Problem settir 0000	ng Spectral analysis 0000 000	Solvers for FDEs 0 0000	Numerical results 0000	Conclusions 00
	Spectral analys	ic and structu		
D	oreconditioners for	fractional di	ffusion equation	ons

Marco Donatelli · Mariarosa Mazza · Stefano Serra-Capizzano

Department of Science and High Technology, University of Insubria, Italy

CIME-EMS Cetraro, June 24, 2014

Problem setting	Spectral analysis 0000 000	Solvers for FDEs 0 0000	Numerical results 0000	Conclusions 00

- 2 Spectral analysis
 - Constant coefficients case
 - Nonconstant coefficients case

3 Solvers for FDEs

- Literature
- What's new?

4 Numerical results

5 Conclusions

0 0000		
	0 0000	o 0000 0000

We are interested in the following space-fractional diffusion equation (FDE)

$$\frac{\partial u(x,t)}{\partial t} = d_+(x,t)\frac{\partial^{\alpha} u(x,t)}{\partial_+ x^{\alpha}} + d_-(x,t)\frac{\partial^{\alpha} u(x,t)}{\partial_- x^{\alpha}} + f(x,t),$$

where

- $(x,t) \in (L,R) \times (0,T]$,
- $\alpha \in (1,2)$ is the fractional derivative order,
- f(x, t) is the source term,

•
$$d_{\pm}(x, t) \ge 0$$
 are the diffusion coefficients,

• $\frac{\partial^{\alpha} u(x,t)}{\partial_{\pm} x^{\alpha}}$ are the left-handed (+) and the right-handed (-) fractional derivatives,

$$\begin{cases} u(L,t) = u(R,t) = 0, & t \in [0,T], \\ u(x,0) = u_0(x), & x \in [L,R]. \end{cases}$$

0 0000		
	0 0000	o 0000 0000

We are interested in the following space-fractional diffusion equation (FDE)

$$\frac{\partial u(x,t)}{\partial t} = d_+(x,t)\frac{\partial^{\alpha}u(x,t)}{\partial_+x^{\alpha}} + d_-(x,t)\frac{\partial^{\alpha}u(x,t)}{\partial_-x^{\alpha}} + f(x,t),$$

where

•
$$(x, t) \in (L, R) \times (0, T]$$
,
• $\alpha \in (1, 2)$ is the fractional derivative order,

• f(x,t) is the source term,

•
$$d_{\pm}(x,t) \ge 0$$
 are the diffusion coefficients,

• $\frac{\partial^{\alpha} u(x,t)}{\partial_{\pm} x^{\alpha}}$ are the left-handed (+) and the right-handed (-) fractional derivatives,

$$\begin{cases} u(L,t) = u(R,t) = 0, & t \in [0,T], \\ u(x,0) = u_0(x), & x \in [L,R]. \end{cases}$$

Problem setting	Spectral analysis	Solvers for FDEs	Conclusions
•000	0000	0 0000	

We are interested in the following space-fractional diffusion equation (FDE)

$$\frac{\partial u(x,t)}{\partial t} \underbrace{= d_+(x,t)}_{\partial_+ x^{\alpha}} \underbrace{+ d_-(x,t)}_{\partial_- x^{\alpha}} \underbrace{+ d_-(x,t)}_{\partial_- x^{\alpha}} \underbrace{+ f(x,t)}_{\partial_- x^{\alpha}} + f(x,t),$$

where

- $(x, t) \in (L, R) \times (0, T]$,
- $\alpha \in (1,2)$ is the fractional derivative order,
- f(x, t) is the source term,
- $d_{\pm}(x, t) \ge 0$ are the diffusion coefficients,
- $\frac{\partial^{\alpha} u(x,t)}{\partial_{\pm} x^{\alpha}}$ are the left-handed (+) and the right-handed (-) fractional derivatives,

$$\begin{cases} u(L,t) = u(R,t) = 0, & t \in [0, T], \\ u(x,0) = u_0(x), & x \in [L,R]. \end{cases}$$

Problem setting Spectral anal	ysis Solvers for FDEs	Numerical results	Conclusions
• 000 0000 000	0 0000		

We are interested in the following space-fractional diffusion equation (FDE)

$$\frac{\partial u(x,t)}{\partial t} = d_+(x(t)\frac{\partial^{\alpha}u(x,t)}{\partial_+x^{\alpha}} + d_-(x,t)\frac{\partial^{\alpha}u(x,t)}{\partial_-x^{\alpha}} + f(x,t),$$

where

•
$$(x, t) \in (L, R) \times (0, T],$$

• $\alpha \in (1,2)$ is the fractional derivative order,

• f(x, t) is the source term,

•
$$d_{\pm}(x,t) \ge 0$$
 are the diffusion coefficients,

• $\frac{\partial^{\alpha} u(x,t)}{\partial_{\pm} x^{\alpha}}$ are the left-handed (+) and the right-handed (-) fractional derivatives,

$$\begin{cases} u(L,t) = u(R,t) = 0, & t \in [0,T], \\ u(x,0) = u_0(x), & x \in [L,R]. \end{cases}$$

Problem setting	Spectral analysis	Solvers for FDEs	Conclusions
•000	0000	0 0000	

We are interested in the following space-fractional diffusion equation (FDE)

$$\frac{\partial u(x,t)}{\partial t} = d_+(x,t)\frac{\partial^{\alpha} u(x,t)}{\partial_+ x^{\alpha}} + d_-(x(t)\frac{\partial^{\alpha} u(x,t)}{\partial_- x^{\alpha}} + f(x,t),$$

where

•
$$(x, t) \in (L, R) \times (0, T],$$

• $\alpha \in (1,2)$ is the fractional derivative order,

• f(x, t) is the source term,

•
$$d_{\pm}(x,t) \ge 0$$
 are the diffusion coefficients,

• $\frac{\partial^{\alpha} u(x,t)}{\partial_{\pm} x^{\alpha}}$ are the left-handed (+) and the right-handed (-) fractional derivatives,

$$\begin{cases} u(L,t) = u(R,t) = 0, & t \in [0,T], \\ u(x,0) = u_0(x), & x \in [L,R]. \end{cases}$$

