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Introduction

» Limitations of (approximate) sparsity
» HODLR for (tridiagonal)~"
» HSS for (tridiagonal) ™"



Sparse matrices
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(reord. by symamd)

» Cholesky factor (nearly) inherits sparsity.

» Look for nothing else when solving Ax = b for matrices A from
2D FE or FD discretizations.



Limitations of sparsity

Sparse factorizations are of limited use when:

» The matrix A itself is full. Examples:
» nonlocal operators: BEM, fractional PDEs;
» nonlocal basis functions (Trefftz-like methods).

» A~ is explicitly needed. Examples:
» Inverse covariance matrix estimation;
» Matrix iterations for computing f(A), for example sign function

iteration;

» diag(A~") in electronic structure analysis.

» Cholesky/LU factors of (reordered) A have too much fill-in:
» FE discretizations of 3D PDEs;
» “random” sparsity.

Does approximate sparsity help?



A tridiagonal matrix

A=(n+1)? +o(n+1)>21,,
. _1
1 2

» o > 0is chosen to control x(A) = ||A|l2||A~"2.



Inverse of a tridiagonal matrix

Approximate sparsity of A~ for n = 50 and different values of o

(@) o =4,k(A) =2 (b) o =1,k(A) =5 (c) 0 =0, x(A) ~ 108

In accordance with result by [Demko et al.’1984]:

2li—j|
il <c (Y1) o= max [k @ae) (1 VRCA

See also [Benzi/Razouk’'2007].



Inverse of a tridiagonal matrix

» Idea: Exploit data-sparsity instead of sparsity.

» Low rank: n x n matrix M with rank r < n can be represented
with 2nr parameters: M = BC'.

» But: (tridiagonal)~' does not have low rank ~ need for
partitioning.

Assume A is tridiagonal spd and partition with Aj; € RM*M |
Aop € RM2xM2;

T
_ A11 0 _ en1 em
e 2)-mmn (3)(5)



Inverse of a tridiagonal matrix

SMW implies

. T
AT — (A111 0 ) I any ny+1 <W1> <W1>
0 AZ_Z1 1 + 6,77-1 A;ﬂ en1 + e1TA2’21 €4 (7] W ’

with wy = Aj'en, and wo = —A,'er.

» Off-diagonal blocks of A~' have rank at most 1.
» But: Ajq and Ax, are still large!
» ~~ hierarchical partitioning.



Inverse of a tridiagonal matrix: Hierarchical partitioning

Suppose nis integer multiple of 4, partition

A(2) A(Z)
11 12 A
ACTT AC) 12

A= 21 22
A(Z) A(2) )
Ao, 33 | Azg
AD | AD
43 44
2 2
50 |80 |,
B 2 B 2 12
A*" 21 22
B(Z) B(Q) )
BS4 33 34
B | BY
43 44
such that A% Bf]?) € R"4xn/4 . all off-diagonal blocks have rank 1.

/j ’
Continuing recursively for n = 2*:

2n/2 +4n/4 +---+2%n/2" + n= nlog, n+ O(n)

storage for A=".



Inverse of a tridiagonal matrix: Nested bases

Goal: Remove log-factor in nlog, n.
Let Uj(z) e R"4x2 j =1, ... 4, be orthonormal bases such that

span { (AP)"e1, (AP)"en/a } C range(U?).

AR A3
Applying SMW to Ay = | © 1] 1% | shows

2
Ag1) A22
- u® o - u® o
Ajle erange( 1 > |+ Ajens crange | ! o |-
o up® o upP
Similarly,

U(2) 0 B U(2) 0
Ales e range ( 3 > |+ Asenp crange | 3 o | -
22 o u® o u®



Inverse of a tridiagonal matrix: Nested bases
If we let U; € R"/2%2, j = 1,2, be orthonormal basis such that

span {Ajlf‘ e, A e,,/g} C range(U}),

u2d. o
then there exist X; e R**2st. U= | 21 o | X;.
0 Uzj
» no need to store the bases U;, Us € R"/2%2 explicitly
» availability of Uj(z) and the small matrices Xj, X suffices
Summary: Can represent A~' as

o e S |
)

11
2 2 2 2
U (s (U7 B%

UiSi2U]

UShu!

