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Using examples, let us first take
a look at what we might

mean by
“hidden structure”

in a matrix.
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Hidden Matrix Structure: Five Motivating Examples

The Discrete Fourier Transform

Definition

F4 =


1 1 1 1

1 ω4 ω2
4 ω3

4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

 ωn = cos

(
2π

n

)
− i sin

(
2π

n

)

Hidden Structure

F2mΠ2,m =

[
Fm ΩmFm

Fm −ΩmFm

]
Π2,m = perfect shuffle

Ωm = diagonal

Recursive Block Structure
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Hidden Matrix Structure: Five Motivating Examples

The DFT Matrix is Data Sparse

The DFT matrix is dense, but can be factored into a product of
sparse matrices:

F1024 = A10 · · ·A2A1P
T

The Ak have the form I ⊗
[

I D

I −D

]
, D = diagonal.

That is what makes the FFT possible:

y = x
for k = 1:10

y = Aky

An N-by-N matrix is data sparse if it can be represented with many
fewer than N2 numbers. FN is data sparse: O(N log N) vs O(N2).
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Hidden Matrix Structure: Five Motivating Examples

2. Hamiltonian Matrices

Definition

M =

[
A F

G −AT

]
F = FT , G = GT

Hidden Structure

M

[
y
z

]
= λ

[
y
z

]
⇒ MT

[
z
−y

]
= −λ

[
z
−y

]

Eigenvalues come in plus-minus pairs.
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Hidden Matrix Structure: Five Motivating Examples

Transformations that Preserve Structure

Equivalent Definition

JT
2nMJ2n = −MT J2n =

[
0 In

−In 0

]

Structured Schur Decomposition[
Q1 Q2

−Q2 Q1

]T

M

[
Q1 Q2

−Q2 Q1

]
=

[
T11 T12

0 −TT
11

]
Q is orthogonal and symplectic (JT

2nQJ2n = Q−T )

Consequence: Efficient methods for Ricatti equations and various
“nearness” problems.
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Hidden Matrix Structure: Five Motivating Examples

3. Cauchy Matrices

Definition

A = (akj) =

(
1

ωk − λj

)
=


1

ω1−λ1

1
ω1−λ2

1
ω1−λ3

1
ω1−λ4

1
ω2−λ1

1
ω2−λ2

1
ω2−λ3

1
ω2−λ4

1
ω3−λ1

1
ω3−λ2

1
ω3−λ3

1
ω3−λ4

1
ω4−λ1

1
ω4−λ2

1
ω4−λ3

1
ω4−λ4


Hidden Structure

ΩA− AΛ = Rank-1 Ω = diag(ωi ), Λ = diag(λi ),

With respect to Ω and Λ, A has displacement rank equal to one.
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Hidden Matrix Structure: Five Motivating Examples

Fast LU

First Step:

A =


1 0 0 0

`21 1 0 0
`31 0 1 0
`41 0 0 1




1 0 0 0
0 b22 b23 b24

0 b32 b33 b34

0 b42 b43 b44




u11 u12 u13 u14

0 1 0 0
0 0 1 0
0 0 0 1


Do not compute B as the usual rank-1 update of A(2:n, 2:n). That
would be O(n2)

Instead, use the fact that B has unit displacement rank.

The displacement rank representation of B costs O(n)

By working with a clever representations it is sometimes possible to
dramatically improve efficiency.
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Hidden Matrix Structure: Five Motivating Examples

4. Matrices with Orthonormal Columns

Definition

Q =

[
Q1

Q2

]
QT

1 Q1 + QT
2 Q2 = I

Hidden Structure[
U1 0

0 U2

]T [
Q1

Q2

]
V =

[
diag(ci )

diag(si )

]
c2
i + s2

i = 1

U1, U2, V = orthogonal

Q1 and Q2 have related SVDs. This is the CS Decomposition.
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Hidden Matrix Structure: Five Motivating Examples

Simultaneous Diagonalization of A1 and A2

1. QR factorization:

[
A1

A2

]
=

[
Q1

Q2

]
R

2. CS decomposition:

[
U1 0

0 U2

]T [
Q1

Q2

]
V =

[
diag(ci )

diag(si )

]
c2
i + s2

i = 1

3. Setting X = RTV gives the generalized singular
value decomposition:

A1 = U1 ·diag(ci )·XT A2 = U2 ·diag(si )·XT

An example where exploiting the hidden structure of Q1 and Q2

ensures numerical stability.
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Hidden Matrix Structure: Five Motivating Examples

5. Block Matrices

Definition

A =


A11 A12 · · · A1N

A21 A22 · · · A2N

...
...

. . .
...

AM1 AM2 · · · AMN

 . Each Aij a matrix.

Hidden Structure

The data in each Aij is contiguous in memory.

