Structured Matrix Computations from Structured Tensors

Lecture 1. Matrix-Tensor Connections

Charles F. Van Loan

Cornell University

CIME-EMS Summer School June 22-26, 2015 Cetraro, Italy Using examples, let us first take a look at what we might mean by "hidden structure" in a matrix.

The Discrete Fourier Transform

Definition

$$F_{4} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega_{4} & \omega_{4}^{2} & \omega_{4}^{3} \\ 1 & \omega_{4}^{2} & \omega_{4}^{4} & \omega_{4}^{6} \\ 1 & \omega_{4}^{3} & \omega_{4}^{6} & \omega_{4}^{9} \end{bmatrix} \qquad \omega_{n} = \cos\left(\frac{2\pi}{n}\right) - i\sin\left(\frac{2\pi}{n}\right)$$

Hidden Structure

$$F_{2m}\Pi_{2,m} = \begin{bmatrix} F_m & \Omega_m F_m \\ F_m & -\Omega_m F_m \end{bmatrix} \qquad \begin{array}{c} \Pi_{2,m} = \text{ perfect shuffle} \\ \Omega_m = \text{ diagonal} \end{array}$$

Recursive Block Structure

Structured Matrix Computations from Structured Tensors Lecture 1. Matrix-Tensor Connections

The DFT Matrix is Data Sparse

The DFT matrix is dense, but can be factored into a product of sparse matrices:

$$F_{1024} = A_{10} \cdots A_2 A_1 P^T$$

The A_k have the form $I \otimes \begin{bmatrix} I & D \\ I & -D \end{bmatrix}$, $D =$ diagonal.

That is what makes the FFT possible:

$$y = x$$

for $k = 1:10$
 $y = A_k y$

An *N*-by-*N* matrix is data sparse if it can be represented with many fewer than N^2 numbers. F_N is data sparse: $O(N \log N)$ vs $O(N^2)$.

2. Hamiltonian Matrices

Definition

$$M = \left[\begin{array}{cc} A & F \\ G & -A^T \end{array} \right] \qquad F = F^T, \ G = G^T$$

Hidden Structure

$$M\begin{bmatrix} y\\z\end{bmatrix} = \lambda\begin{bmatrix} y\\z\end{bmatrix} \implies M^{T}\begin{bmatrix} z\\-y\end{bmatrix} = -\lambda\begin{bmatrix} z\\-y\end{bmatrix}$$

Eigenvalues come in plus-minus pairs.

Transformations that Preserve Structure

Equivalent Definition

$$J_{2n}^T M J_{2n} = -M^T \qquad J_{2n} = \begin{vmatrix} 0 & I_n \\ -I_n & 0 \end{vmatrix}$$

Structured Schur Decomposition

$$\begin{bmatrix} Q_1 & Q_2 \\ -Q_2 & Q_1 \end{bmatrix}^T M \begin{bmatrix} Q_1 & Q_2 \\ -Q_2 & Q_1 \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ 0 & -T_{11}^T \end{bmatrix}$$

Q is orthogonal and symplectic $(J_{2n}^T Q J_{2n} = Q^{-T})$

Consequence: Efficient methods for Ricatti equations and various "nearness" problems.

Structured Matrix Computations from Structured Tensors Lecture 1. Matrix-Tensor Connections

3. Cauchy Matrices

Definition

$$A = (a_{kj}) = \left(\frac{1}{\omega_k - \lambda_j}\right) = \begin{bmatrix} \frac{1}{\omega_1 - \lambda_1} & \frac{1}{\omega_1 - \lambda_2} & \frac{1}{\omega_1 - \lambda_3} & \frac{1}{\omega_1 - \lambda_4} \\ \frac{1}{\omega_2 - \lambda_1} & \frac{1}{\omega_2 - \lambda_2} & \frac{1}{\omega_2 - \lambda_3} & \frac{1}{\omega_2 - \lambda_4} \\ \frac{1}{\omega_3 - \lambda_1} & \frac{1}{\omega_3 - \lambda_2} & \frac{1}{\omega_3 - \lambda_3} & \frac{1}{\omega_3 - \lambda_4} \\ \frac{1}{\omega_4 - \lambda_1} & \frac{1}{\omega_4 - \lambda_2} & \frac{1}{\omega_4 - \lambda_3} & \frac{1}{\omega_4 - \lambda_4} \end{bmatrix}$$

Hidden Structure

 $\Omega A - A\Lambda = \text{Rank-1}$ $\Omega = \text{diag}(\omega_i), \Lambda = \text{diag}(\lambda_i),$

With respect to Ω and Λ , A has displacement rank equal to one.

