Groups and Symmetries in Numerical Linear Algebra
Part 1

Hans Munthe-Kaas

"Department of Mathematics
University of Bergen
Norway
http://hans.munthe-kaas.no
mailto:hans@math.uib.no

CIME-EMS Summer School
Cetraro, ltaly, 2015

Hans Munthe-Kaas (Univ. of Bergen) Groups <> Num. Lin. Algebra CIME-EMS 15 1/28



Overview of my lectures

@ How can we exploit symmetries in numerical linear algebra?
» Symmetries and groups.
» The generalized Fourier transform on groups w/ applications.
» Abelian groups, lattice computations and kaleidoscopes (mirrors)
@ Structured matrix problems related to Lie group theory:
» Approximation of the matrix exponential (Lie algebra — Lie group)
» Matrix factorizations, polar decompositions and Cartan
decompositions with applications.
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Prelude: Fast circulant matrix computations

Circulant: A;; = a(i-j mod n).

alo) a(nt1) .- a(1)
a(1) a(0) a(n1) :

aeC", A=circ(a) = . . € Cm™n,
a(1) a(0) a(n1)
ain1) - a(1) a(0)
Convolution product (on discrete circle Z):
n—1 n—1
(axx)(i) :=>_a(j)x(i — jmod n) = " a(i — j mod n)x(j)
j=0 j=0

Matrix x vector: A-x = ax* x
Matrix x matrix: A- B = circ(a) - circ(b) = circ(a = b)
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Prelude: Fast circulant matrix computations

cyclic group £,
0
ThedomainZ, = {0,1,2,...,n—1}
with 'motion’ /,j +— i + j and inverse
i — —i (modn) forms a group.

Let CZ, = {x: Zn — C} ~ C". Define shift S: CZ, — CZp as
(Sx)(J) = x(j—1).

Lemma

The following three conditions are equivalent:
@ AcLin(CZ,,CZy) and AS = SA

Q@ A -x=axxforsomeac CZp

© A =circ(a) for some a € CZp.

Proof: exercise!
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Prelude: Fast circulant matrix computations
The Discrete Fourier Transform (DFT). Define F: CZ, — CZ, as

F(x)(k)=X(k)=>_ &™*/x(j), nF~'=F".
JE€Zn

The DFT diagonalizes convolutions,
F(ax x)(k) = a(k)x(k) <« circ(a) = F~'diag(a)F.
Why? F expresses a basis change to the charaters {xx tkez, C CZn,

2rijk/n

xk(j) =€ = Svk =Mk M = xk(—1) = e2mk/n

Characters are eigenvectors of the shift S, equivalently
Xk € Hom(Zy,C*) < X+ £) = xx(f)xk (0),

where C* is the multiplicative group of complex numbers with norm 1.
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Prelude: Fast circulant matrix computations

The FFT

X > X in O(nlog n) FLOPS via the Fast Fourier Transform.

Circulant computations costing O(nlog n):

@ Matrix mult. C = AB: a,b— a,b— ¢=a-b— C = circ(c).
o Linear solve: Ax = b: a,b+— a,b+— X = b/a — x.
@ Eigenvalues: Eig(A) = a.

Generalisations:

@ Multidimensional versions.
@ Non-circulant boundary conditions.
@ Non-commutative groups.

@ Smaller symmetry groups (non-transitive group actions).
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Group = mathematical theory of symmetries

Definition

Group: set G with operation a, b — ab: G x G — G such that:
@ Associative: (ab)c = a(bc).

@ Identity: 31 € Gsuchthatal =1a=a forallac G.

© Inverse: a— a ' suchthataa ' = 1.

Common types of groups:
@ Finite: |G| < oc.
@ Topological: a, b +— a 'b is continuous.