Not a hidden “math” structure but a “man-made” hidden data
structure.
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Hidden Matrix Structure: Five Motivating Examples

Respect Data Layout to Minimize Memory Traffic

A ←


AT

11 AT
12 · · · AT

1N

AT
21 AT

22 · · · AT
2N

...
...

. . .
...

AT
M1 AT

M2 · · · AT
MN

 . Overwrite Aij with AT
ij .

A ←


AT

11 AT
21 · · · AT

M1

AT
12 AT

22 · · · AT
M2

...
...

. . .
...

AT
1N

AT
2N
· · · AT

MN

 . Swap AT
ij with AT

ji

A 2-pass transpose that exploits the “hidden” data structure.
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Hidden Structure in Matrices

Each of these examples has a connection to our agenda:

Monday
Lecture 1. Matrix-tensor Connections

Lecture 2. Tensor Symmetries and Rank
Tuesday

Lecture 3. The Tucker and Tensor Train Representations

Lecture 4. The CP and KSVD Representations
Thursday

Lecture 5. Unfolding a Tensor with Multiple Symmetries

Lecture 6. A Higher-Order GSVD
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The Plan

Monday
Lecture 1. Matrix-Tensor Connections

Lecture 2. Tensor Symmetries and Rank
Tuesday

Lecture 3. The Tucker and Tensor Train Representations

Lecture 4. The CP and KSVD Representations
Thursday

Lecture 5. Unfolding a Tensor with Multiple Symmetries

Lecture 6. A Higher-Order GSVD

Data Sparsity
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The Plan

Monday
Lecture 1. Matrix-Tensor Connections

Lecture 2. Tensor Symmetries and Rank
Tuesday

Lecture 3. The Tucker and Tensor Train Representations

Lecture 4. The CP and KSVD Representations
Thursday

Lecture 5. Unfolding a Tensor with Multiple Symmetries

Lecture 6. A Higher-Order GSVD

Structured Permutation Similarity
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The Plan

Monday
Lecture 1. Matrix-Tensor Connections

Lecture 2. Tensor Symmetries and Rank
Tuesday

Lecture 3. The Tucker and Tensor Train Representations

Lecture 4. The CP and KSVD Representations
Thursday

Lecture 5. Unfolding a Tensor with Multiple Symmetries

Lecture 6. A Higher-Order GSVD

A Higher-Order CS Decompositions
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The Plan

Monday
Lecture 1. Matrix-Tensor Connections

Lecture 2. Tensor Symmetries and Rank
Tuesday

Lecture 3. The Tucker and Tensor Train Representations

Lecture 4. The CP and KSVD Representations
Thursday

Lecture 5. Unfolding a Tensor with Multiple Symmetries

Lecture 6. A Higher-Order GSVD

Blocking for Data Locality
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The Plan

Monday
Lecture 1. Matrix-Tensor Connections

Lecture 2. Tensor Symmetries and Rank
Tuesday

Lecture 3. The Tucker and Tensor Train Representations

Lecture 4. The CP and KSVD Representations
Thursday

Lecture 5. Unfolding a Tensor with Multiple Symmetries

Lecture 6. A Higher-Order GSVD

Clever Representations
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Let us Begin!
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Matrix-Tensor Connections

UT V =

Much of the discussion will revolve around SVD-like
operations.
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What is a Tensor?
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What is a Tensor?

Definition

An order-d tensor A ∈ IRn1×···×nd is a real d-dimensional array

A(1:n1, . . . , 1:nd)

where the index range in the k-th mode is from 1 to nk .

Low-Order Tensors

A scalar is an order-0 tensor.

A vector is an order-1 tensor.

A matrix is an order-2 tensor.

We use calligraphic font to designate tensors that have order 3 or greater
e.g., A, B, C, etc.
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Parts of a Tensor

Fibers

A fiber of a tensor A is a vector obtained by fixing all but one A’s
indices. For example, if A = A(1:3, 1:5, 1:4, 1:7), then

A(2, :, 4, 6) = A(2, 1:5, 4, 6) =


A(2, 1, 4, 6)
A(2, 2, 4, 6)
A(2, 3, 4, 6)
A(2, 4, 4, 6)
A(2, 5, 4, 6)


is a fiber.
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Parts of a Tensor

Slices

A slice of a tensor A is a matrix obtained by fixing all but two of A’s
indices. For example, if A = A(1:3, 1:5, 1:4, 1:7), then

A(:, 3, :, 6) =

 A(1, 3, 1, 6) A(1, 3, 2, 6) A(1, 3, 3, 6) A(1, 3, 4, 6)
A(2, 3, 1, 6) A(2, 3, 2, 6) A(2, 3, 3, 6) A(2, 3, 4, 6)
A(3, 3, 1, 6) A(3, 3, 2, 6) A(3, 3, 3, 6) A(3, 3, 4, 6)


is a slice.
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Where Might They Come From?