0 0000		
	0 0000	o 0000 0000

We are interested in the following space-fractional diffusion equation (FDE)

$$\frac{\partial u(x,t)}{\partial t} = d_+(x,t)\frac{\partial^{\alpha} u(x,t)}{\partial_+ x^{\alpha}} + d_-(x,t)\frac{\partial^{\alpha} u(x,t)}{\partial_- x^{\alpha}} + f(x,t),$$

where

- $(x,t) \in (L,R) \times (0,T]$,
- $\alpha \in (1,2)$ is the fractional derivative order,
- f(x, t) is the source term,

•
$$d_{\pm}(x, t) \ge 0$$
 are the diffusion coefficients,

• $\frac{\partial^{\alpha} u(x,t)}{\partial_{\pm} x^{\alpha}}$ are the left-handed (+) and the right-handed (-) fractional derivatives,

$$\begin{cases} u(L,t) = u(R,t) = 0, & t \in [0,T], \\ u(x,0) = u_0(x), & x \in [L,R]. \end{cases}$$

Problem setting Spe	ctral analysis	Solvers for FDEs	Conclusions
0000 000 000	20 2	0 0000	

$$\begin{split} \frac{\partial^{\alpha} u(x,t)}{\partial_{\pm} x^{\alpha}} & \text{ are defined by the shifted Grünwald formula as follows} \\ \frac{\partial^{\alpha} u(x,t)}{\partial_{+} x^{\alpha}} &= \lim_{\Delta x \to 0^{+}} \frac{1}{\Delta x^{\alpha}} \sum_{k=0}^{\lfloor (x-L)/\Delta x \rfloor} g_{k}^{(\alpha)} u(x-(k-1)\Delta x,t), \\ \frac{\partial^{\alpha} u(x,t)}{\partial_{-} x^{\alpha}} &= \lim_{\Delta x \to 0^{+}} \frac{1}{\Delta x^{\alpha}} \sum_{k=0}^{\lfloor (R-x)/\Delta x \rfloor} g_{k}^{(\alpha)} u(x+(k-1)\Delta x,t), \end{split}$$

0000	

 $\frac{\partial^{\alpha} u(x,t)}{\partial x + \alpha}$ are defined by the shifted Grünwald formula as follows $\frac{\partial^{\alpha} u(x,t)}{\partial_{+} x^{\alpha}} = \lim_{\Delta x \to 0^{+}} \frac{1}{\Delta x^{\alpha}} \sum_{k=0}^{\lfloor (x-L)/\Delta x \rfloor} g_{k}^{(\alpha)} u(x-(k-1)\Delta x,t),$ $\frac{\partial^{\alpha} u(x,t)}{\partial_{-} x^{\alpha}} = \lim_{\Delta x \to 0^{+}} \frac{1}{\Delta x^{\alpha}} \sum_{k=0}^{\lfloor (R-x)/\Delta x \rfloor} g_{k}^{(\alpha)} u(x+(k-1)\Delta x,t),$ where $g_k^{(\alpha)}$ are the alternating fractional binomial coefficients defined as $g_k^{(\alpha)} = (-1)^k \begin{pmatrix} \alpha \\ k \end{pmatrix} = \frac{(-1)^k}{k!} \alpha(\alpha - 1) \cdots (\alpha - k + 1) \quad k = 0, 1, \dots$ with the formal notation $\begin{pmatrix} \alpha \\ 0 \end{pmatrix} = 1$.

Problem setting	Spectral analysis	Solvers for FDEs	Conclusions
0000	0000	0 0000	

Fix two positive integers N, M, and define the following partition of $[L, R] \times [0, T]$,

$$\begin{aligned} x_i &= L + i\Delta t, \quad \Delta x = \frac{(R-L)}{N+1}, \quad i = 0, \dots, N+1, \\ t_m &= m\Delta t, \quad \Delta t = \frac{T}{M}, \quad m = 0, \dots, M, \end{aligned}$$

Problem setting	Spectral analysis	Solvers for FDEs	Conclusions
0000	0000	0 0000	

Fix two positive integers N, M, and define the following partition of $[L, R] \times [0, T]$,

$$\begin{aligned} x_i &= L + i\Delta t, \quad \Delta x = \frac{(R-L)}{N+1}, \quad i = 0, \dots, N+1, \\ t_m &= m\Delta t, \quad \Delta t = \frac{T}{M}, \quad m = 0, \dots, M, \end{aligned}$$

discretization in time by an implicit Euler method

Problem setting	Spectral analysis	Solvers for FDEs	Conclusions
0000	0000	0 0000	

Fix two positive integers N, M, and define the following partition of $[L, R] \times [0, T]$,

$$\begin{aligned} x_i &= L + i\Delta t, \quad \Delta x = \frac{(R-L)}{N+1}, \quad i = 0, \dots, N+1, \\ t_m &= m\Delta t, \quad \Delta t = \frac{T}{M}, \quad m = 0, \dots, M, \end{aligned}$$

discretization in time by an implicit Euler method

+

Problem setting	Spectral analysis	Solvers for FDEs	Conclusions
0000	0000	0 0000	

Fix two positive integers N, M, and define the following partition of $[L, R] \times [0, T]$,

$$\begin{aligned} x_i &= L + i\Delta t, \quad \Delta x = \frac{(R-L)}{N+1}, \quad i = 0, \dots, N+1, \\ t_m &= m\Delta t, \quad \Delta t = \frac{T}{M}, \quad m = 0, \dots, M, \end{aligned}$$

discretization in time by an implicit Euler method

+

discretization in space of the fractional derivatives by the shifted Grünwald formula

Problem setting	Spectral analysis	Solvers for FDEs	Conclusions
0000	0000	0 0000	

Fix two positive integers N, M, and define the following partition of $[L, R] \times [0, T]$,

$$\begin{aligned} x_i &= L + i\Delta t, \quad \Delta x = \frac{(R-L)}{N+1}, \quad i = 0, \dots, N+1, \\ t_m &= m\Delta t, \quad \Delta t = \frac{T}{M}, \quad m = 0, \dots, M, \end{aligned}$$

discretization in time by an implicit Euler method

+

=

discretization in space of the fractional derivatives by the shifted Grünwald formula

consistent and unconditionally stable method^[1,2].