Fast LU

First Step:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \ell_{21} & 1 & 0 & 0 \\ \ell_{31} & 0 & 1 & 0 \\ \ell_{41} & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & b_{22} & b_{23} & b_{24} \\ 0 & b_{32} & b_{33} & b_{34} \\ 0 & b_{42} & b_{43} & b_{44} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Do not compute B as the usual rank-1 update of A(2:n, 2:n). That would be $O(n^2)$

Instead, use the fact that B has unit displacement rank.

The displacement rank representation of B costs O(n)

By working with a clever representations it is sometimes possible to dramatically improve efficiency.

4. Matrices with Orthonormal Columns

Definition

$$Q = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} \qquad Q_1^T Q_1 + Q_2^T Q_2 = I$$

Hidden Structure

$$\begin{bmatrix} U_1 & 0 \\ 0 & U_2 \end{bmatrix}^T \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} V = \begin{bmatrix} \operatorname{diag}(c_i) \\ \operatorname{diag}(s_i) \end{bmatrix} \qquad c_i^2 + s_i^2 = 1$$
$$U_1, \ U_2, \ V = \operatorname{orthogonal}$$

Q_1 and Q_2 have related SVDs. This is the CS Decomposition.

Simultaneous Diagonalization of A_1 and A_2

1. QR factorization:
$$\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} F$$

2. CS decomposition: $\begin{bmatrix} U_1 & 0 \\ 0 & U_2 \end{bmatrix}' \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} V = \begin{bmatrix} \operatorname{diag}(c_i) \\ \operatorname{diag}(s_i) \end{bmatrix}$

3. Setting $X = R^T V$ gives the generalized singular value decomposition:

$$A_1 = U_1 \cdot \operatorname{diag}(c_i) \cdot X^{\mathsf{T}} \qquad A_2 = U_2 \cdot \operatorname{diag}(s_i) \cdot X^{\mathsf{T}}$$

An example where exploiting the hidden structure of Q_1 and Q_2 ensures numerical stability.

Structured Matrix Computations from Structured Tensors Lecture 1. Matrix-Tensor Connections

5. Block Matrices

Definition

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1N} \\ A_{21} & A_{22} & \cdots & A_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ A_{M1} & A_{M2} & \cdots & A_{MN} \end{bmatrix}.$$
 Each A_{ij} a matrix

Hidden Structure

The data in each A_{ij} is contiguous in memory.

Not a hidden "math" structure but a "man-made" hidden data structure.

Respect Data Layout to Minimize Memory Traffic

$$A \leftarrow \begin{bmatrix} A_{11}^{T} & A_{12}^{T} & \cdots & A_{1N}^{T} \\ A_{21}^{T} & A_{22}^{T} & \cdots & A_{2N}^{T} \\ \vdots & \vdots & \ddots & \vdots \\ A_{M1}^{T} & A_{M2}^{T} & \cdots & A_{MN}^{T} \end{bmatrix}.$$
 Overwrite A_{ij} with A_{ij}^{T} .
$$A \leftarrow \begin{bmatrix} A_{11}^{T} & A_{21}^{T} & \cdots & A_{M1}^{T} \\ A_{12}^{T} & A_{22}^{T} & \cdots & A_{M2}^{T} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1N}^{T} & A_{2N}^{T} & \cdots & A_{MN}^{T} \end{bmatrix}.$$
 Swap A_{ij}^{T} with A_{ji}^{T}

A 2-pass transpose that exploits the "hidden" data structure.

Each of these examples has a connection to our agenda:

Monday		
	Lecture 1.	Matrix-tensor Connections
	Lecture 2.	Tensor Symmetries and Rank
Tuesday		
	Lecture 3.	The Tucker and Tensor Train Representations
	Lecture 4.	The CP and KSVD Representations
Thursday		
	Lecture 5.	Unfolding a Tensor with Multiple Symmetries
	Lecture 6.	A Higher-Order GSVD

Monday		
	Lecture 1.	Matrix-Tensor Connections
	Lecture 2.	Tensor Symmetries and Rank
Tuesday		
	Lecture 3.	The Tucker and Tensor Train Representations
	Lecture 4.	The CP and KSVD Representations
Thursday		
	Lecture 5.	Unfolding a Tensor with Multiple Symmetries
	Lecture 6.	A Higher-Order GSVD
		Data Sparsity

Monday		
	Lecture 1.	Matrix-Tensor Connections
	Lecture 2.	Tensor Symmetries and Rank
Tuesday		
	Lecture 3.	The Tucker and Tensor Train Representations
	Lecture 4.	The CP and KSVD Representations
Thursday		
	Lecture 5.	Unfolding a Tensor with Multiple Symmetries
	Lecture 6.	A Higher-Order GSVD

Structured Permutation Similarity

Monday		
	Lecture 1.	Matrix-Tensor Connections
	Lecture 2.	Tensor Symmetries and Rank
Tuesday		
	Lecture 3.	The Tucker and Tensor Train Representations
	Lecture 4.	The CP and KSVD Representations
Thursday		
	Lecture 5.	Unfolding a Tensor with Multiple Symmetries
	Lecture 6.	A Higher-Order GSVD