Discretization

A(i , j , k, `) might house the value of f (w , x , y , z) at
(w , x , y , z) = (wi , xj , yk , z`).

Multiway Analysis

A(i , j , k, `) is a value that captures an interaction between four
variables/factors.
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You Have Seen them Before

Block Matrices (With Uniformly-Sized Blocks)

A =



a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66



Matrix entry a45 is the (2,1) entry of the (2,3) block:

a45 ⇔ A(2, 3, 2, 1)
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You Have Seen Them Before

Kronecker Products (At the Scalar Level)

A =

 b11 b12 b13

b21 b22 b23

b31 b32 b33

 ⊗ [
c11 c12

c21 c22

]

=



b11c11 b11c12 b12c11 b12c12 b13c11 b13c12

b11c21 b11c22 b12c21 b12c22 b13c21 b13c22

b21c11 b21c12 b22c11 b22c12 b23c11 b23c12

b21c21 b21c22 b22c21 b22c22 b23c21 b23c22

b31c11 b31c12 b32c11 b32c12 b33c11 b33c12

b31c21 b31c22 b32c21 b32c22 b33c21 b33c22


Matrix A is an unfolding of tensor A where A(p, q, r , s) = bpqcrs .
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You Have Seen Them Before

Kronecker Products (At the Block Level)

A =

 b11 b12 b13

b21 b22 b23

b31 b32 b33

 ⊗ [
c11 c12

c21 c22

]

=



b11C b12C b13C

b21C b22C b23C

b31C b32C b33C


Matrix A is a block matrix whose ij block is bijC .
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You Have Seen Them Before

Matrix: A = B ⊗ C ⊗ D

A =

[
b11 b12

b21 b22

]
⊗


c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

 ⊗
 d11 d12 d13

d21 d22 d23

d31 d32 d33


Hierarchy: A is a 2-by-2 block matrix whose entries are 4-by-4 block
matrices whose entries are 3-by-3 matrices.

Tensor: A = D ◦ C ◦ B

A(i1, i2, i3, i4, i5, i6) = D(i1, i2)C(i3, i4)B(i5, i6)
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A First Look at Tensor Symmetry

Let’s look at the connection between
Kronecker products and tensors

when symmetry is present.
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A = B ⊗ C with Symmetric B and C

A = B ⊗ C =

 1 2 3
2 4 5
3 5 6

 ⊗
 11 12 13

12 14 15
13 15 16



=



11 12 13 22 24 26 33 36 39
12 14 15 24 28 30 36 42 45
13 15 16 26 30 32 39 45 48
22 24 26 44 48 52 55 60 65
24 28 30 48 56 60 60 70 75
26 30 32 52 60 64 65 75 80
33 36 39 55 60 65 66 72 78
36 42 45 60 70 75 72 84 90
39 45 48 65 75 80 78 90 96


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A = B ⊗ C with Symmetric B and C

A = B ⊗ C =

 1 2 3
2 4 5
3 5 6

 ⊗
 11 12 13

12 14 15
13 15 16



=



11 12 13 22 24 26 33 36 39
12 14 15 24 28 30 36 42 45
13 15 16 26 30 32 39 45 48
22 24 26 44 48 52 55 60 65
24 28 30 48 56 60 60 70 75
26 30 32 52 60 64 65 75 80
33 36 39 55 60 65 66 72 78
36 42 45 60 70 75 72 84 90
39 45 48 65 75 80 78 90 96



Each block is symmetric.
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A = B ⊗ C with Symmetric B and C

A = B ⊗ C =

 1 2 3
2 4 5
3 5 6

 ⊗
 11 12 13

12 14 15
13 15 16



=



11 12 13 22 24 26 33 36 39
12 14 15 24 28 30 36 42 45
13 15 16 26 30 32 39 45 48
22 24 26 44 48 52 55 60 65
24 28 30 48 56 60 60 70 75
26 30 32 52 60 64 65 75 80
33 36 39 55 60 65 66 72 78
36 42 45 60 70 75 72 84 90
39 45 48 65 75 80 78 90 96



Block (i , j) equals Block (j , i)
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A = B ⊗ C with Symmetric B and C

A = B ⊗ C =

 1 2 3
2 4 5
3 5 6

 ⊗
 11 12 13

12 14 15
13 15 16



=



11 12 13 22 24 26 33 36 39
12 14 15 24 28 30 36 42 45
13 15 16 26 30 32 39 45 48
22 24 26 44 48 52 55 60 65
24 28 30 48 56 60 60 70 75
26 30 32 52 60 64 65 75 80
33 36 39 55 60 65 66 72 78
36 42 45 60 70 75 72 84 90
39 45 48 65 75 80 78 90 96


If A(p, q, r , s) = bpqcrs then A(p, q, r , s) =

{
A(q, p, r , s)
A(p, q, s, r)
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A = B ⊗ B with Symmetric B