Meerschaert, Tadjeran, J. Comput. Appl. Math., 2004
 Meerschaert, Tadjeran, Appl. Numer. Math., 2006

5/24 M. Donatelli <u>M. Mazza</u> S. Serra-Capizzano mariarosa.mazza@uninsubria.it

Problem setting	Spectral analysis	Solvers for FDEs	Conclusions
0000	0000 000	0 0000	

,

$$\left(\nu_{M,N}I + D_{+}^{(m)}T_{\alpha,N} + D_{-}^{(m)}T_{\alpha,N}^{T}\right)u^{(m)} = \nu_{M,N}u^{(m-1)} + \Delta x^{\alpha}f^{(m)},$$

where

Problem setting	Spectral analysis	Solvers for FDEs	Conclusions
0000	0000	0 0000	

,

$$\left(\nu_{M,N}I + D_{+}^{(m)}T_{\alpha,N} + D_{-}^{(m)}T_{\alpha,N}^{T}\right)u^{(m)} = \nu_{M,N}u^{(m-1)} + \Delta x^{\alpha}f^{(m)},$$

where

Problem setting	Spectral analysis	Solvers for FDEs	Conclusions
0000	0000	0 0000	

,

$$\left(\nu_{M,N}I + D_{+}^{(m)}\mathcal{T}_{\alpha,N} + D_{-}^{(m)}\mathcal{T}_{\alpha,N}^{\tau}\right)u^{(m)} = \nu_{M,N}u^{(m-1)} + \Delta x^{\alpha}f^{(m)},$$

where

$$T_{\alpha,N} = - \begin{bmatrix} g_1^{(\alpha)} & g_0^{(\alpha)} & 0 & \cdots & 0 & 0\\ g_2^{(\alpha)} & g_1^{(\alpha)} & g_0^{(\alpha)} & 0 & \cdots & 0\\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots\\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots\\ \vdots & \ddots & \ddots & \ddots & \ddots & 0\\ g_{N-1}^{(\alpha)} & \vdots & \ddots & \ddots & g_1^{(\alpha)} & g_0^{(\alpha)}\\ g_N^{(\alpha)} & g_{N-1}^{(\alpha)} & \cdots & \cdots & g_2^{(\alpha)} & g_1^{(\alpha)} \end{bmatrix}_{N \times N}$$

•
$$D_{\pm}^{(m)} = \operatorname{diag}(d_{\pm,1}^{(m)}, \dots, d_{\pm,N}^{(m)})$$
 with $d_{\pm,i}^{(m)} := d_{\pm}(x_i, t_m)$,

Problem setting	Spectral analysis	Solvers for FDEs	Conclusions
0000	0000	0 0000	

$$\left(\nu_{M,N}I + D_{+}^{(m)}T_{\alpha,N} + D_{-}^{(m)}T_{\alpha,N}^{T}\right)u^{(m)} = \nu_{M,N}u^{(m-1)} + \Delta x^{\alpha}f^{(m)},$$

where

٩

$$T_{\alpha,N} = - \begin{bmatrix} g_{1}^{(\alpha)} & g_{0}^{(\alpha)} & 0 & \cdots & 0 & 0 \\ g_{2}^{(\alpha)} & g_{1}^{(\alpha)} & g_{0}^{(\alpha)} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ g_{N-1}^{(\alpha)} & \vdots & \ddots & \ddots & g_{1}^{(\alpha)} & g_{0}^{(\alpha)} \\ g_{N}^{(\alpha)} & g_{N-1}^{(\alpha)} & \cdots & \cdots & g_{2}^{(\alpha)} & g_{1}^{(\alpha)} \end{bmatrix}_{N \times N}$$

$$O_{\pm}^{(m)} = \operatorname{diag}(d_{\pm,1}^{(m)}, \dots, d_{\pm,N}^{(m)}) \text{ with } d_{\pm,i}^{(m)} := d_{\pm}(x_{i}, t_{m}),$$

$$\nu_{M,N} = \frac{\Delta x^{\alpha}}{\Delta t},$$

Problem setting Spectra	al analysis 5	olvers for FDEs	Numerical results	Conclusions
0000 0000		0000		

$$\left(\nu_{M,N}I + D_{+}^{(m)}T_{\alpha,N} + D_{-}^{(m)}T_{\alpha,N}^{T}\right)u^{(m)} = \nu_{M,N}u^{(m-1)} + \Delta x^{\alpha}f^{(m)},$$

where

$$T_{\alpha,N} = - \begin{bmatrix} g_1^{(\alpha)} & g_0^{(\alpha)} & 0 & \cdots & 0 & 0\\ g_2^{(\alpha)} & g_1^{(\alpha)} & g_0^{(\alpha)} & 0 & \cdots & 0\\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots\\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots\\ \vdots & \ddots & \ddots & \ddots & \ddots & 0\\ g_{N-1}^{(\alpha)} & \vdots & \ddots & \ddots & g_1^{(\alpha)} & g_0^{(\alpha)}\\ g_N^{(\alpha)} & g_{N-1}^{(\alpha)} & \cdots & g_2^{(\alpha)} & g_1^{(\alpha)} \end{bmatrix}_{N \times N}$$

•
$$D_{\pm}^{(m)} = \operatorname{diag}(d_{\pm,1}^{(m)}, \dots, d_{\pm,N}^{(m)})$$
 with $d_{\pm,i}^{(m)} := d_{\pm}(x_i, t_m)$,
• $\nu_{M,N} = \frac{\Delta x^{\alpha}}{\Delta t}$,
• $f^{(m)} = [f_1^{(m)}, \dots, f_N^{(m)}]^T$ with $f_i^{(m)} := f(x_i, t_m)$,
• $u^{(m)} = [u_1^{(m)}, \dots, u_N^{(m)}]^T$ with $u_i^{(m)}$ a numerical approximation of $u(x_i, t_m)$

Problem setting	Spectral analysis ●000 ○00	Solvers for FDEs 0 0000	Numerical results 0000	Conclusions
Constant coefficients c	ase			
Preliminaries:	symbol			

Def1 Let $f \in L^1(-\pi,\pi]$ and let $\{f_j\}_{j\in\mathbb{Z}}$ the sequence of its Fourier coefficients defined as

$$f_j = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \mathrm{e}^{-\mathrm{i}j\theta} d\theta, \quad j \in \mathbb{Z}.$$

Then the Toeplitz sequence $\{T_n(f)\}_{n\in\mathbb{N}}$ with $T_n(f) = [f_{i-j}]_{i,j=1}^n$ is called the family of Toeplitz matrices generated by f, which in turn is called the symbol $\{T_n(f)\}_{n\in\mathbb{N}}$.

