{T} u_{1}\right\|_{2}$.
Two-sided Lanczos process

$$
\text { 1: } \tilde{v} \leftarrow A^{T} u_{1}, \alpha_{1} \leftarrow\|\tilde{v}\|_{2}, v_{1} \leftarrow \tilde{v} / \alpha_{1}
$$

2: for $j=1, \ldots, K$ do
3: $\quad \tilde{u} \leftarrow A v_{j}-\alpha_{j} u_{j}, \beta_{j+1} \leftarrow\|\tilde{u}\|_{2}, u_{j+1} \leftarrow \tilde{u} / \beta_{j+1}$.
4: $\tilde{v} \leftarrow A^{T} u_{j+1}-\beta_{j+1} v_{j}, \alpha_{j+1} \leftarrow\|\tilde{v}\|_{2}, v_{j+1} \leftarrow \tilde{v} / \beta_{j+1}$.
5: end for

- Returns orthonormal bases $U_{K+1} \in \mathbb{R}^{m \times(K+1)}, V_{K+1} \in \mathbb{R}^{n \times(K+1)}$ of $\mathcal{K}_{K+1}\left(A A^{T}, u_{1}\right), \mathcal{K}_{K+1}\left(A^{T} A, v_{1}\right)$
- Reorthogonalization assumed.

Lanczos for low-rank approximation

Collect scalars from Gram-Schmidt into bidiagonal matrix:

$$
B_{K}=\left(\begin{array}{llll}
\alpha_{1} & & & \tag{4}\\
\beta_{2} & \alpha_{2} & & \\
& \ddots & \ddots & \\
& & \beta_{K} & \alpha_{K}
\end{array}\right)
$$

\rightsquigarrow two-sided Lanczos decomposition

$$
A^{T} U_{K}=V_{K} B_{K}^{T}, \quad A V_{K}=U_{K} B_{K}+\beta_{K+1} u_{K+1} e_{K}^{T},
$$

Assuming $K \geq k$:
How to extract rank- k approximation to A ?

Lanczos for low-rank approximation

- Do not use svds, eigs, PROPACK, or anything else that aims at computing singular vectors!
[Simon/Zha'2000]:

$$
\mathcal{T}_{k}(A) \approx A_{K}:=U_{K} \mathcal{T}_{k}\left(B_{K}\right) V_{K}^{T} .
$$

Cheap error estimate in Frobenius norm:

Lemma.

$$
\left\|A_{K}-A\right\|_{F} \leq \sqrt{\sigma_{K+1}\left(B_{K}\right)^{2}+\cdots+\sigma_{K}\left(B_{K}\right)^{2}}+\omega_{K}
$$

where $\omega_{K}^{2}=\|\boldsymbol{A}\|_{F}^{2}-\alpha_{1}^{2} \sum_{j=2}^{K}\left(\alpha_{j}^{2}+\beta_{j}^{2}\right)$.
Proof. By the triangular inequality

$$
\begin{aligned}
\left\|A_{K}-A\right\|_{F} & \leq\left\|U_{K}\left(\mathcal{T}_{K}\left(B_{K}\right)-B_{K}\right) V_{K}^{T}+U_{K} B_{K} V_{K}^{T}-A\right\|_{F} \\
& \leq \sqrt{\sigma_{K+1}\left(B_{K}\right)^{2}+\cdots+\sigma_{K}\left(B_{K}\right)^{2}}+\left\|U_{K} B_{K} V_{K}^{T}-A\right\|_{F} \\
\|A\|_{F}^{2}=\left\|B_{K}\right\|_{F}^{2} & +\left\|U_{K} B_{K} V_{K}^{T}-A\right\|_{F}^{2} \text { because of orthogonality. }
\end{aligned}
$$

Lanczos for low-rank approximation

Two 100×100 matrices:
(a) The Hilbert matrix A defined by $A(i, j)=1 /(i+j-1)$.
(b) The matrix A defined by $A(i, j)=\exp (-\gamma|i-j| / n)$ with $\gamma=0.1$.

1. Excellent convergence.
2. Formula for ω_{K} from lemma suffers from cancellation.

Lanczos for low-rank approximation

Two open problems:

1. Convergence theory that explains excellent convergence. Specifically, show that

$$
\left\|A_{2 k}-A\right\|_{F} \leq 2\left\|\mathcal{T}_{k}(A)-A\right\|_{F}
$$

under mild conditions on u_{1}. (Hint: Do not proceed via convergence of singular vectors.)
2. Derive cheap, accurate, and reliable error estimates for $\|\cdot\|_{F},\|\cdot\|_{2}$.