A Higher-Order CS Decompositions

Monday		
	Lecture 1.	Matrix-Tensor Connections
	Lecture 2.	Tensor Symmetries and Rank
Tuesday		
	Lecture 3.	The Tucker and Tensor Train Representations
	Lecture 4.	The CP and KSVD Representations
Thursday		
	Lecture 5.	Unfolding a Tensor with Multiple Symmetries
	Lecture 6.	A Higher-Order GSVD

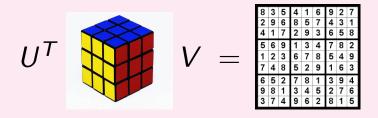
Blocking for Data Locality

Monday		
	Lecture 1.	Matrix-Tensor Connections
	Lecture 2.	Tensor Symmetries and Rank
Tuesday		
	Lecture 3.	The Tucker and Tensor Train Representations
	Lecture 4.	The CP and KSVD Representations
Thursday		
	Lecture 5.	Unfolding a Tensor with Multiple Symmetries
	Lecture 6.	A Higher-Order GSVD

Clever Representations

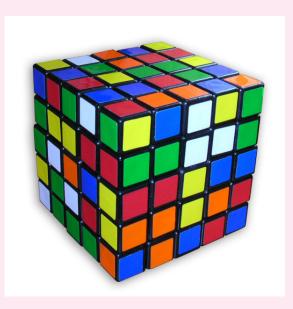
Let us Begin!

Matrix-Tensor Connections



Much of the discussion will revolve around SVD-like operations.

What is a Tensor?



What is a Tensor?

Definition

An order-*d* tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ is a real *d*-dimensional array

```
\mathcal{A}(1:n_1,\ldots,1:n_d)
```

where the index range in the k-th mode is from 1 to n_k .

Low-Order Tensors

A scalar is an order-0 tensor.

A vector is an order-1 tensor.

A matrix is an order-2 tensor.

We use calligraphic font to designate tensors that have order 3 or greater e.g., A, B, C, etc.

Fibers

A fiber of a tensor A is a vector obtained by fixing all but one A's indices. For example, if A = A(1:3, 1:5, 1:4, 1:7), then

$$\mathcal{A}(2,:,4,6) = \mathcal{A}(2,1:5,4,6) = \begin{bmatrix} \mathcal{A}(2,1,4,6) \\ \mathcal{A}(2,2,4,6) \\ \mathcal{A}(2,3,4,6) \\ \mathcal{A}(2,4,4,6) \\ \mathcal{A}(2,5,4,6) \end{bmatrix}$$

is a fiber.

Slices

A slice of a tensor A is a matrix obtained by fixing all but two of A's indices. For example, if A = A(1:3, 1:5, 1:4, 1:7), then

$$\mathcal{A}(:,3,:,6) = \begin{bmatrix} \mathcal{A}(1,3,1,6) & \mathcal{A}(1,3,2,6) & \mathcal{A}(1,3,3,6) & \mathcal{A}(1,3,4,6) \\ \mathcal{A}(2,3,1,6) & \mathcal{A}(2,3,2,6) & \mathcal{A}(2,3,3,6) & \mathcal{A}(2,3,4,6) \\ \mathcal{A}(3,3,1,6) & \mathcal{A}(3,3,2,6) & \mathcal{A}(3,3,3,6) & \mathcal{A}(3,3,4,6) \end{bmatrix}$$

is a slice.

Discretization

 $\mathcal{A}(i, j, k, \ell)$ might house the value of f(w, x, y, z) at $(w, x, y, z) = (w_i, x_j, y_k, z_\ell)$.

Multiway Analysis

 $\mathcal{A}(i, j, k, \ell)$ is a value that captures an interaction between four variables/factors.

You Have Seen them Before

Block Matrices (With Uniformly-Sized Blocks)

	a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅	a ₁₆]
	a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅	a ₂₆
Λ —	a ₃₁	a ₃₂	a ₃₃	a 34	<i>a</i> ₃₅ a ₄₅	a ₃₆
A —						
	a ₄₁	a ₄₂	a 43	a 44	a 45	a ₄₆
	a ₄₁ a ₅₁		a ₅₃	<i>a</i> 54	a ₅₅	<i>a</i> 46 <i>a</i> 56
	a ₅₁		a ₅₃		a ₅₅	

Matrix entry a_{45} is the (2,1) entry of the (2,3) block:

 $a_{45} \Leftrightarrow \mathcal{A}(2,3,2,1)$

You Have Seen Them Before

Kronecker Products (At the Scalar Level)