@ CrEEnTaN
‘ @ (28)337' T Y 834(2()U4 )
U4 (834 ) (U3 ) B44

for some matrices Sio, Ssz) € R?*2, Storage requirements:

4x2n/44+2x8+ (2+1) x 4.
—_—— T

for X;

2 2 2
for U® for Sz, 12, 52

n = 2k ~~ O(n) total storage for A=".



Literature landscape of hierarchical low-rank

structures
Without nested bases:

» HODLR: Aminfar, Ambikasaran, Darve, Greengard, Hogg,
O'Neil, ...

» H-matrices: Bebendorf, Grasedyck, Hackbusch, Khoromskij, . ..
» Mosaic-Skeleton approximations: Tyrtyshnikov and collaborators

With nested bases:

» Semi-separable / quasi-separable matrices: Lots of classical and
modern literature, including Bini, Chandrasekaran, Dewilde,
Eidelman, Fasino, Gantmacher, Gemignani, Gohberg, Krein,
Olshevsky, Pan, Rozsa, Tyrtyshnikov, Zhlobich. See survey
papers and books by Vandebril/Van Barel/Mastronardi.

» HSS matrices: Chandrasekaran, Greengard, Martinsson,
Rokhlin, Xia, Zorin, ...

» H2-matrices: Bérm, Hackbusch, Mach, . ..

Note: Red items not covered in this lecture.
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Low-rank approximation

SVD and best low-rank approximation
Stability of SVD and low-rank approximation
Algorithms: SVD, Lanczos, ACA, Randomized
A priori approximation results



SVD

Theorem (SVD). Let A € R™*"™ with m > n. Then there are
orthogonal matrices U € R™ ™ and V € R"*" such that

01
A=UZVT with = K e RMX"
On
0
andoy > 00> --- >0, > 0.
» m > n for notational convenience only.
» MATLAB: [U,S,V] = svd(A,’econ’) computes economic

SVD with O(mn?) ops.
» Pay attention to roundoff error: semilogy (svd (hilb (100)))
vs. exponential decay established by [Beckermann’2000].

» Sometimes more accuracy possible: [DGESVD’1999],
[Drmac/Veselic’2007].



SVD: low-rank approximation

Consider k < nand let
Uy = (U1 Uk) , Xy :.=diag(ot,...,0k), Vik:= (u1

Then
77((A) = Uka Vk

has rank at most k. For any unitarily invariant norm || - ||:
17k(A) — Al| = ||diag(ox+1, - -, on)|

In particular, for spectral norm and the Frobenius norm:

1A= Tk(A)ll2 = oks1, A= Te(A)llF = m

Uk) .



SVD: best low-rank approximation

Theorem (Schmidt-Mirsky). Let A € R™*". Then
|A—Tk(A)|| = min {||A— B|| : B < R™" has rank at most k}

holds for any unitarily invariant norm || - ||.

Proof for || - ||2: For any B € R™*" of rank < k, null space kernel(B)
has dimension > n — k. Hence, 3w € kernel(B) N range( Vik.1) with
|lw|l2 = 1. Then

> (A= B)W[3 = |Aw| = [|AVir1 Vi, w3

= | Uk1Zgar Vi wll3
r+1 r4+1

= 2:"fj|‘/jTW|2 2> Ok+1 Z |VjTW|2 = Ok+1-
j=1 j=1

V

1A~ BII3



Stability of SVD

Weyl’s inequality (see, e.g., [Horn/Johnson’2013]):
oirj-1(A+ E) < 0i(A) + 0i(E), 1<ij<n i+j<qg+1.
Settingj =1 ~
agi(A+ E) < oi(A) + | E|l2, i=1,...,n

Singular vectors tend to be less stable! Example:
1 0 0 «
A_<0 1+5)’ E_(e —5)'

» A has right singular vectors ((1)) , (

- O
N——

: : 1 1
1 1
> A+ E has right singular vectors — <1> ' 75 (_1>



Stability of SVD

» Perturbation on input multiplied by 6" = [0 (A) — k1 (A)] .
» Bad news?



Stability of low-rank approximation
Lemma (folklore / Hackbusch). Let A € R™*™ have rank < k. Then

ITk(A+ E) — All < C||E||

holds with C = 2 for any unitarily invariant norm || - ||. For the
Frobenius norm, the constant can be improved to C = (1 +v/5)/2.