Adaptive Cross Approximation (ACA)

Idea: Construct low-rank approximation from rows and columns of A.

- Which columns and rows? How?

Theorem (Goreinov/Tyrtyshnikov/Zamarshkin'1997).
Let $\varepsilon:=\sigma_{k+1}(A)$. Then there exist row indices $r \subset\{1, \ldots, m\}$ and column indices $c \subset\{1, \ldots, n\}$ and a matrix $S \in \mathbb{R}^{k \times k}$ such that

$$
\|A-A(:, c) S A(r,:)\|_{2} \leq \varepsilon(1+2 \sqrt{k}(\sqrt{m}+\sqrt{n})) .
$$

- Consider k dominant left/right singular vectors U_{k}, V_{k}. Proof proceeds by showing that \exists submatrices of U_{k}, V_{k} such that

$$
\begin{aligned}
\sigma_{\min }\left(U_{k}(c,:)\right) & \geq(\sqrt{k(m-k)+1})^{-1 / 2} \\
\sigma_{\min }\left(V_{k}(r,:)\right) & \geq(\sqrt{k(n-k)+1})^{-1 / 2}
\end{aligned}
$$

Choice of S not difficult but technical, and involves full matrix A.

- By no means constructive.

Adaptive Cross Approximation (ACA)

Choice of $S=(A(r, c))^{-1}$ in ACA \rightsquigarrow Remainder term

$$
R:=A-A(:, c)(A(r, c))^{-1} A(r,:)
$$

has zero rows at r and zero columns at c.
Cross approximation:

Adaptive Cross Approximation (ACA)

Another brave attempt to find a good cross..
Theorem (Goreinov/Tyrtyshnikov'2001). Suppose that

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where $A_{11} \in \mathbb{R}^{k \times k}$ has maximal volume (i.e., max abs(det)) among all $k \times k$ submatrices of A. Then

$$
\left\|A_{22}-A_{21} A_{11}^{-1} A_{12}\right\|_{c} \leq(k+1) \sigma_{k+1}(A),
$$

where $\|M\|_{C}:=\max _{i, j}|M(i, j)|$

Unfortunately, finding A_{11} is NP hard [Çivril/Magdon-Ismail'2013].

Adaptive Cross Approximation (ACA)

Proof of theorem for $(k+1) \times(k+1)$ matrices. Consider

$$
A=\left(\begin{array}{ll}
A_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad A_{11} \in \mathbb{R}^{k \times k}, a_{12} \in \mathbb{R}^{k \times 1}, a_{21} \in \mathbb{R}^{1 \times k}, a_{22} \in \mathbb{R}
$$

with invertible A_{11}. Using the Schur complement,

$$
\left|\left(A^{-1}\right)_{k+1, k+1}\right|=\frac{1}{\left|a_{22}-a_{12} A_{11}^{-1} a_{21}\right|}=\frac{|\operatorname{det} A|}{\left|\operatorname{det} A_{11}\right|}
$$

If $\left|\operatorname{det} A_{11}\right|$ is maximal among all possible selections of $k \times k$ submatrices of $A \rightsquigarrow\left|\left(A^{-1}\right)_{k+1, k+1}\right|=\left\|A^{-1}\right\|_{C}:=\max _{i, j}\left|\left(A^{-1}\right)_{i j}\right|$.

$$
\begin{aligned}
\sigma_{k+1}(A)^{-1} & =\left\|A^{-1}\right\|_{2}=\max _{x} \frac{\left\|A^{-1} x\right\|_{2}}{\|x\|_{2}} \\
& \geq \frac{1}{k+1} \max _{x} \frac{\left\|A^{-1} x\right\|_{\infty}}{\|x\|_{1}}=\frac{1}{k+1}\left\|A^{-1}\right\|_{c}
\end{aligned}
$$

and thus

$$
\left|a_{22}-a_{12} A_{11}^{-1} a_{21}\right|=\frac{1}{\left\|A^{-1}\right\|_{c}} \leq(k+1) \sigma_{k+1}(A)
$$

Adaptive Cross Approximation (ACA)