A =	$\begin{array}{cccc} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array}$	$\left] \otimes \left[\begin{array}{cc} c_{11} & c_{12} \\ c_{21} & c_{22} \end{array} \right]$]	
	$b_{11}c_{11}$ $b_{11}c_{12}$	$b_{12}c_{11}$ $b_{12}c_{12}$	b 13 <i>c</i> 11	b ₁₃ c ₁₂
	$\begin{bmatrix} b_{11}c_{11} & b_{11}c_{12} \\ b_{11}c_{21} & b_{11}c_{22} \end{bmatrix}$	$b_{12}c_{21}$ $b_{12}c_{22}$	<mark>b₁₃c₂₁</mark>	b ₁₃ c ₂₂
	$\begin{array}{ccc} b_{21}c_{11} & b_{21}c_{12} \\ b_{21}c_{21} & b_{21}c_{22} \end{array}$	$b_{22}c_{11}$ $b_{22}c_{12}$	<i>b</i> ₂₃ <i>c</i> ₁₁	b ₂₃ c ₁₂
	$b_{31}c_{11}$ $b_{31}c_{12}$	$b_{32}c_{11}$ $b_{32}c_{12}$	b ₃₃ c ₁₁	b ₃₃ c ₁₂
	$b_{31}c_{21}$ $b_{31}c_{22}$	$b_{32}c_{21}$ $b_{32}c_{22}$	b ₃₃ c ₂₁	$b_{33}c_{22}$

Matrix A is an **unfolding** of tensor A where $A(p, q, r, s) = b_{pq}c_{rs}$.

Structured Matrix Computations from Structured Tensors Lecture 1. Matrix-Tensor Connections

You Have Seen Them Before

Kronecker Products (At the Block Level)

$$A = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} \otimes \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$
$$= \begin{bmatrix} b_{11}C & b_{12}C & b_{13}C \\ \hline b_{21}C & b_{22}C & b_{23}C \\ \hline b_{31}C & b_{32}C & b_{33}C \end{bmatrix}$$

Matrix A is a block matrix whose ij block is $b_{ij}C$.

Structured Matrix Computations from Structured Tensors Lecture 1. Matrix-Tensor Connections

Matrix: $A = B \otimes C \otimes D$

$$A = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \otimes \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \\ c_{41} & c_{42} & c_{43} & c_{44} \end{bmatrix} \otimes \begin{bmatrix} d_{11} & d_{12} & d_{13} \\ d_{21} & d_{22} & d_{23} \\ d_{31} & d_{32} & d_{33} \end{bmatrix}$$

Hierarchy: A is a 2-by-2 block matrix whose entries are 4-by-4 block matrices whose entries are 3-by-3 matrices.

Tensor: $\mathcal{A} = \mathcal{D} \circ \mathcal{C} \circ \mathcal{B}$

$$\mathcal{A}(i_1, i_2, i_3, i_4, i_5, i_6) = \mathcal{D}(i_1, i_2) \mathcal{C}(i_3, i_4) \mathcal{B}(i_5, i_6)$$

Let's look at the connection between Kronecker products and tensors when symmetry is present.

$A = B \otimes C$	=	$\left[\begin{array}{c}1\\2\\3\end{array}\right]$	2 3 4 5 5 6] (≥ [11 12 13	12 14 15	13 15 16			
		[11	12	13	22	24	26	33	36	39 -	1
		12	12 14 15	15	24	28	30	36	42	45	
		11 12 13	15	16	26	30	32	39	45	48	
		22	24 28 30	26	44	48	52	55	60	65	
	=	24	28	30 32	48	56	60	60	70	75	
		26	30	32	52	60	64	65	75	80	
		33	36	39	55	60	65	66	72	78	
		36	42	45	60 65	70	75		84	90	
		22 24 26 33 36 39	36 42 45	48	65	75	80	78	90	96	

$$A = B \otimes C = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} \otimes \begin{bmatrix} 11 & 12 & 13 \\ 12 & 14 & 15 \\ 13 & 15 & 16 \end{bmatrix}$$
$$= \begin{bmatrix} 11 & 12 & 13 \\ 12 & 14 & 15 \\ 24 & 28 & 30 \\ 12 & 14 & 15 \\ 22 & 24 & 26 \\ 24 & 28 & 30 \\ 22 & 24 & 26 \\ 24 & 28 & 30 \\ 48 & 56 & 60 \\ 30 & 32 \\ 52 & 60 & 64 \\ 65 & 75 & 80 \\ 33 & 36 & 39 \\ 55 & 60 & 65 \\ 66 & 72 & 78 \\ 36 & 42 & 45 \\ 60 & 70 & 75 \\ 72 & 84 & 90 \\ 39 & 45 & 48 \\ 65 & 75 & 80 \\ 78 & 90 & 96 \end{bmatrix}$$

Each block is symmetric.