Problem setting	Spectral analysis ○●○○ ○○○	Solvers for FDEs o oooo	Numerical results 0000	Conclusions 00
Constant coefficients c	ase			
Preliminaries:	spectral distribution	on		

- **Def2** Let $f : G \to \mathbb{C}$ be a measurable function, defined on a measurable set $G \subset \mathbb{R}^k$ with $k \ge 1$, $0 < m_k(G) < \infty$. Let $\{A_N\}$ be a sequence of matrices of size N with eigenvalues $\lambda_j(A_N)$, j = 1, ..., N
 - {A_N} is distributed as the pair (f, G) in the sense of the eigenvalues, in symbols {A_N} ~_λ (f, G), if the following limit relation holds for all F ∈ C₀(ℂ):

$$\lim_{N\to\infty}\frac{1}{N}\sum_{j=1}^{N}F(\lambda_j(A_N))=\frac{1}{m_k(G)}\int_GF(f(t))dt.$$

The definition of distribution in the sense of the singular values is obtained replacing λ_j → σ_j, f(t) → |f(t)|, C₀(ℂ) → C₀(ℝ₀⁺).

Problem setting 0000	Spectral analysis 00●0 000	Solvers for FDEs o oooo	Numerical results	Conclusions
Constant coefficients case				
Symbol and spe	ctral distribution of	$f\left\{\mathcal{M}_{lpha, N}^{(\mathit{m})} ight\}_{N\in\mathbb{N}}$		

$$\mathcal{M}_{\alpha,N}^{(m)} = \nu_{M,N} I + D_+^{(m)} T_{\alpha,N} + D_-^{(m)} T_{\alpha,N}^T$$

Note: In the constant coefficient case $D_{\pm}^{(m)} = d_{\pm} \cdot I$, $d_{\pm} > 0$, then $\left\{ \mathcal{M}_{\alpha,N}^{(m)} \right\}_{N \in \mathbb{N}}$ is a sequence of Toeplitz matrices.

Res1 The symbol associated to the matrix-sequence $\{T_{\alpha,N}\}_{N\in\mathbb{N}}$ is given by

$$f_{\alpha}(\theta) = -\sum_{k=-1}^{\infty} g_{k+1}^{(\alpha)} \mathrm{e}^{\mathrm{i}k\theta} = -\mathrm{e}^{-\mathrm{i}\theta} \left(1 - \mathrm{e}^{\mathrm{i}\theta}\right)^{\alpha}.$$

Problem setting 0000	Spectral analysis 00●0 000	Solvers for FDEs o oooo	Numerical results 0000	Conclusions 00
Constant coefficients case				
Symbol and spe	ctral distribution o	$f\left\{\mathcal{M}_{lpha, N}^{(\mathit{m})} ight\}_{N\in\mathbb{N}}$		

$$\mathcal{M}_{\alpha,N}^{(m)} = \nu_{M,N} I + D_+^{(m)} T_{\alpha,N} + D_-^{(m)} T_{\alpha,N}^T$$

Note: In the constant coefficient case $D_{\pm}^{(m)} = d_{\pm} \cdot I$, $d_{\pm} > 0$, then $\left\{ \mathcal{M}_{\alpha,N}^{(m)} \right\}_{N \in \mathbb{N}}$ is a sequence of Toeplitz matrices.

Res1 The symbol associated to the matrix-sequence $\{T_{\alpha,N}\}_{N\in\mathbb{N}}$ is given by

$$f_{\alpha}(\theta) = -\sum_{k=-1}^{\infty} g_{k+1}^{(\alpha)} \mathrm{e}^{\mathrm{i}k\theta} = -\mathrm{e}^{-\mathrm{i}\theta} \left(1 - \mathrm{e}^{\mathrm{i}\theta}\right)^{\alpha}.$$

Problem setting	Spectral analysis 000● 000	Solvers for FDEs 0 0000	Numerical results 0000	Conclusions 00	
Constant coefficients case					
Symbol and spectral distribution of $\left\{\mathcal{M}_{lpha,\mathcal{N}}^{(m)} ight\}_{\mathcal{N}\in\mathbb{N}}$					

$$\mathcal{M}_{\alpha,N}^{(m)} = \nu_{M,N} I + D_+^{(m)} T_{\alpha,N} + D_-^{(m)} T_{\alpha,N}^T$$

Note: In the constant and equal coefficient case $D_{\pm}^{(m)} = d \cdot I$, d > 0, then $\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}_{N \in \mathbb{N}}$ is a sequence of **symmetric** Toeplitz matrices.

Res2 Let us assume that $\nu_{M,N} = o(1)$. Given the matrix-sequence $\left\{ \mathcal{M}_{\alpha,N}^{(m)} \right\}_{N \in \mathbb{N}}$, we have $\left\{ \mathcal{M}_{\alpha,N}^{(m)} \right\} \sim_{\lambda} (d \cdot p_{\alpha}(\theta), [-\pi, \pi]),$ where $p_{\alpha}(\theta) = f_{\alpha}(\theta) + f_{\alpha}(-\theta) = f_{\alpha}(\theta) + \overline{f_{\alpha}(\theta)}$ is a real-valued continuous

Problem setting	Spectral analysis 000● 000	Solvers for FDEs 0 0000	Numerical results 0000	Conclusions 00	
Constant coefficients case					
Symbol and spectral distribution of $\left\{\mathcal{M}_{lpha,\mathcal{N}}^{(m)} ight\}_{\mathcal{N}\in\mathbb{N}}$					

$$\mathcal{M}_{\alpha,N}^{(m)} = \nu_{M,N} I + D_+^{(m)} T_{\alpha,N} + D_-^{(m)} T_{\alpha,N}^T$$

Note: In the constant and equal coefficient case $D_{\pm}^{(m)} = d \cdot I$, d > 0, then $\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}_{N \in \mathbb{N}}$ is a sequence of **symmetric** Toeplitz matrices.