ACA with full pivoting [Bebendorf/Tyrtyshnikov'2000]
1: Set $R_{0}:=A, r:=\{ \}, c:=\{ \}, k:=0$
2: repeat
3: $\quad k:=k+1$
4: $\quad\left(i^{*}, j^{*}\right):=\arg \max _{i, j}\left|R_{k-1}(i, j)\right|$
5: $\quad r:=r \cup\left\{i^{*}\right\}, c:=c \cup\left\{j^{*}\right\}$
6: $\quad \delta_{k}:=R_{k-1}\left(i^{*}, j^{*}\right)$
7: $\quad u_{k}:=R_{k-1}\left(:, j^{*}\right), v_{k}:=R_{k-1}\left(i^{*},:\right)^{T} / \delta_{k}$
8: $\quad R_{k}:=R_{k-1}-u_{k} v_{k}^{T}$
9: until $\left\|R_{k}\right\|_{F} \leq \varepsilon\|A\|_{F}$

- This is greedy for maxvol. (Proof on next slide.)
- Still too expensive.

Adaptive Cross Approximation (ACA)

Lemma (Bebendorf'2000). Let $r_{k}=\left\{i_{1}, \ldots, i_{k}\right\}$ and $c_{k}=\left\{j_{1}, \ldots, j_{k}\right\}$ be the row/column index sets constructed in step k of the algorithm. Then

$$
\operatorname{det}\left(A\left(r_{k}, c_{k}\right)\right)=R_{0}\left(i_{1}, j_{1}\right) \cdots R_{k-1}\left(i_{k}, j_{k}\right) .
$$

Proof. From lines 7 and 8 , it follows that the last column of $A\left(r_{k}, c_{k}\right)$ is a linear combination of the columns of the matrix

$$
\tilde{A}_{k}:=\left[A\left(r_{k}, c_{k-1}\right), R_{k-1}\left(r_{k}, j_{k}\right)\right] \in \mathbb{R}^{k \times k},
$$

which implies $\operatorname{det}\left(\tilde{A}_{k}\right)=\operatorname{det}\left(A\left(r_{k}, c_{k}\right)\right)$. However, $\tilde{A}_{k}\left(i, j_{k}\right)=0$ for all $i=i_{1}, \ldots, i_{k-1}$ and hence

$$
\operatorname{det}\left(\tilde{A}_{k}\right)=R_{k-1}\left(i_{k}, j_{k}\right) \operatorname{det}\left(A\left(r_{k-1}, c_{k-1}\right)\right)
$$

Since $\operatorname{det} A\left(r_{1}, c_{1}\right)=A\left(i_{1}, j_{1}\right)=R_{0}\left(i_{1}, j_{1}\right)$, the result follows by induction.

Adaptive Cross Approximation (ACA)

ACA with partial pivoting
1: Set $R_{0}:=A, r:=\{ \}, c:=\{ \}, k:=1, i^{*}:=1$
2: repeat
3: $\quad j^{*}:=\arg \max _{j}\left|R_{k-1}\left(i^{*}, j\right)\right|$
4: $\quad \delta_{k}:=R_{k-1}\left(i^{*}, j^{*}\right)$
5: if $\delta_{k}=0$ then
6: \quad if $\# r=\min \{m, n\}-1$ then
7: Stop
8: \quad end if
9: else
10: $\quad u_{k}:=R_{k-1}\left(:, j^{*}\right), v_{k}:=R_{k-1}\left(i^{*},:\right)^{T} / \delta_{k}$
11: $\quad R_{k}:=R_{k-1}-u_{k} v_{k}^{T}$
12: $\quad k:=k+1$
13: end if
14: $\quad r:=r \cup\left\{i^{*}\right\}, c:=c \cup\left\{j^{*}\right\}$
15: $\quad i^{*}:=\arg \max _{i, i \notin r}\left|u_{k}(i)\right|$
16: until stopping criterion is satisfied

Adaptive Cross Approximation (ACA)

ACA with partial pivoting. Remarks:

- R_{k} is never formed explicitly. Entries of R_{k} are computed from

$$
R_{k}(i, j)=A(i, j)-\sum_{\ell=1}^{k} u_{\ell}(i) v_{\ell}(j)
$$

- Ideal stopping criterion $\left\|u_{k}\right\|_{2}\left\|v_{k}\right\|_{2} \leq \varepsilon\|A\|_{F}$ elusive. Replace $\|A\|_{F}$ by $\left\|A_{k}\right\|_{F}$, recursively computed via

$$
\left\|A_{k}\right\|_{F}^{2}=\left\|A_{k-1}\right\|_{F}^{2}+2 \sum_{j=1}^{k-1} u_{k}^{T} u_{j} v_{j}^{T} v_{k}+\left\|u_{k}\right\|_{2}^{2}\left\|v_{k}\right\|_{2}^{2}
$$

Adaptive Cross Approximation (ACA)

Two 100×100 matrices:
(a) The Hilbert matrix A defined by $A(i, j)=1 /(i+j-1)$.
(b) The matrix A defined by $A(i, j)=\exp (-\gamma|i-j| / n)$ with $\gamma=0.1$.