$$A = B \otimes C = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} \otimes \begin{bmatrix} 11 & 12 & 13 \\ 12 & 14 & 15 \\ 13 & 15 & 16 \end{bmatrix}$$
$$= \begin{bmatrix} 11 & 12 & 13 \\ 12 & 14 & 15 \\ 12 & 14 & 15 \\ 24 & 28 & 30 \\ 12 & 14 & 15 \\ 22 & 24 & 26 \\ 24 & 28 & 30 \\ 22 & 24 & 26 \\ 24 & 28 & 30 \\ 48 & 56 & 60 \\ 60 & 70 & 75 \\ 26 & 30 & 32 \\ 52 & 60 & 64 \\ 65 & 75 & 80 \\ 33 & 36 & 39 \\ 55 & 60 & 65 \\ 66 & 72 & 78 \\ 36 & 42 & 45 \\ 60 & 70 & 75 \\ 72 & 84 & 90 \\ 39 & 45 & 48 \\ 65 & 75 & 80 \\ 78 & 90 & 96 \end{bmatrix}$$

Block (i, j) equals Block (j, i)

$$A = B \otimes C = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} \otimes \begin{bmatrix} 11 & 12 & 13 \\ 12 & 14 & 15 \\ 13 & 15 & 16 \end{bmatrix}$$
$$= \begin{bmatrix} 11 & 12 & 13 \\ 12 & 14 & 15 \\ 24 & 28 & 30 \\ 12 & 14 & 15 \\ 22 & 24 & 26 \\ 24 & 28 & 30 \\ 22 & 24 & 26 \\ 24 & 28 & 30 \\ 33 & 36 & 39 \\ 55 & 60 & 65 \\ 66 & 72 & 78 \\ 36 & 42 & 45 \\ 60 & 70 & 75 \\ 72 & 84 & 90 \\ 39 & 45 & 48 \\ 65 & 75 & 80 \\ 78 & 90 & 96 \end{bmatrix}$$

If $\mathcal{A}(p,q,r,s) = b_{pq}c_{rs}$ then $\mathcal{A}(p,q,r,s) = \begin{cases} \mathcal{A}(q,p,r,s) \\ \mathcal{A}(p,q,s,r) \end{cases}$

$A = B \otimes B$ with Symmetric B

$$A = B \otimes B = \begin{bmatrix} 4 & 5 & 6 \\ 5 & 7 & 8 \\ 6 & 8 & 9 \end{bmatrix} \otimes \begin{bmatrix} 4 & 5 & 6 \\ 5 & 7 & 8 \\ 6 & 8 & 9 \end{bmatrix}$$
$$= \begin{bmatrix} 16 & 20 & 24 & 20 & 25 & 30 & 24 & 30 & 36 \\ 20 & 28 & 32 & 25 & 35 & 40 & 30 & 42 & 48 \\ 24 & 32 & 36 & 30 & 40 & 45 & 36 & 48 & 54 \\ 20 & 25 & 30 & 28 & 35 & 42 & 32 & 40 & 48 \\ 25 & 35 & 40 & 35 & 49 & 56 & 40 & 56 & 64 \\ 30 & 40 & 45 & 42 & 56 & 63 & 48 & 64 & 72 \\ 24 & 30 & 36 & 32 & 40 & 48 & 36 & 45 & 54 \\ 30 & 42 & 48 & 40 & 56 & 64 & 45 & 63 & 72 \\ 36 & 48 & 54 & 48 & 64 & 72 & 54 & 72 & 81 \end{bmatrix}$$

$\mathsf{Block}(i,j) = A(i:n:n^2, j:n:n^2)$

Block(2,3) = A(2:3:9,3:3:9)

$A = B \otimes B$ with Symmetric B

=

$$A = B \otimes B = \begin{bmatrix} 4 & 5 & 6 \\ 5 & 7 & 8 \\ 6 & 8 & 9 \end{bmatrix} \otimes \begin{bmatrix} 4 & 5 & 6 \\ 5 & 7 & 8 \\ 6 & 8 & 9 \end{bmatrix}$$

Γ	16	20	24	20	25	30	24	30	36]
	20	28	32	25	35	40	30	42	48
	24	32	36	30	40	45	36	48	54
	20	25	30	28	35	42	32	40	48
	25	35	40	35	49	56	40	56	64
	30	40	45	42	56	63	48	64	72
	24	30	36	32	40	48	36	45	54
	30	42	48	40	56	64	45	63	72
	36	48	54	48	64	72	54	72	81

If
$$\mathcal{A}(p,q,r,s) = b_{pq}b_{rs}$$
 then $\mathcal{A}(p,q,r,s) = \begin{cases} \mathcal{A}(q,p,r,s) \\ \mathcal{A}(p,q,s,r) \\ \mathcal{A}(r,s,p,q) \end{cases}$

For a matrix, there is only one type of symmetry:

$$A(p,q) = A(q,p)$$

For an order-d tensor, there are d! - 1 possibilities:

$$\mathcal{A}(p,q,r,s) \ = \ \left\{ egin{array}{c} \mathcal{A}(q,p,r,s) \ \mathcal{A}(r,q,p,r) \ \mathcal{A}(s,q,r,p) \ dots \end{array}
ight.$$

Next, let's look at the connection between Kronecker products and tensors in the rank-1 setting.