Proof. Schmidt-Mirsky gives ||7x(A+ E) — (A+ E)| < E. Triangle
inequality implies

[Tk(A+ E) = (A+ E) + (A+ E) — Al < 2| E||.
See [Hackbusch’2014] for second part. O
Implication for general matrix A:

IT(A+E) = Tu(A)l = [|Tk(Tk(A) + (A= Tk(A)) + E) — Tk(A)|
< CI(A=Tk(A) + El < C(IA = Tc(A) + [ EI)-

Perturbations on the level of truncation error pose no danger.

20



Stability of low-rank approximation: Application

Consider partitioned matrix

(A A2 L mmixn
A_(Am A )’ Aj € BT,

and desired rank k < mj, n;. Let e := || Tx(A) — A|l.
Ej=T(Ay) Ay = |El<e

By stability of low-rank approximation,

5] 3 A, (& 2)
21 22

F

< Cs,

Ti(A21)  T(Azz) ,_-

with C = 3(1 + V/5).

21



Algorithms for low-rank approximation

Three main classes of algorithms:

1. All entries of A (cheaply) available and min{m, n} small ~ svd.
Related situation: A large but has small rank.

2. Large m, n and matvec possible ~~
Lanczos-based methods and randomized algorithms.

3. Entries of A expensive to compute ~+ adaptive cross
approximation and its cousins.

22



SVD for recompression

SVD frequently used for recompression. Suppose that
A=BCT, with BeR™K CecR™K, 2)

where K > k, but still (much) smaller than m, n.
Typical example: Sum of J matrices of rank k:

A=Y B G =(B - B)(G - C). @
j:1 E]Rmxk E]R”Xk RmMx Jk RmxJk

Algorithm to recompress A:
1. Compute (economic) QR decomps B = QgRg and C = Q¢ARc.
2. Compute truncated SVD Tx(RsR%) = Uk Vi.
3. Set Ux = Qglk, Vk = Q¢ Vi and return Tx(A) := Uz, V[ .

Returns best rank-k approximation of A with O((m + n)K?) ops.

23



Lanczos for low-rank approximation

Normalized starting vector u;. Consider Krylov subspaces

Kki1(AAT,u1) = span{ui, AATuy, ... (AAT)Ku},
Kk+1(ATA vi) = span{vi,ATAvy, ..., (ATA) v},

with Vi = ATU1/||ATU1 Hg

Two-sided Lanczos process

10V ATU1, o — ||\7||2, Vi \~//Oz1.

2. forj=1,... , Kdo

3 U Av— g, By = |[Ull2, Ujsr < U/ By

4 Ve ATUj+1 = Bix1Vjs ajy1 = |[Vll2, Vip1 < V/Bjta.

5: end for

» Returns orthonormal bases U1 € R™K+1) |V, e R (K+1)

of /CK+1 (AAT7 U4 ), /CK+1 (ATA7 V1)

» Reorthogonalization assumed.

24



Lanczos for low-rank approximation

Collect scalars from Gram-Schmidt into bidiagonal matrix:
o
B2 a2
Bk =
Bk ak
~ two-sided Lanczos decomposition

AT Uk = VB, AV = UkBk + Bry1Uk+1€k,

Assuming K > k:
How to extract rank-k approximation to A?

25



Lanczos for low-rank approximation

» Do notuse svds, eigs, PROPACK, or anything else that aims at
computing singular vectors!

[Simon/Zha’2000]:
Ti(A) =~ Ak := UxTk(Bk) V)L

Cheap error estimate in Frobenius norm:
Lemma.

Ak — Allr < \/0k+1 (Bk)?+ - - - + ok(Bk)? + wk-
where w} = || A2 — of Y /5(a? + B2).
Proof. By the triangular inequality
|Ak — Allr < ||Uk(Te(Bk) — Bk)Vik + Uk Bk Vi — Al -
ok (Be)2 + -+ ox(Bk)? + || Ux Bk VI — Al

IN

|A||2 = ||Bk||Z + || UkBk VI — A||2F because of orthogonality.

26



Lanczos for low-rank approximation

Two 100 x 100 matrices:
(@) The Hilbert matrix A defined by A(i,j) =1/(i+j—1).
(b) The matrix A defined by A(i,j) = exp(—~|i — j|/n) with v = 0.1.

10'° 10°
)

Computed omega j{1) Computed omega [|1)
Computed omega |[2) Computed omega |[2)
- - - - Best approximatiol - - - - Best approximatiol

0 20 40 60 80 100 : 0 20 40 60 80 100
1. Excellent convergence.
2. Formula for wk from lemma suffers from cancellation.