1. Excellent convergence for Hilbert matrix.
2. Slow singular value decay impedes partial pivoting.

ACA is Gaussian elimination

We have

$$
R_{k}=R_{k-1}-\delta_{k} R_{k-1} e_{k} e_{k}^{T} R_{k-1}=\left(I-\delta_{k} R_{k-1} e_{k} e_{k}^{T}\right) R_{k-1}=L_{k} R_{k-1}
$$

where $L_{k} \in \mathbb{R}^{m \times m}$ is given by

$$
L_{k}=\left[\begin{array}{ccccccc}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & & & & \\
& & & 0 & & & \\
& & & \vdots & & \ddots & \\
& & & \ell_{m+1, k} & 1 & & \\
& & & & 1
\end{array}\right], \quad \ell_{i, k}=-\frac{e_{i}^{T} R_{k-1} e_{k}}{e_{k}^{T} R_{k-1} e_{k}} .
$$

for $i=k+1, \ldots, m$.
Matrix L_{k} differs only in position (k, k) from usual lower triangular factor in Gaussian elimination.

Benefits from spd

For symmetric positive semi-definite matrix $A \in \mathbb{R}^{n \times n}$:

- SVD becomes spectral decomposition.
- Can replace two-sided Lanczos by standard Lanczos.
- Can use trace instead of Frobenius norm to control error.
- Choice of rows/columns, e.g., by largest diagonal element of R_{k}.
- ACA becomes
$=$ Cholesky (with diagonal pivoting). Analysis in [Higham'1990].
$=$ Nyström method [Williams/Seeger'2001].

Randomized algorithms for low-rank approximation

Must read: Halko/Martinsson/Tropp'2010: Finding Structure with Randomness...

Randomized Algorithm:

1. Choose standard Gaussian random matrix $\Omega \in \mathbb{R}^{n \times k}$.
2. Perform block mat-vec $Y=A \Omega$.
3. Compute (economic) QR decomposition $Y=Q R$.
4. Form $B=Q^{T} A$.
5. Set $\mathcal{T}_{k}(A) \approx \widehat{A}:=Q \mathcal{T}_{k}(B)$

Exact recovery: If A has rank k, we recover $\widehat{A}=A$ with probability 1 .

Randomized algorithms for low-rank approximation

Must read: Halko/Martinsson/Tropp'2010: Finding Structure with Randomness...

Randomized Algorithm:

1. Choose standard Gaussian random matrix $\Omega \in \mathbb{R}^{n \times(k+p)}$.
2. Perform block mat-vec $Y=A \Omega$.
3. Compute (economic) QR decomposition $Y=Q R$.
4. Form $B=Q^{T} A$.
5. Set $\mathcal{T}_{k}(A) \approx \widehat{A}:=Q \mathcal{T}_{k}(B)$

HMT'2010: If A is a general matrix then choosing $k+p=2 k$ yields

$$
\mathbb{E}\|A-\widehat{A}\|_{2} \leq\left(2+4 \sqrt{\frac{2 \min \{m, n\}}{k-1}}\right) \sigma_{k+1} .
$$

Bound can be improved (dramatically) by performing a few steps of subspace iteration on Y.

Randomized algorithms for low-rank approximation

Two 100×100 matrices:
(a) The Hilbert matrix A defined by $A(i, j)=1 /(i+j-1)$.
$k=5$:
Exact $\quad p=0 \quad p=1 \quad p=5$
$1.88 \times 10^{-3} \quad 2.82 \times 10^{-3} \quad 1.89 \times 10^{-3} \quad 1.88 \times 10^{-3}$
(b) The matrix A defined by $A(i, j)=\exp (-\gamma|i-j| / n)$ with $\gamma=0.1$.
$k=40$:

Exact	$p=0$	$p=10$	$p=40$	$p=80$
1.45×10^{-3}	5×10^{-3}	4×10^{-3}	1.6×10^{-3}	1.45×10^{-3}

A priori approximation results

> Need to know a priori which matrices admit good low-rank approximations.

Why?

- Know which situations call for (hierarchical) low-rank approximations.
- Drive clustering/partitioning of matrix.