Res2 Let us assume that $\nu_{M,N} = o(1)$. Given the matrix-sequence $\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}_{N\in\mathbb{N}}$, we have

$$\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}\sim_{\lambda} (\boldsymbol{d}\cdot\boldsymbol{p}_{\alpha}(\theta),[-\pi,\pi]),$$

Problem setting	Spectral analysis 000● 000	Solvers for FDEs 0 0000	Numerical results 0000	Conclusions 00
Constant coefficients case				
Symbol and spectral distribution of $\left\{\mathcal{M}_{lpha,N}^{(m)} ight\}_{N\in\mathbb{N}}$				

$$\mathcal{M}_{\alpha,N}^{(m)} = \nu_{M,N} I + D_+^{(m)} T_{\alpha,N} + D_-^{(m)} T_{\alpha,N}^T$$

Note: In the constant and equal coefficient case $D_{\pm}^{(m)} = d \cdot I$, d > 0, then $\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}_{N \in \mathbb{N}}$ is a sequence of **symmetric** Toeplitz matrices.

Res2 Let us assume that $\nu_{M,N} = o(1)$. Given the matrix-sequence $\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}_{N\in\mathbb{N}}$, we have

$$\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}\sim_{\lambda} (\boldsymbol{d}\cdot\boldsymbol{p}_{\alpha}(\theta),[-\pi,\pi]),$$

Problem setting	Spectral analysis 000● 000	Solvers for FDEs 0 0000	Numerical results 0000	Conclusions 00
Constant coefficients case				
Symbol and spectral distribution of $\left\{\mathcal{M}_{lpha,N}^{(m)} ight\}_{N\in\mathbb{N}}$				

$$\mathcal{M}_{\alpha,N}^{(m)} = \boldsymbol{\nu_{M,N}}\boldsymbol{I} + \boldsymbol{D}_{+}^{(m)} \boldsymbol{T}_{\alpha,N} + \boldsymbol{D}_{-}^{(m)} \boldsymbol{T}_{\alpha,N}^{\mathsf{T}}$$

Note: In the constant and equal coefficient case $D_{\pm}^{(m)} = d \cdot I$, d > 0, then $\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}_{N \in \mathbb{N}}$ is a sequence of **symmetric** Toeplitz matrices.

Res2 Let us assume that $\nu_{M,N} = o(1)$. Given the matrix-sequence $\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}_{N\in\mathbb{N}}$, we have

$$\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}\sim_{\lambda} (\boldsymbol{d}\cdot\boldsymbol{p}_{\alpha}(\theta),[-\pi,\pi]),$$

Problem setting	Spectral analysis 000● 000	Solvers for FDEs 0 0000	Numerical results 0000	Conclusions 00
Constant coefficients case				
Symbol and spectral distribution of $\left\{\mathcal{M}_{lpha,N}^{(m)} ight\}_{N\in\mathbb{N}}$				

$$\mathcal{M}_{\alpha,N}^{(m)} = \nu_{M,N} I + D_+^{(m)} T_{\alpha,N} + D_-^{(m)} T_{\alpha,N}^T$$

Note: In the constant and equal coefficient case $D_{\pm}^{(m)} = d \cdot I$, d > 0, then $\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}_{N \in \mathbb{N}}$ is a sequence of **symmetric** Toeplitz matrices.

Res2 Let us assume that $\nu_{M,N} = o(1)$. Given the matrix-sequence $\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}_{N\in\mathbb{N}}$, we have

$$\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}\sim_{\lambda} (\boldsymbol{d}\cdot\boldsymbol{p}_{\alpha}(\theta),[-\pi,\pi]),$$

Problem setting 0000	Spectral analysis ○○○○ ●○○	Solvers for FDEs o oooo	Numerical results 0000	Conclusions 00	
Nonconstant coefficients case					
Preliminaries: G	LT sequences				

There are three main features of the GLT class that we shortly mention here.

GLT1 Each GLT sequence has a symbol f in the sense of the singular values over a domain $G = [0, 1]^d \times [-\pi, \pi]^d$ with $d \ge 1$: if the sequence is Hermitian, then the distribution also holds in the eigenvalue sense.

GLT2 The GLT class is a *-algebra. The symbol of linear combinations, products, inversions, conjugations of GLT sequences is obtained by following the same algebraic manipulations on the symbols of the involved GLT sequences.

Problem setting 0000	Spectral analysis ○○○○ ●○○	Solvers for FDEs o oooo	Numerical results 0000	Conclusions 00	
Nonconstant coefficients case					
Preliminaries: G	LT sequences				

There are three main features of the GLT class that we shortly mention here.

GLT1 Each GLT sequence has a symbol f in the sense of the singular values over a domain $G = [0, 1]^d \times [-\pi, \pi]^d$ with $d \ge 1$: if the sequence is Hermitian, then the distribution also holds in the eigenvalue sense.

GLT2 The GLT class is a *-algebra. The symbol of linear combinations, products, inversions, conjugations of GLT sequences is obtained by following the same algebraic manipulations on the symbols of the involved GLT sequences.

GLT3 Every Toeplitz sequence with symbol f is a GLT sequence with the same symbol. Every sequence of diagonal matrices diag(a(j/N)) where N is the size of the matrix and a is Riemann integrable over [0, 1] is a GLT sequence with symbol a.

Problem setting 0000	Spectral analysis ○○○○ ●○○	Solvers for FDEs o oooo	Numerical results 0000	Conclusions 00	
Nonconstant coefficients case					
Preliminaries: G	LT sequences				

There are three main features of the GLT class that we shortly mention here.

GLT1 Each GLT sequence has a symbol f in the sense of the singular values over a domain $G = [0, 1]^d \times [-\pi, \pi]^d$ with $d \ge 1$: if the sequence is Hermitian, then the distribution also holds in the eigenvalue sense.