Rank-1 Reshaping

If u and v are vectors, then $A = uv^T$ is a Rank-1 Matrix

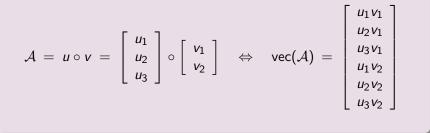
$$A = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}^T = \begin{bmatrix} u_1 v_1 & u_1 v_2 \\ u_2 v_1 & u_2 v_2 \\ u_3 v_1 & u_3 v_2 \end{bmatrix}$$

A is a rank-1 matrix

$A = uv^T \Rightarrow \operatorname{vec}(A) = v \otimes u$							
$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ a_{12} \\ a_{22} \\ a_{32} \end{bmatrix}$	=	$\begin{bmatrix} u_1 v_1 \\ u_2 v_1 \\ u_3 v_1 \\ u_1 v_2 \\ u_2 v_2 \\ u_3 v_2 \end{bmatrix}$	$= \left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] \otimes \left[\begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array}\right]$				

If u and v are vectors then $\mathcal{A} = u \circ v$ is a Rank-1 Tensor

$$\mathcal{A}(i_1,i_2) = u(i_1)v(i_2)$$



Higher-Order Rank-1 Tensors

If u, v, and w are vectors, then $\mathcal{A} = u \circ v \circ w$ is a Rank-1 Tensor

$$\mathcal{A}(p,q,r) = u_p v_q w_r$$

$$\mathcal{A} = u \circ v \circ w = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \circ \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \circ \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \Rightarrow \operatorname{vec}(\mathcal{A}) = \begin{bmatrix} u_1 v_1 w_1 \\ u_2 v_1 w_1 \\ u_1 v_2 w_1 \\ u_1 v_1 w_2 \\ u_2 v_1 w_2 \\ u_1 v_2 w_2 \\ u_1 v_2 w_2 \\ u_2 v_2 w_2 \end{bmatrix}$$

A tensor product of d vectors produces an order-d rank-1 tensor.

$$\operatorname{vec}(u \circ v \circ w) \equiv \begin{bmatrix} u_{1}v_{1}w_{1} \\ u_{2}v_{1}w_{1} \\ u_{1}v_{2}w_{1} \\ u_{2}v_{2}w_{1} \\ u_{1}v_{1}w_{2} \\ u_{2}v_{1}w_{2} \\ u_{2}v_{1}w_{2} \\ u_{1}v_{2}w_{2} \\ u_{2}v_{2}w_{2} \end{bmatrix} = w \otimes v \otimes u$$

Let's look at how we might compute the the nearest rank-1 tensor to a given tensor.

The Nearest Rank-1 Problem for Matrices

Formulation:

Given $A \in \mathbb{R}^{m \times n}$, find unit-2 norm vectors $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ and a nonnegative scalar σ that minimizes

$$\phi(\sigma, u, v) = \|A - \sigma uv^T\|_F.$$

SVD Solution:

If $U^T A V = \Sigma = \text{diag}(\sigma_i)$ where $U = [u_1 | \cdots | u_m]$ $V = [v_1 | \cdots | v_n]$ are orthogonal and $\sigma_1 \ge \cdots \ge \sigma_n \ge 0$, then $\sigma_{\text{opt}} u_{\text{opt}} v_{\text{opt}}^T = \sigma_1 u_1 v_1^T$.

The Nearest Rank-1 Problem for Matrices

An Alternating Least Squares Approach

v = unit vector

Repeat Until Happy:

% Fix v and choose σ and u to minimize $|| A - \sigma u v^T ||_F$ $x = Av; \quad \sigma = || x ||; \quad u = x/\sigma$ % Fix u and choose σ and v to minimize $|| A - \sigma u v^T ||_F$ $x = A^T u; \quad \sigma = || x ||; \quad v = x/\sigma$ $\sigma_{opt} = \sigma; \quad u_{opt} = u; \quad v_{opt} = v$

$$\|A - \sigma uv^{T}\|_{F}^{2} = trace(A^{T}A) - 2\sigma u^{T}Av + \sigma^{2}$$

The best u is in the direction of Av. The best v is in the direction of $A^T u$.