Schmidt-Mirsky: Equivalently, establish (quick) decay of singular values.

Singular values of random matrices

```
A = rand(200);
semilogy(svd(A))
```


Singular values

No reasonable low-rank approximation possible

Singular values of smooth function

- Discretized smooth bivariate function.
- Arranged function values into a matrix.

Singular values

Excellent rank-10 approximation possible

Exceptional case: Singularities along coordinate axes

Rule of thumb: Smoothness helps, but not always needed.

Discretization of bivariate function

- Bivariate function: $f(x, y):\left[x_{\min }, x_{\max }\right] \times\left[y_{\min }, y_{\max }\right] \rightarrow \mathbb{R}$.
- Function values on tensor grid $\left[x_{1}, \ldots, x_{n}\right] \times\left[y_{1}, \ldots, y_{m}\right]$:

$$
F=\left[\begin{array}{cccc}
f\left(x_{1}, y_{1}\right) & f\left(x_{1}, y_{2}\right) & \cdots & f\left(x_{1}, y_{n}\right) \\
f\left(x_{2}, y_{1}\right) & f\left(x_{2}, y_{2}\right) & \cdots & f\left(x_{2}, y_{n}\right) \\
\vdots & \vdots & & \vdots \\
f\left(x_{m}, y_{1}\right) & f\left(x_{m}, y_{2}\right) & \cdots & f\left(x_{m}, y_{n}\right)
\end{array}\right]
$$

Basic but crucial observation: $f(x, y)=g(x) h(y) \rightsquigarrow$

$$
F=\left[\begin{array}{ccc}
g\left(x_{1}\right) h\left(y_{1}\right) & \cdots & g\left(x_{1}\right) h\left(y_{n}\right) \\
\vdots & & \vdots \\
g\left(x_{m}\right) h\left(y_{1}\right) & \cdots & g\left(x_{m}\right) h\left(y_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
g\left(x_{1}\right) \\
\vdots \\
g\left(x_{m}\right)
\end{array}\right]\left[\begin{array}{lll}
h\left(y_{1}\right) & \cdots & h\left(y_{n}\right)
\end{array}\right]
$$

Separability implies rank 1.

Separability and low rank

Approximation by sum of separable functions

$$
f(x, y)=\underbrace{g_{1}(x) h_{1}(y)+\cdots+g_{k}(x) h_{k}(y)}_{=::_{k}(x, y)}+\text { error }
$$

or (not more generally)

$$
f(x, y)=\underbrace{\sum_{j=1}^{k} s_{i j} g_{i}(x) h_{j}(y)}_{=: t_{k}(x, y)}+\text { error }
$$

Define

$$
F_{k}=\left[\begin{array}{ccc}
f_{k}\left(x_{1}, y_{1}\right) & \cdots & f_{k}\left(x_{1}, y_{n}\right) \\
\vdots & & \vdots \\
f_{k}\left(x_{m}, y_{1}\right) & \cdots & f_{k}\left(x_{m}, y_{n}\right)
\end{array}\right] .
$$

Then F_{k} has rank $\leq k$ and $\left\|F-F_{k}\right\|_{F} \leq \sqrt{m n} \times$ error.

$$
\rightsquigarrow \sigma_{k+1}(F) \leq\left\|F-F_{k}\right\|_{2} \leq\left\|F-F_{k}\right\|_{F} \leq \sqrt{m n} \times \text { error } .
$$

Semi-separable approximation implies low-rank approximation.

Semi-separable approximation by Taylor

Example: 1D integral operator with shift-invariant kernel

$$
f(x, y):=\left\{\begin{array}{cl}
g(x-y) & \text { if } x>y \\
g(y-x) & \text { if } y>x \\
0 & \text { otherwise }
\end{array}\right.
$$

with $g(z)=\log (z)$.
Taylor expansion of g around $z_{0}>0$:

$$
g(z) \approx g_{k}(z):=\sum_{i=0}^{k-1} \frac{g^{(i)}\left(z_{0}\right)}{i!}\left(z-z_{0}\right)^{i} .
$$

\rightsquigarrow polynomial expansion of f around $\left(x_{0}, y_{0}\right)$ with $z_{0}=x_{0}-y_{0}$:

$$
f(x, y) \approx g_{k}(x-y)=\sum_{i=0}^{k-1} \sum_{j=0}^{k-1-i}(-1)^{j} f^{(i+j)}\left(x_{0}-y_{0}\right) \frac{\left(x-x_{0}\right)^{i}}{i!} \frac{\left(y-y_{0}\right)^{j}}{j!}
$$