GLT2 The GLT class is a *-algebra. The symbol of linear combinations, products, inversions, conjugations of GLT sequences is obtained by following the same algebraic manipulations on the symbols of the involved GLT sequences.

GLT3 Every Toeplitz sequence with symbol f is a GLT sequence with the same symbol. Every sequence of diagonal matrices diag(a(j/N)) where N is the size of the matrix and a is Riemann integrable over [0, 1] is a GLT sequence with symbol a.

Problem setting	Spectral analysis ○○○○ ○●○	Solvers for FDEs o oooo	Numerical results 0000	Conclusions 00	
Nonconstant coefficients case					
Symbol and spe	ectral distribution o	$f\left\{\mathcal{M}_{lpha, N}^{(\mathit{m})} ight\}_{N\in\mathbb{N}}$			

$$\mathcal{M}_{\alpha,N}^{(m)} = \nu_{M,N} I + D_+^{(m)} T_{\alpha,N} + D_-^{(m)} T_{\alpha,N}^T$$

Let us assume that $\nu_{M,N} = o(1)$ and that, fixed t_m , $d_{\pm}(x) := d_{\pm}(x, t_m)$ are Riemann integrable over [L, R].

Res3 The matrix sequence
$$\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}_{N\in\mathbb{N}}$$
 is a GLT sequence with symbol
 $h_{\alpha}(x,\theta) = d_{+}(x)f_{\alpha}(\theta) + d_{-}(x)f_{\alpha}(-\theta), \quad (x,\theta)\in[L,R]\times[-\pi,\pi],$

and

$$\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}\sim_{\sigma} (h_{\alpha}(x,\theta),[L,R]\times[-\pi,\pi]).$$

If $d_+(x) = d_-(x)$, we also have

$$\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}\sim_{\lambda}(h_{\alpha}(x,\theta),[L,R]\times[-\pi,\pi]).$$

Problem setting	Spectral analysis ○○○○ ○●○	Solvers for FDEs o oooo	Numerical results 0000	Conclusions 00	
Nonconstant coefficients case					
Symbol and spe	ectral distribution o	$f\left\{\mathcal{M}_{lpha, N}^{(\mathit{m})} ight\}_{N\in\mathbb{N}}$			

$$\mathcal{M}_{\alpha,N}^{(m)} = \nu_{M,N} I + D_+^{(m)} T_{\alpha,N} + D_-^{(m)} T_{\alpha,N}^T$$

Let us assume that $\nu_{M,N} = o(1)$ and that, fixed t_m , $d_{\pm}(x) := d_{\pm}(x, t_m)$ are Riemann integrable over [L, R].

Res3 The matrix sequence
$$\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}_{N\in\mathbb{N}}$$
 is a GLT sequence with symbol
 $h_{\alpha}(x,\theta) = d_{+}(x)f_{\alpha}(\theta) + d_{-}(x)f_{\alpha}(-\theta), \quad (x,\theta)\in[L,R]\times[-\pi,\pi],$

and

$$\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}\sim_{\sigma} (h_{\alpha}(x,\theta),[L,R]\times[-\pi,\pi]).$$

If $d_+(x) = d_-(x)$, we also have

$$\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}\sim_{\lambda}(h_{\alpha}(x,\theta),[L,R]\times[-\pi,\pi]).$$

Problem setting 0000	Spectral analysis ○○○○ ○○●	Solvers for FDEs 0 0000	Numerical results 0000	Conclusions
Nonconstant coefficients case				

Zero of the symbols $p_{\alpha}(\theta)$ and $h_{\alpha}(x,\theta)$

Res4 The function $p_{\alpha}(\theta)$ has a zero of order $\alpha \in (1, 2)$ at 0.

Comparison between the symbol of the Laplacian operator $\ell(\theta) = 2 - 2\cos(\theta)$ (blue bullet line) with $p_{\alpha}(\theta)$ for $\alpha = 1.2$ (red solid line), $\alpha = 1.5$ (black dotted line) and $\alpha = 1.8$ (green dashed line) in a neighborhood of 0.

Res5 If both diffusion coefficients are bounded and positive, the symbol $h_{\alpha}(x, \theta)$ has always a zero at $\theta = 0$ of order $\alpha < 2$.

Problem setting	Spectral analysis 0000 000	Solvers for FDEs • •	Numerical results 0000	Conclusions 00
Literature				

CGNR with circulant preconditioner and MGM method

Meth1 Conjugate Gradient for Normal Residual (CGNR) with the circulant preconditioner

$$S_{N}^{(m)} = \nu_{M,N} I + \bar{d}_{+}^{(m)} s(T_{\alpha,N}) + \bar{d}_{-}^{(m)} s(T_{\alpha,N})^{T},$$

with $\bar{d}_{\pm}^{(m)} = \frac{1}{N} \sum_{i=1}^{N} d_{\pm,i}^{(m)}$ and $s(T_{\alpha,N})$ the Strang circulant preconditoner. Superlinearly convergence in the constant coefficients case^[3].

Meth2 Multigrid method (MGM) with damped-Jacobi as smoother and classical linear interpolation. Optimal convergence of the two-grid in the constant and equal coefficients case^[4].

[3] Lei, Sun, J. Comput. Phys., 2013
 [4] Pang, Sun, J. Comput. Phys., 2012

Problem setting	Spectral analysis 0000 000	Solvers for FDEs ○ ●○○○	Numerical results 0000	Conclusions
What's new?				

Bad news for the circulant preconditioner

• When $\nu_{M,N} = o(1)$, $\left\{ (S_N^{(m)})^{-1} \mathcal{M}_{\alpha,N}^{(m)} \right\}$ is a GLT sequence such that

$$\left\{ (S_N^{(m)})^{-1} \mathcal{M}_{\alpha,N}^{(m)} \right\} \sim_{\sigma} \left(\frac{h_{\alpha}(x,\theta)}{g_{\alpha}(\theta)}, [L,R] \times [-\pi,\pi] \right)$$

where $g_{\alpha}(\theta) = \bar{d}_{+}^{(m)} f_{\alpha}(\theta) + \bar{d}_{-}^{(m)} f_{\alpha}(-\theta)$. Whenever the diffusion coefficients are nonconstant functions, the preconditioned sequence **CANNOT** be clustered at one, since the function $h_{\alpha}(x,\theta)/g(\theta)$ is a nontrivial function depending on the variable x.