» compact or non-compact
» discrete or continuous

@ Lie: a,b+— a 'bis smooth, differentiable.
@ Abelian: ab = ba, where we often write {a+ b, 0} for {ab,1}.
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Group examples:

@ Abelian:

» {R,+} (non-compact, Lie)

» {Z,+} (non-compact, discrete)

» {Z,=1{0,1,...,n— 1}, +(modn)} (finite, compact, discrete)
@ Finite, non-abelian:

» Dihedral groups, e.g. symmetries of snow-flake:

Ds = (a,b| & = b? = (ab)® = 1)

» Symmetries of the five platonic solids: tetrahedron, cube,.... .

@ Lie:

v

General linear: GL(n,R) (invertible real n x n matrices).
GL(V): invertible linear operators on vector space V.

Special linear: SL(n) < GL(n,R) (det(A) = 1).

Orthogonal: O(n) < GL(n,R), (ATA=)

Unitary: U(n) < GL(n,C), (A'A=1)

Euclidean motion group: E(3) = SO(3) x R3
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Group action of group G on a set X
Left action: -: Gx X — X suchthatforalla,be G, x € X:

1-x=x
a-(b-x)=(ab)-x

(Right: -: X x G— Xs.t. (x-a)-b=x-(ab)and x -1 = x.)

Properties of actions:

@ Faithful (effective): a- x = x for all x € X implies a= 1.

@ Free (fixpoint free): a- x = x for some x € X implies a= 1.

@ Transitive: forall x,y € X there existsanae Gs.t.a-x=y.

@ Regular = free + transitive.

@ A linear action on a vector space V is called a representation, i.e.
R: G — GL(V) such that R(ab) = R(a)R(b).
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Example: Symmetries of equilategal triangle in R2

Dihedral group D3 = (o, 3 \ a® = B2 = (ap)? =1).
Representation of D3 on R?:

[ cos(120°) —sin(120°) -1 0
Ala) = ( sin(120°)  cos(120°) ) - AB) = ( 1 )
The action restricted to the set Z = {1,2,3,4,5,6,7,8,9, 10} splits in
three orbits {1,2,3,4,5,6}, {7,8,9} and {10}.
Orbit representatives: S = {1,7,10}.
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Example: Symmetries of equilateral triangle in R?

Problem:

Solve the PDE V2u = f on the triangle, with Dirichlet boundaries.
Since V2a = aV? and V23 = V2, we may disctretize V2 ~ A, such
that the matrix A respects’ D3 symmetries.

What does this mean?
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Equivariant matrices

Let 7 be a finite set, G a finite group and i, g — ig a right action of G
on Z. Let V = C7 be the complex vector space with basis vectors in 7
and C**% = Lin(V, V) the matrices with indices in 7.

For g € G let P(g) € C**Z denote the permutation matrix

(P(9)x)(i) = x(ig). Since P(gh) = P(g)P(h), we call g — P(g) the
permutation representation.

Definition
Ais G-equivariant if AP(g) = P(g)Aforall g € G.

Lemma
A matrix A € CT*T js G-equivariant if and only if

Aing = A,',j foralli,j €T, gce G.
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Example (cont.)

(1,2,3,4,5,6,7,8,9,10)a = (5,6,1,2,3,4,9,7,8,10)
(1,2,3,4,5,6,7,8,9,10)5 =(2,1,6,5,4,3,7,9,8,10)

A matrix A € C'°%10 is Dg equivariant if

A,',j = Aia,ja = A,‘g}jﬁ for all i,j el
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Equivariance and convolutions
We want to establish a correspondence equivariance < convolution.
Theory will be developed in three stages:

@ Regular action i, g — ig. There is just one orbit and Z ~ G.

@ Free action i, g — ig. The set Z splits in several disjoint orbits.
Each orbit can be identified with G.