The Nearest Rank-1 Problem for Matrices

An Alternating Least Squares Approach

v = unit vector

Repeat Until Happy:

% Fix v and choose σ and u to minimize $|| A - \sigma u v^T ||_F$ $x = Av; \quad \sigma = || x ||; \quad u = x/\sigma$ % Fix u and choose σ and v to minimize $|| A - \sigma u v^T ||_F$ $x = A^T u; \quad \sigma = || x ||; \quad v = x/\sigma$ $\sigma_{opt} = \sigma; \quad u_{opt} = u; \quad v_{opt} = v$

This is just the power method applied to $A^T A$:

$$x = (A^T A)v, \ v = x/\parallel x \parallel$$

Formulation

Given $\mathcal{A} \in \mathbb{R}^{m \times n \times p}$, determine unit vectors $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$, and $w \in \mathbb{R}^p$ and scalar σ so that the following is minimized:

$$\|\mathcal{A} - \sigma \cdot w \circ v \circ u\|_{F} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p} (a_{ijk} - u_{i}v_{j}w_{k})\right)^{1/2}$$
$$= \|\operatorname{vec}(\mathcal{A}) - \sigma \cdot w \otimes v \otimes u\|_{2}$$

Nearest Rank-1 Problem for Tensors

Alternating Least Squares Framework for min $\| \operatorname{vec}(\mathcal{A}) - \sigma \cdot w \otimes v \otimes u \|_2$

v and w given unit vectors

Repeat Until Happy

Determine $x \in \mathbb{R}^m$ that minimizes $\| \operatorname{vec}(\mathcal{A}) - w \otimes v \otimes x \|_2$

and set $\sigma = \parallel x \parallel$ and $\mathbf{u} = x/\sigma$

Determine $y \in \mathbb{R}^n$ that minimizes $\|\operatorname{vec}(\mathcal{A}) - w \otimes y \otimes u\|_2$

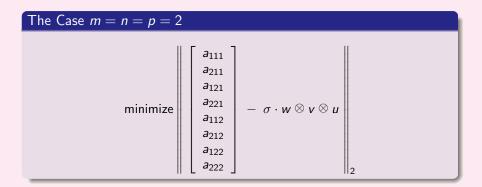
and set $\sigma = \parallel y \parallel$ and $\mathbf{v} = y/\sigma$

Determine $z \in \mathbb{R}^p$ that minimizes $\|\operatorname{vec}(\mathcal{A}) - z \otimes v \otimes u\|_2$

and set $\sigma = || z ||$ and $w = z/\sigma$

Details in next Lecture. For now, we look at the special structure of these linear least square problems for the case m = n = p = 2.

The Nearest Rank-1 Problem for Tensors

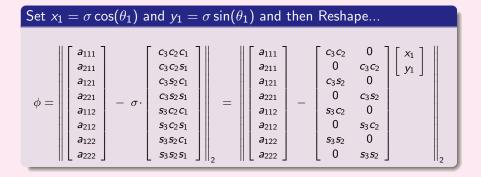


$$u = \begin{bmatrix} \cos(\theta_1) \\ \sin(\theta_1) \end{bmatrix} = \begin{bmatrix} c_1 \\ s_1 \end{bmatrix} \quad v = \begin{bmatrix} \cos(\theta_2) \\ \sin(\theta_2) \end{bmatrix} = \begin{bmatrix} c_2 \\ s_2 \end{bmatrix} \quad w = \begin{bmatrix} \cos(\theta_3) \\ \sin(\theta_3) \end{bmatrix} = \begin{bmatrix} c_3 \\ s_3 \end{bmatrix}$$

It Depends on Four Parameters...

$$\phi(\sigma, \theta_1, \theta_2, \theta_3) = \left\| a - \sigma \begin{bmatrix} \cos(\theta_3) \\ \sin(\theta_3) \end{bmatrix} \otimes \begin{bmatrix} \cos(\theta_2) \\ \sin(\theta_2) \end{bmatrix} \otimes \begin{bmatrix} \cos(\theta_1) \\ \sin(\theta_1) \end{bmatrix} \right\|_2$$
$$= \left\| \begin{bmatrix} a_{111} \\ a_{211} \\ a_{121} \\ a_{221} \\ a_{112} \\ a_{212} \\ a_{122} \\ a_{222} \end{bmatrix} - \sigma \cdot \begin{bmatrix} c_3 c_2 c_1 \\ c_3 c_2 s_1 \\ c_3 s_2 c_1 \\ s_3 c_2 s_1 \\ s_3 c_2 s_1 \\ s_3 s_2 s_1 \\ s_3 s_2 s_1 \end{bmatrix} \right\|_2$$

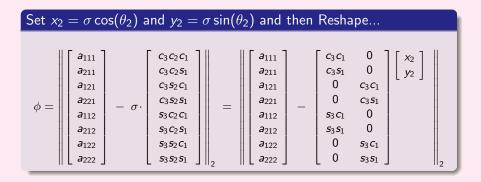
A Highly Structured Nonlinear Optimization Problem



This is an ordinary linear least squares problem for x_1 and y_1 if we "freeze" θ_2 and θ_3 . Solve and update σ and u_1 using

$$\left[\begin{array}{c} x_1 \\ y_1 \end{array}\right] = \sigma u_1 \qquad \sigma = \sqrt{x_1^2 + y_1^2}$$