Semi-separable approximation by Taylor

Summary:
$($ discr. $f) \approx\left(\right.$ discr. $\left.\left(x-x_{0}\right)^{i}\right) \times\left(f^{(i+j)}\left(x_{0}-y_{0}\right)\right) \times\left(\text { discr. }\left(y-y_{0}\right)^{j}\right)^{T}$
\rightsquigarrow rank-k approximation with approximation error governed by Tayor remainder

$$
\left|g(z)-g_{k}(z)\right| \leq \max _{\xi \in[a, b]}\left|\frac{f^{(k)}(\xi)}{k!}\left(z-z_{0}\right)^{k}\right| \leq \frac{1}{k}\left(\frac{b-a}{2 a}\right)^{k}
$$

for all $0<a \leq z \leq b$ with $z_{0}=(a+b) / 2$.

Semi-separable approximation by Taylor

Corollary. Consider real intervals I_{x}, I_{y} and $0<\eta<1$ such that

$$
\operatorname{diam}\left(I_{x}\right)+\operatorname{diam}\left(I_{y}\right) \leq 2 \eta \cdot \operatorname{dist}\left(I_{x}, I_{y}\right)
$$

Then

$$
\left|f(x, y)-f_{k}(x, y)\right| \leq \frac{1}{k} \eta^{k}
$$

Proof. For $z=x-y$ with $x \in I_{x}, y \in I_{y}$, we have $z \in[a, b]$ with

$$
\frac{b-a}{2 a}=\frac{\operatorname{diam}\left(I_{x}\right)+\operatorname{diam}\left(I_{y}\right)}{2 \operatorname{dist}\left(I_{x}, I_{y}\right)} \leq \eta .
$$

Semi-separable approximation by interpolation

Solution of approximation problem

$$
f(x, y)=g_{1}(x) h_{1}(y)+\cdots+g_{k}(x) h_{k}(y)+\text { error. }
$$

by tensorized polynomial interpolation.
General construction:

1. Lagrange interpolation of $f(x, y)$ in y-coordinate:

$$
\mathcal{I}_{y}[f](x, y)=\sum_{j=1}^{k} f\left(x, \theta_{j}\right) L_{j}(y)
$$

with Lagrange polynomials L_{j} of degree $k-1$ on \mathcal{I}_{y}.
2. Interpolation of $\mathcal{I}_{y}[f]$ in x-coordinate:

$$
\mathcal{I}_{x}\left[\mathcal{I}_{y}[f]\right](x, y)=\sum_{i, j=1}^{k} f\left(\xi_{i}, \theta_{j}\right) L_{i}(x) L_{j}(y)
$$

Semi-separable approximation by interpolation

Summary:

$$
(\text { discr. } f) \approx\left(\operatorname{discr} . L_{i}(x)\right) \times\left(f\left(\xi_{i}, \theta_{j}\right)\right) \times\left(\operatorname{discr} . L_{j}(y)\right)^{T}
$$

\rightsquigarrow rank-k approximation with approximation error governed by

$$
\begin{aligned}
\text { error } & \leq\left\|f-\mathcal{I}_{x}\left[\mathcal{I}_{y}[f]\right]\right\|_{\infty} \\
& =\left\|f-\mathcal{I}_{x}[f]+\mathcal{I}_{x}[f]-\mathcal{I}_{x}\left[\mathcal{I}_{y}[f]\right]\right\|_{\infty} \\
& \leq\left\|f-\mathcal{I}_{x}[f]\right\|_{\infty}+\left\|\mathcal{I}_{x}\right\|_{\infty}\left\|f-\mathcal{I}_{y}[f]\right\|_{\infty}
\end{aligned}
$$

with Lebesgue constant $\left\|\mathcal{I}_{x}\right\|_{\infty} \sim \log r$ when using Chebyshev interpolation nodes.

Interpolation usually much better than Taylor [Börm'2010] \rightsquigarrow
η can be choosen smaller (roughly half) in adminissibility condition.

Semi-separable approximation: further results

If we do not insist on polynomials:

- For $f(x, y)=1 /(x-y)$ and similar functions, much better approximation by sum of exponentials [Hackbusch'2010].
-

\sup _{f \in B^{s}} \inf \left\|f(x, y)-\sum_{k=1}^{r} g_{k}(x) h_{k}(y)\right\|_{L^{2}} \sim r^{-s}
\]

with Sobolev space B^{s} of periodic functions with partial derivatives up to order s.