27



Lanczos for low-rank approximation

28



Adaptive Cross Approximation (ACA)

Idea: Construct low-rank approximation from rows and columns of A.
» Which columns and rows? How?

Theorem (Goreinov/Tyrtyshnikov/Zamarshkin’1997).
Let € := ox1(A). Then there exist row indices r C {1,...,m} and
column indices ¢ C {1,...,n} and a matrix S € R¥*¥ such that

|A—A(, c)SA(r. )2 < (1 + 2Vk(vm + V/n)).

» Consider k dominant left/right singular vectors Uy, Vk. Proof
proceeds by showing that 3submatrices of Uy, Vi such that

Umin(Uk(C,:)) > ( k(m_ k)+ 1)—1/2
Umin(vk(f,i)) > ( k(n_k)+1)—1/2

Choice of S not difficult but technical, and involves full matrix A.
» By no means constructive.

29



Adaptive Cross Approximation (ACA)

Choice of S = (A(r,c))~" in ACA ~ Remainder term
R:=A—A(:,c)(A(r,c))"A(r,)
has zero rows at r and zero columns at c.

Cross approximation:

1 3 6 136
2
z =
7
4

30



Adaptive Cross Approximation (ACA)

Another brave attempt to find a good cross..

Unfortunately, finding A¢1 is NP hard [Civril/Magdon-Ismail’2013].

31



Adaptive Cross Approximation (ACA)

Proof of theorem for (k + 1) x (k + 1) matrices. Consider

= (An a12>7 A € RFF a5 e RFT 21 € RTK @y € R,
a1 do2
with invertible A1. Using the Schur complement,
1 | det A
Al = = .
[(A™ )k 1.k41] @2 — areA | | detAn|

If | det A11] is maximal among all possible selections of k x k

submatrices of A~ [(A™ kst k1| = A7 [ := max;; [(A~");].-
A71X||2
ot (A)T = AT :maxni
k+1( ) H ||2 X ||X||2
IA™" X|oo 1 1
> max = A
= k+1 x| krtiA e
and thus
_ 1
|ase — @12A7, @21| = ——— < (k+ 1)oki1(A).

1A= e

32



Adaptive Cross Approximation (ACA)

ACA with full pivoting [Bebendorf/Tyrtyshnikov’2000]

1: SetRy:=A, r={},c:={},k:=0
2: repeat

3:

4
5
6:
7:
8
9:

k:=k+1

(7,J*) == argmax;; |Rx—1 (i, ])|
r=ru{i*}, c:=cuU{j*}

§k = Rk_1(f*,j*)

Uk := Hk_1(:,j*), Vg '= Rk_1(i*, Z)T/5k
Rk = Rk,1 — UkaT

until || Rl < <[|AllF

» This is greedy for maxvol. (Proof on next slide.)
» Still too expensive.

33



Adaptive Cross Approximation (ACA)

Lemma (Bebendorf’2000). Let rx = {i1, ..., i} and cx = {ji,---,jk}
be the row/column index sets constructed in step k of the algorithm.

Then
det(A(rk, ck)) = Ro(i1, j1) - - - Rk—1(ik, Jk)-

Proof. From lines 7 and 8, it follows that the last column of A(r, cx) is
a linear combination of the columns of the matrix

Ai := [A(rk, ck—1), Ri—1(rk, j)] € R¥*K,

which implies det(Ax) = det(A(rx, cx)). However, Ac(i, j) = 0 for all
i=1i,...,ik—1 and hence

det(Ax) = Rk_1(ik, jx) det(A(fk_1, Ck_1))-

Since det A(ry, ¢1) = A(ir, 1) = Ro(i1, 1), the result follows by
induction.

34



Adaptive Cross Approximation (ACA)

ACA with partial pivoting
1: Set Ry :=A, r={}, c:={}, k:i=1,i" =1
2: repeat
3 Jj*:=argmax; |Rk_1(i*,))]

4: Ok == Rk,1(ll*,j*)

5. if 0k = 0 then

6: if #r = min{m, n} — 1 then

7: Stop

8: end if

9: else

10: Uy == Rk_1(:,j*), Vi = Rk_1(i*, :)T/(Sk
11: Ry .= Rk_q1 — UkV;Z—

12: k:=k+1

13:  end if

14:  r:=ru{i*}, c:=cU{j*}
15: " := argmax; g | U (/)]
16: until stopping criterion is satisfied