• Circulant preconditioner **CANNOT** give a good clustering in the multidimensional problems also in the constant coefficient setting due to the negative results in [5].

[5] Serra-Capizzano, Tyrtyshnikov, SIAM J. Matrix Anal. Appl., 1999

Problem setting	Spectral analysis 0000 000	Solvers for FDEs ○ ●○○○	Numerical results 0000	Conclusions
What's new?				

Bad news for the circulant preconditioner

• When $\nu_{M,N} = o(1)$, $\left\{ (S_N^{(m)})^{-1} \mathcal{M}_{\alpha,N}^{(m)} \right\}$ is a GLT sequence such that

$$\left\{ (S_N^{(m)})^{-1} \mathcal{M}_{\alpha,N}^{(m)} \right\} \sim_{\sigma} \left(\frac{h_\alpha(x,\theta)}{g_\alpha(\theta)}, [L,R] \times [-\pi,\pi] \right)$$

where $g_{\alpha}(\theta) = \bar{d}_{+}^{(m)} f_{\alpha}(\theta) + \bar{d}_{-}^{(m)} f_{\alpha}(-\theta)$. Whenever the diffusion coefficients are nonconstant functions, the preconditioned sequence **CANNOT** be clustered at one, since the function $h_{\alpha}(x,\theta)/g(\theta)$ is a nontrivial function depending on the variable x.

 Circulant preconditioner CANNOT give a good clustering in the multidimensional problems also in the constant coefficient setting due to the negative results in [5].

[5] Serra-Capizzano, Tyrtyshnikov, SIAM J. Matrix Anal. Appl., 1999

Problem setting	Spectral analysis 0000 000	Solvers for FDEs ○ ○●○○	Numerical results 0000	Conclusions 00	
What's new?					
MGM as a va	alid alternative				

• Constant case Given a sequence of Toeplitz matrices $\{A_N\}_{N \in \mathbb{N}}$ with a nonnegative symbol f, if the grid transfer operator is the classical linear interpolation, for the convergence analysis of the V-cycle it has to hold

$$\lim_{\theta\to 0}\sup\frac{2+2\cos(\theta+\pi)}{f(\theta)}=c<\infty.$$

Under the assumption $\nu_{M,N} = o(1)$ and $d_{\pm}(x,t) = d > 0$, the symbol of the Toeplitz sequence $\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}_{N\in\mathbb{N}}$ is $f(\theta) = d \cdot p_{\alpha}(\theta)$ and it satisfies this condition with c = 0.

 Nonconstant case When d₊ and d₋ are uniformly bounded and positive the optimality of the MGM is preserved.

Theoretical results contained in [6,7] allow to expect the same behaviour of the MGM also in the multidimensional case.

- [6] Aricò, Donatelli, Numer. Math., 2007
- [7] Serra-Capizzano, Numer. Math., 2002

Problem setting	Spectral analysis 0000 000	Solvers for FDEs ○ ○●○○	Numerical results 0000	Conclusions 00
What's new?				
MGM as a v	alid alternative			

 Constant case Given a sequence of Toeplitz matrices {A_N}_{N∈ℕ} with a nonnegative symbol f, if the grid transfer operator is the classical linear interpolation, for the convergence analysis of the V-cycle it has to hold

$$\lim_{\theta\to 0}\sup\frac{2+2\cos(\theta+\pi)}{f(\theta)}=c<\infty.$$

Under the assumption $\nu_{M,N} = o(1)$ and $d_{\pm}(x,t) = d > 0$, the symbol of the Toeplitz sequence $\left\{\mathcal{M}_{\alpha,N}^{(m)}\right\}_{N\in\mathbb{N}}$ is $f(\theta) = d \cdot p_{\alpha}(\theta)$ and it satisfies this condition with c = 0.

• Nonconstant case When d_+ and d_- are uniformly bounded and positive the optimality of the MGM is preserved.

Theoretical results contained in [6,7] allow to expect the same behaviour of the MGM also in the multidimensional case.

- [6] Aricò, Donatelli, Numer. Math., 2007
- [7] Serra-Capizzano, Numer. Math., 2002

Problem setting	Spectral analysis	Solvers for FDEs	Conclusions
	0000	0 00●0	
What's new?			

Structure preserving preconditioners for CGNR and GMRES

Why preserving the structure?

- overcome negative results in the multidimensional case;
- have a preconditioned linear system with a well-conditioned matrix of the eigenvectors.

First preconditioner

$$P_{1,N}^{(m)} = \nu_{M,N} I + D_{+}^{(m)} B_{N} + D_{-}^{(m)} B_{N}^{T},$$

where $B_N = \operatorname{tridiag}_N(0, 1, -1)$ is an approximation of the first derivative operator.

Second preconditioner

$$P_{2,N}^{(m)} = \nu_{M,N}I + D_{+}^{(m)}L_{N} + D_{-}^{(m)}L_{N}^{T},$$

where $L_N = \operatorname{tridiag}_N(-1, 2, -1)$ is the Laplacian matrix.

Problem setting 0000	Spectral analysis 0000 000	Solvers for FDEs ○ ○○○●	Numerical results	Conclusions
What's new?				

Structure preserving preconditioners for CGNR and GMRES

$$P_{1,N}^{(m)} = \nu_{M,N} I + D_{+}^{(m)} B_{N} + D_{-}^{(m)} B_{N}^{T}$$

$$P_{2,N}^{(m)} = \nu_{M,N} I + D_{+}^{(m)} L_{N} + D_{-}^{(m)} L_{N}^{T}$$

Computational cost: $P_{1,N}^{(m)}$, $P_{2,N}^{(m)}$ tridiagonal $\rightarrow O(N)$ operations for the associated system $\rightarrow O(N \log N)$ operations for preconditioned Krylov method.