© General (faithful) action. Get your hands dirty.
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1. Regular action
Definition

The group algebra CG is the vector space C!¢ where each g € Gis a
basis vector, with the product * induced linearly from g, h — gh.

axb= (Z a(g)g) . (Z b(h)h) — 3 ag)b(h)gh

geG heG g,heG
=y (Z a(g'h‘)b(h)) g.
9'eG \heG

The convolution product x: CG x CG — CG
(axb)(g) =) a(gh ")b(h) = a(h)b(h™'g).

heG heG

NOTE: ax(bxc)=(axb)*xc, axb#bxa

Hans Munthe-Kaas (Univ. of Bergen) Groups <> Num. Lin. Algebra CIME-EMS 15 11/28



1. Regular action

Pick i € Z. Identify ig € Z with g € G, Z ~ G and C* ~ CG.
For an equivariant A € C<C let a € CG be defined as

a(g) .= Ag1 (first column).

Note: Agh=Agp-11 = a(gh~"), we recover A from its first column.

Lemma
For a regular action we have:

A equivariant < A-x=axx forallx e CG.

Proof = (AX) (9) = Y peg Ag.nx(h) = Y peg algh™")x(h) = (ax x)(g).
«<: Check that P(g)x = xx g~'. If Ax = ax x then

A(P(g)x) =ax(xxg ') = (axx)xg~ ' = P(g)Ax.
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1. Regular action

G-equivariant matrices, regular action:

Matrix x matrix: AB < axb
Matrix x vector: Ax < axx

Permutation rep. : P(9)A < axg~"

* - convolution in group algebra CG.

How to exploit this 'hidden’ structure?
(patience please ... we first discuss more general actions)
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2. Free action (non-transitive)

Group algebra: Ca . G- C.
Block group algebra: C™‘G : G — C™<¢

axb= (Z a(g)g) * (Z b(h)h) = > a(g)b(h)gh

geqG heG g,heG
= (Z a(g'/r‘)b(h)) g.
g’eG \heG

Block convolution product +: C™*‘G x C*"G — C™"G

(a=b)(g) = _a(gh ")b(h) =Y a(h)b(h™'g).

heG heG
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2. Free action (non-transitive)

7 splits in m disjoint orbits, each orbit can be identified with G. Pick
orbit representatives S C Z, |S| = m. The mapping

(1bg)—ig: SxG—1Z, is1—1.
Let n=|Z| = m|G|. Define u: C" - C"Gand v: C™" — C™ MG as
u(x)i(g) = Xig
I/(A),',j(g) = Aig,j foralli,je S, ge G
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2. Free action (non-transitive)
Lemma
Let A, B be equivariant under free action onZ. Let x € C/Zl. Then

v(AB) = v(A) x v(B)
1(AX) = v(A) * u(x),

where x* is the block convolution.

Proof.

v(AB)ij(9) = (AB)igj = Y. AgenBmj= > AgniBin,

eS,heG eS,heG
= 5" " w(A)id(gh™Yu(B)ej(h) = (v(A) = v(B))ij(g).
heG tes
Similar computation for matrix x vector. O

v
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3. General action

7 splits in m orbits (ex. 3). Pick orbit representatives S (ex.
S§=1{1,7,10}. Foreach i€ S let G; .= {g € G: ig = g} be the
isotropy subgroups (ex. Gy = {1}, G7 = {1, 8}, Gip = G). Orbit i has
the structure of a homogeneous space, where the points are the right
cosets Gi\G = {G;g}gcg Of the isotropy subgroups.

Idea:

We can think of each point in orbit i as being |G;| points merged into
one. Doing this, we can still model equivariant matrix products as block
convolutions in C™* M@, restricted to a subspace taking a constant
value on the isotropy subgropus. Detailes postponed or omitted!
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The Genearlized Fourier Transform (GFT)
(Exploiting structure!)
Recall the convolution property of the classical (abelian) Fourier

transform: (@« b)(k) = a(k)b(k). If &b € C, this cannot hold for our
convolutions, since a x b # b x a. For matrix valued Fourier transforms,
however, ...

Let R: G — C%*% be a complex representation of G, i.e.
R(gh) = R(g)R(h) (matrix product). For a € C™*G, b € C**"G define

a(R) =" a(g)®R(g). b(R):=>_ b(g)®R(g).