35



Adaptive Cross Approximation (ACA)

ACA with partial pivoting. Remarks:
» Ry is never formed explicitly. Entries of Ry are computed from

=

Ri(i.f) = A(i.J) = Y ue(i)ve())-

£=1

» ldeal stopping criterion ||uk||2||vk||2 < €||A||F elusive.
Replace || Al|r by ||Ak|lF, recursively computed via

k—1
1ARIIE = [[Ak-111F +2_ uf upvy vic+ I3 vl 3.
j=1

36



Adaptive Cross Approximation (ACA)

Two

N —

100 x 100 matrices:

(@) The Hilbert matrix A defined by A(i,j) =1/(i+j—1).
(b) The matrix A defined by A(i,j) = exp(—~|i — j

/n) with v = 0.1.

Exponential matrix

—Full pivoting,

—Partial pivoting

5 Hilbort matrix
10
D
>
.
3
D
‘\
=10° ° =
=< D =
= 3 =
= , 3
= D =
= o =
| _10 |
= 10 2 =
)
3
3
-15 ‘Q
10 ‘tgge==es=s R
10
20

5 10 15 20 25 30
k

. Excellent convergence for Hilbert matrix.

. Slow singular value decay impedes partial pivoting.

37



ACA is Gaussian elimination
We have
Rk = Rk—1 — 6k Rk_16xef Rk—1 = (I — 6xRx_1exef)Rk—1 = Lk Rk_1,

where L, € R™* M is given by

o i}
1 T
e' Rx_qe
Ly = 0 , bik =— 'TRk1 K
ey 1 Ei Mk—18k
L Cmk 1]

fori=k+1,...,m.

Matrix L differs only in position (k, k) from usual lower triangular
factor in Gaussian elimination.

38



Benefits from spd

For symmetric positive semi-definite matrix A € R"*":

» SVD becomes spectral decomposition.

» Can replace two-sided Lanczos by standard Lanczos.
Can use trace instead of Frobenius norm to control error.
Choice of rows/columns, e.g., by largest diagonal element of R.
ACA becomes

= Cholesky (with diagonal pivoting). Analysis in [Higham’1990].
= Nystrém method [Williams/Seeger'2001].

v VyYyy
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Randomized algorithms for low-rank approximation

Must read: Halko/Martinsson/Tropp’2010: Finding Structure with
Randomness...

Randomized Algorithm:

1.

A

Choose standard Gaussian random matrix Q € R"<k.
Perform block mat-vec Y = AQ.

Compute (economic) QR decomposition Y = QR.
Form B= Q'A.

Set Tx(A) ~ A := QTx(B)

Exact recovery: If A has rank k, we recover A= Awith probability 1.

40



Randomized algorithms for low-rank approximation

Must read: Halko/Martinsson/Tropp’2010: Finding Structure with
Randomness...

Randomized Algorithm:
1. Choose standard Gaussian random matrix Q € R"*(k+0),
Perform block mat-vec Y = AQ.
Compute (economic) QR decomposition Y = QR.
Form B= Q'A.
Set Tx(A) ~ A := QTx(B)

A

HMT'2010: If Ais a general matrix then choosing k + p = 2k yields

~ 2min{m,n
E||A—A||2S<2+4 Sl }>ak+1.

Bound can be improved (dramatically) by performing a few steps of
subspace iteration on Y.

41



Randomized algorithms for low-rank approximation

Two 100 x 100 matrices:
(a) The Hilbert matrix A defined by A(i,j) =1/(i +j—1).
k =5:
Exact p=0 p=1 p=5
1.88x1073 2.82x10~2 1.89x10~3 1.88x1073

(b) The matrix A defined by A(/, ) = exp(—~|i — j|/n) with v = 0.1.
k = 40:
Exact p=0 p=10 p=140 p =280
1.45x1073 5x1072 4x107% 1.6x107% 1.45x10°°

42



A priori approximation results

Need to know a priori which matrices admit good low-rank
approximations.

Why?

» Know which situations call for (hierarchical) low-rank
approximations.

» Drive clustering/partitioning of matrix.

Schmidt-Mirsky: Equivalently, establish (quick) decay of singular
values.

43



Singular values of random matrices

A = rand(200);
semilogy (svd (A))

A Singular values

100 200 105 50 100 150 200

No reasonable low-rank approximation possible

44



Singular values of smooth function

» Discretized smooth bivariate function.
» Arranged function values into a matrix.