Spectral properties: Both $P_{1,N}^{(m)}$ and $P_{2,N}^{(m)}$ cannot provide a clustering of the singular values or of the eigenvalues of the preconditioned linear system just as the circulant preconditioner $S_N^{(m)}$.

Problem setting	Spectral analysis	Solvers for FDEs	Numerical results	Conclusions
	0000	0 0000	•000	

Numerical Example: nonconstant coefficient case

The following example consists in an anomalous diffusive process of a Gaussian pulse

$$\begin{cases} \frac{\partial u(x,t)}{\partial t} = d_{+}(x,t) \frac{\partial^{\alpha} u(x,t)}{\partial + x^{\alpha}} + d_{-}(x,t) \frac{\partial^{\alpha} u(x,t)}{\partial - x^{\alpha}} + f(x,t), & (x,t) \in (0,2) \times (0,1], \\ u(0,t) = u(2,t) = 0, & t \in [0,1], \\ u(x,0) = u_{0}(x), & x \in [0,2]. \end{cases}$$

o diffusion coefficients:

$$d_{+}(x,t) = 0.1(1 + x^{2} + t^{2}), \quad d_{-}(x,t) = 0.1(1 + (2 - x)^{2} + t^{2})$$

source term:

4

$$f(x,t)=0$$

initial condition

$$u_0(x) = e^{-\frac{(x-x_c)^2}{2\sigma^2}}$$

with $x_c = 1.2$ and $\sigma = 0.08$

• $\Delta x = \Delta t$, $\nu_{M,N} = \frac{\Delta x^{\alpha}}{\Delta t} = \Delta x^{\alpha-1}$ which, being $0 < \alpha - 1 < 1$, tends to zero as N tends to ∞ .

Problem setting	Spectral analysis	Solvers for FDEs	Numerical results	Conclusions
	0000 000	o 0000	0000	

Numerical Example: nonconstant coefficient case

The number of iterations is computed as $\frac{1}{M} \sum_{m=1}^{M} \text{Iter}(m)$, where Iter(m) is the number of required iterations at time t_m , $m = 0, \dots M$. (tolerance $= 10^{-7}$)

o. N 1		I	D ₁	I	2		S
a	<i>N</i> + 1	CGNR	GMRES	CGNR	GMRES	CGNR	GMRES
	2 ⁶	5.1	5.0	7.3	6.6	6.8	7.6
1 2	2 ⁷	5.0	5.0	7.0	5.1	6.1	7.0
1.2	2 ⁸	5.0	4.8	6.1	4.1	6.0	7.0
	2 ⁹	4.0	4.0	6.0	3.4	6.0	6.9
	2 ⁶	7.1	8.8	7.0	5.6	7.2	8.4
15	2 ⁷	6.8	9.2	7.0	5.1	7.1	8.8
1.5	2 ⁸	6.2	9.2	7.0	5.0	7.0	8.8
	2 ⁹	6.0	9.4	6.5	5.0	7.0	8.7
	2 ⁶	9.9	14.6	5.1	4.9	8.4	8.0
10	27	10.7	18.7	5.1	5.0	9.2	8.0
1.0	2 ⁸	11.8	23.3	5.0	5.0	9.4	7.9
	2 ⁹	13.8	29.0	4.9	5.0	9.0	7.8

Problem setting	Spectral analysis	Solvers for FDEs	Numerical results	Conclusions
	0000 000	0 0000	0000	

Structure preserving preconditioners for CGNR

Problem setting 0000	Spectral analysis 0000 000	Solvers for FDEs o oooo	Numerical results 000●	Conclusions 00

Structure preserving preconditioners for GMRES

Problem setting	Spectral analysis 0000 000	Solvers for FDEs 0 0000	Numerical results	Conclusions ●○
Conclusions				

- Asymptotic eigenvalue/singular value distribution for nonconstant coefficient FDEs.
- Analysis of known methods of preconditioned Krylov and multigrid type, with both positive and negative results.
- Two new tridiagonal structure preserving preconditioners.

Future works

A future work will concern a detailed analysis of the problem in the multidimensional setting where a promising technique seems to be the use of appropriate multigrid strategies.

Problem settin	g Spectral analysis 0000 000	Solvers for FDEs o oooo	Numerical results 0000	Conclusion: ⊙●
	Aricò A., Donatelli M., (2007) A V <i>Numer. Math.</i> , Vol. 105-4, pp. 511	/-cycle Multigrid for multilevel 1 .–547.	matrix algebras: proof of optin	nality,
	Donatelli M., Mazza M., Serra-Capizzano S., (2015) Spectral analysis and structure preserving preconditioners for fractional diffusion equations, <i>Technical report/Department of Information Technology,</i> <i>Uppsala University, ISSN 1404-3203; 2015-002,</i> manuscript submitted for publication			
	Lei S.L., Sun H.W., (2013) A circulant preconditioner for fractional diffusion equations, <i>J. Comput. Phys.</i> , Vol. 242, pp. 715–725.			
	Meerschaert M.M., Tadjeran C., (2004) Finite difference approximations for fractional advection-dispersion flow equations, <i>J. Comput. Appl. Math.</i> , Vol. 172, pp. 65–77.			
	Meerschaert M.M., Tadjeran C., (2006) Finite difference approximations for two-sided space-fractional partial differential equations, <i>Appl. Numer. Math.</i> , Vol. 56-1, pp. 80–90.			
	Pang H., Sun H.W., (2012) Multigrid method for fractional diffusion equations, J. Comput. Phys., Vol. 231, pp. 693-703.			
	Serra-Capizzano S., (2002) Convergence analysis of Two-Grid methods for elliptic Toeplitz and PDEs matrix-sequences, <i>Numer. Math.</i> , Vol. 92-3, pp. 433–465.			
	Serra-Capizzano S., (2006) The GLT class as a generalized Fourier Analysis and applications, <i>Linear Algebra Appl.</i> , Vol. 419, pp. 180–233.			
	Serra-Capizzano S., Tyrtyshnikov E., (1999) Any circulant-like preconditioner for multilevel matrices is not superlinear, <i>SIAM J. Matrix Anal. Appl.</i> , Vol. 21-2, pp. 431–439.			