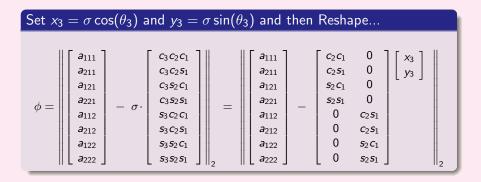
A Highly Structured Nonlinear Optimization Problem



This is an ordinary linear least squares problem for x_2 and y_2 if we "freeze" θ_1 and θ_3 . Solve and update σ and u_2 using

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \sigma u_2 \qquad \sigma = \sqrt{x_2^2 + y_2^2}$$

A Highly Structured Nonlinear Optimization Problem



This is an ordinary linear least squares problem for x_3 and y_3 if we "freeze" θ_1 and θ_2 . Solve and update σ and u_3 using

$$\left[\begin{array}{c} x_3 \\ y_3 \end{array}\right] = \sigma u_3 \qquad \sigma = \sqrt{x_3^2 + y_3^2}$$

Componentwise Optimization

A Common Framework for Tensor-Related Optimization

- Choose a subset of the unknowns such that if they are (temporarily) fixed, then we are presented with some standard matrix problem in the remaining unknowns.
- By choosing different subsets, cycle through all the unknowns.
- Repeat until converged.

In tensor computations, the "standard matrix problem" that we end up solving is usually the linear least squares problem. In that case, the overall solution process is referred to as alternating least squares. **Problem E1.** Consider the three linear least (LS) squares problems that arise when the alternating least squares framework is applied to the 2-by-2-by-2 problem. Outline a solution approach when these linear LS problems are solved using the method of normal equations. (Recall that the method of normal equations for the LS problem min $|| Mu - b ||_2$ involves solving the symmetric positive definite linear system $M^T Mu = M^T b$.)

Problem A1. Repeat E1 but when $\mathcal{A} \in \mathbb{R}^{2 \times 2 \times \cdots \times 2}$ is an order-d tensor.

Closing Remarks

Where Do We Go From Here?

To sums of rank-1's...

$$\mathsf{vec}(\mathcal{A}) = \sum_{k=1}^r \sigma_k \mathsf{w}_k \otimes \mathsf{v}_k \otimes \mathsf{u}_k$$

To more general unfoldings...

$\mathcal{A} \in {\rm I\!R}^{4 \times 2 \times 3} \Rightarrow $	a ₁₁₁	a_{121}	a ₁₃₁	a ₁₁₂	a ₁₂₂	a ₁₃₂	
	a ₂₁₁	a 221	a 231	a ₂₁₂	a ₂₂₂	a ₂₃₂	
	a ₃₁₁	<i>a</i> ₃₂₁	a 331	<i>a</i> ₃₁₂	a ₃₂₂	a ₃₃₂	
	a ₄₁₁	a ₄₂₁	a ₄₃₁	a ₄₁₂	a ₄₂₂	a ₄₃₂	

To more complicated multilinear optimizations...

 $\begin{array}{l} \min & \|\operatorname{vec}(\mathcal{A}) - (W \otimes V \otimes U)s\|_2 \\ U, V, W \in \mathbb{R}^{n \times n} \text{ orthogonal} \\ s \in \mathbb{R}^{n^3} \end{array}$

How Will the Structured Matrix Computations Show Up?

Tensor computations are typically disguised matrix computations and that is because of

Kronecker Products

 $A = A_1 \otimes A_2 \otimes A_3$ an order 6 tensor

Tensor Unfoldings

Rubik Cube \longrightarrow 3 × 9 matrix

Alternating Least Squares

Multilinear optimization via component-wise linear optimization

These are the three ways that structured tensor computations will lead to structured matrix computations.

Preparation for the Next Big Thing...

Scalar-Level Thinking		
1960's ↓	¢	The factorization paradigm: LU , LDL^{T} , QR , $U\Sigma V^{T}$, etc.
Matrix-Level Thinking		
1980's ↓	¢	Cache utilization, parallel computing, LAPACK, etc.
Block Matrix-Level Thinki		
2000's ↓	5	New applications, factoriza- tions, data structures, non- linear analysis, optimization strategies, etc.
Tensor-Level Thinking		strategies, etc.

A Changing Definition of "Big"

In Matrix Computations, to say that $A \in \mathbb{R}^{n_1 \times n_2}$ is "big" is to say that both n_1 and n_2 are big.

In Tensor Computations, to say that $\mathcal{A} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ is "big" is to say that $n_1 n_2 \cdots n_d$ is big and this need not require big n_k . E.g. $n_1 = n_2 = \cdots = n_{1000} = 2$.

Algorithms that scale with d will induce a transition...

Matrix-Based Scientific Computation $\$ \Downarrow Tensor-Based Scientific Computation