Smooth function Singular values

[}

‘ 1045

0 100 200 300

Excellent rank-10 approximation possible

45



Exceptional case: Singularities along coordinate axes
Rule of thumb: Smoothness helps, but not always needed.

46



Discretization of bivariate function

» Bivariate function: f(x, y) : [Xmin, Xmax| X [Vmin, ¥Ymax] = R.
» Function values on tensor grid [x1, ..., Xa] X [V1,. .., VYm]:

f(x1,y1)  f(xa,y2) - f(x1,¥n)
F f(x2,y1)  f(xe,y2) -+ f(x2,¥n)
f(Xm, 1) f(Xm,y2) -+ f(Xm,¥n)

Basic but crucial observation: f(x,y) = g(x)h(y) ~

gx)h(yr) - g(xa)h(yn) g(x1)
F=| N N N OO
gxm)h(y1) -+ g(xm)h(yn) g(Xm)

Separability implies rank 1.

47



Separability and low rank
Approximation by sum of separable functions
f(x,¥) = g1 ()M (y) + - - + gr(x)hi(y) + error,

=:f(x.y)
or (not more generally)
Z sjgi(X)h;(y) +error
=:f(x,y)
Define
fe(x1,y1) -+ (X1, Yn)
Fo=1| 5
fic(Xm, y1) =+ fx(Xm, ¥n)

Then Fi has rank < k and ||F — Fg||r < +/mn x error.
~ ok1(F) <||F — Fkll2 < ||F — Fkllr < vVmn x error.

Semi-separable approximation implies low-rank approximation.
48



Semi-separable approximation by Taylor

Example: 1D integral operator with shift-invariant kernel
gx—y) iftx>y,
fx,y):==4 a9y —x) ify>x,
0 otherwise,

with g(z) = log(z).
Taylor expansion of g around z, > 0:

(z—2)"

9(2) ~ 9u(2) =}

~» polynomial expansion of f around (xo, yo) with zy = Xo — yo:

k—1k—1—j

) = ax —y) =3 D (—1Y ) (x —}/o)(x - x) (v —.}’o)j

i !
i=0 j=0 J

49



Semi-separable approximation by Taylor

Summary:

(discr. f) ~ (discr. (x — x0)') x (FI)(xo — yo)) x (discr. (y — yo))'

~ rank-k approximation with approximation error governed by Tayor

remainder
£(0) (&) 1 (b—a)"
~ kK 2a

K!

(z - z0)F

— <
19(2) — gk(2)] < [max

forall0 < a<z < bwithzy = (a+ b)/2.

50



Semi-separable approximation by Taylor

Proof. For z = x — y with x € Iy, y € I,, we have z € [a, b] with

b—a diam(/) +diam(/,) <
2a  edist(h.h,)

51



Semi-separable approximation by interpolation
Solution of approximation problem
f(x,y)=01(x)h(y) + - + gk(X)hk(y) + error.

by tensorized polynomial interpolation.

General construction:
1. Lagrange interpolation of f(x, y) in y-coordinate:

K
Z,[fl(x,y) = Zf
j=1

with Lagrange polynomials L; of degree k — 1 on Z,.
2. Interpolation of Z,[f] in x-coordinate:

k

AL M (x,¥) = Y H(& ) LIX)Li(Y)-

ij=1

52



Semi-separable approximation by interpolation

Summary:
(discr. f) ~ (discr. Li(x)) x (f(&,6;)) x (discr. Li(y))"
~ rank-k approximation with approximation error governed by

error < ||f = I [Z,[f]]]|
= |[f = I[f] + Ix[f] — Zx[Zy[f]]ll
< = Iu{f]lloo + [|Zxll ool = Zy [f]l oo

with Lebesgue constant ||Zx|| ~ log r when using Chebyshev
interpolation nodes.

Interpolation usually much better than Taylor [Bérm’2010] ~~
n can be choosen smaller (roughly half) in adminissibility condition.

53



Semi-separable approximation: further results

If we do not insist on polynomials:

» For f(x,y) = 1/(x — y) and similar functions, much better
approximation by sum of exponentials [Hackbusch’2010].

» [Temlyakov’'1992, Uschmajew/Schneider'2013]:

~ r—s7
[2

feBs

sup inf Hf(x, ¥) = > ak(x)h(y)
pa

with Sobolev space B°® of periodic functions with partial
derivatives up to order s.
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