9eG geG

Then

Proof: Exercise!
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Irreducible representations

If R: G — C%>% is a representation and X € C%*9% is invertible, then
R(g) == XR(g)X "

is called an equivalent representation. A representation R which is
equivalent to R = Ry @ R, where R(g) simultaneously splits into a
block-diagonal matrix for all g € G is called reducible, otherwise it is
irreducible.
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Frobenius theorem

Theorem

For any finite group G there exits a complete list R of non-equivalent
irreducible representations such that

> d&=1G|.
RER
For a € CG define the GFT
aR)=>_alg)R(9).

9geqG
then we may recover a by the inverse GFT (IGFT)
1

a(g) = G /;z drtrace(R(g™")a(R)).
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Example: Ds

D; = (a,b| & = b? = (ab)? = 1) has 6 elements. D3 has a complete
list of irreps R = { Ry, R, Rs}, dimensions dy = d» = 1, d3 = 2, given
as

Ri(g)=1 forallge G
Ro(a) =1, Rx(8) = —1

_( cos(120°) —sin(120°) (-1 0
Fg(o) = ( sin(120°)  cos(120°) ) RM)‘( 0 1)
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Orthogonality of the GFT

For finite and compact groups we can prove that any representation is
equivalent to a unitary representation R: G — U(V), thus we assume

unitary or orthogonal representations. Inner products:

CG: (a,b) = a(g)b(g)
geG
CG: (@ab) =) f’c;trace(a(ﬂ)hB(R)).
Lemma
For unitary R, the GFT: CG — CGis unitary

(a,b) = (3, b).
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Block GFT

Recall for a € C™kG

aR):=>_a(g)®R(9).

geqG
GFT,: ~: C™KG=CM @G — Cmk = C™kgCG
Everything is componentwise computations in the block:

GFT, = I© GFT,: C™koCG — C™keCG
IGFT, = I® IGFTs: C™koCG — C™koCG

Computing GFTy, and IGFTy:
Just do everything componentwise in the block.
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The GFT block-diagonalizes any equivariant A,
independently of the data in Al

A
c cn
| |
cmg cmg
lGFT lGFT
P i A T
cng ~ g

Ais block diagonal with blocks of size mdgr x mdg, where m is the
number of orbits and dg the dimension of the irreducible
representations.
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Example: Solve Ax = b, equivariant A

@ Compute A and b by GFT,,.
@ For each R € R, solve A(R)X(R) = b(R) for X
© Compute x = =1 o IGFT,(X)

CAVEAT: For general group actions (non-free), we have that Ais
singular (even for regular A), but A is regular on a subspace of vectors
being constant on the right ‘cosets’ of the isotroy subgroups. Some
care must be taken!

The GFT is used similarly for computing eigenvalues and matrix
exponentials, and matrix x vector computations.
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Computational savings?

@ O(n®) computations:

3
Wairect/ Wfspace - <Z df%) / Z o3

ReR ReR

@ O(n?) computations:

2
Wairect/ Wfspace - <Z df2?> / Z da.

ReR

ReR
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Example: symmetries of platonic solids

AL 28 3

Domain g |g| {a:R}RE’R’. Wdirect/Wfspa.ce

O(n*)  O(n?)

triangle Ds 6 {1:19} 3.6 21.6

tetrahedron Sy 24 {1,1,2,3,3} 9 216

cube SyxC; 48 {1,1,1,1,2,2,3,3,3,3} 18 864
icosahedron | As xC2 120 {1,1,3,3,3,3,4,4,5,5} 29.5 3541
[m] = =
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Icosahedral symmetries with reflections: G = Cs x As

Cost of matrix exponential (Icoashedral symmetries):
|G| = 120, direct computation 1203 = 1728000 operations.
Block diagonalization by GFT:

13 +134+8%+3%+3°+3%+4%4+4%+5%15°=488

= factor 3500 reduction in cost!
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Application: PDEs and Domain symmetries
Ex.: Heat equation on sphere u; = V2u.

Compute exp(tA) where A ~ V2 on sphere. Exploit icosahedral
symmetries.

More on matrix exponentials in the sequel!
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