A = B ⊗ B =

 4 5 6
5 7 8
6 8 9

 ⊗
 4 5 6

5 7 8
6 8 9



=



16 20 24 20 25 30 24 30 36

20 28 32 25 35 40 30 42 48
24 32 36 30 40 45 36 48 54
20 25 30 28 35 42 32 40 48

25 35 40 35 49 56 40 56 64
30 40 45 42 56 63 48 64 72
24 30 36 32 40 48 36 45 54

30 42 48 40 56 64 45 63 72
36 48 54 48 64 72 54 72 81



Block(i , j) = A(i :n:n2, j :n:n2) Block(2, 3) = A(2:3:9, 3:3:9)
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A = B ⊗ B with Symmetric B

A = B ⊗ B =

 4 5 6
5 7 8
6 8 9

 ⊗
 4 5 6

5 7 8
6 8 9



=



16 20 24 20 25 30 24 30 36
20 28 32 25 35 40 30 42 48
24 32 36 30 40 45 36 48 54
20 25 30 28 35 42 32 40 48
25 35 40 35 49 56 40 56 64
30 40 45 42 56 63 48 64 72
24 30 36 32 40 48 36 45 54
30 42 48 40 56 64 45 63 72
36 48 54 48 64 72 54 72 81



If A(p, q, r , s) = bpqbrs then A(p, q, r , s) =


A(q, p, r , s)
A(p, q, s, r)
A(r , s, p, q)
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A First Look at Tensor Symmetry

For a matrix, there is only one type of symmetry:

A(p, q) = A(q, p)

For an order-d tensor, there are d!− 1 possibilities:

A(p, q, r , s) =


A(q, p, r , s)
A(r , q, p, r)
A(s, q, r , p)

...
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A First Look at Rank-1 Tensors

Next, let’s look at the connection between
Kronecker products and tensors

in the rank-1 setting.
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Rank-1 Reshaping

If u and v are vectors, then A = uvT is a Rank-1 Matrix

A =

 u1

u2

u3

[
v1

v2

]T

=

 u1v1 u1v2

u2v1 u2v2

u3v1 u3v2


A is a rank-1 matrix

A = uvT ⇒ vec(A) = v ⊗ u

a11

a21

a31

a12

a22

a32

 =



u1v1

u2v1

u3v1

u1v2

u2v2

u3v2

 =

[
v1

v2

]
⊗

 u1

u2

u3



Structured Matrix Computations from Structured Tensors Lecture 1. Matrix-Tensor Connections 39 / 60



In the Language of Tensor Products

If u and v are vectors then A = u ◦ v is a Rank-1 Tensor

A(i1, i2) = u(i1)v(i2)

A = u ◦ v =

 u1

u2

u3

 ◦ [
v1

v2

]
⇔ vec(A) =



u1v1

u2v1

u3v1

u1v2

u2v2

u3v2


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Higher-Order Rank-1 Tensors

If u, v , and w are vectors, then A = u ◦ v ◦ w is a Rank-1 Tensor

A(p, q, r) = upvqwr

A = u◦v◦w =

[
u1

u2

]
◦
[

v1

v2

]
◦
[

w1

w2

]
⇒ vec(A) =



u1v1w1

u2v1w1

u1v2w1

u2v2w1

u1v1w2

u2v1w2

u1v2w2

u2v2w2



A tensor product of d vectors produces an order-d rank-1 tensor.
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A Notation Detail: u-v-w versus w-v-u

vec(u ◦ v ◦ w) ≡



u1v1w1

u2v1w1

u1v2w1

u2v2w1

u1v1w2

u2v1w2

u1v2w2

u2v2w2


= w ⊗ v ⊗ u
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A First Look at Multilinear Optimization

Let’s look at how we might compute the
the nearest rank-1 tensor to

a given tensor.
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The Nearest Rank-1 Problem for Matrices

Formulation:

Given A ∈ IRm×n, find unit-2 norm vectors u ∈ IRm and v ∈ IRn and a
nonnegative scalar σ that minimizes

φ(σ, u, v) = ‖ A− σuvT ‖F .

SVD Solution:

If UTAV = Σ = diag(σi ) where

U = [u1 | · · · | um] V = [v1 | · · · | vn]

are orthogonal and σ1 ≥ · · · ≥ σn ≥ 0, then σoptuoptv
T
opt = σ1u1v

T
1 .
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The Nearest Rank-1 Problem for Matrices

An Alternating Least Squares Approach

v = unit vector

Repeat Until Happy:

% Fix v and choose σ and u to minimize ‖ A− σuvT ‖F
x = Av ; σ = ‖ x ‖; u = x/σ

% Fix u and choose σ and v to minimize ‖ A− σuvT ‖F
x = ATu; σ = ‖ x ‖; v = x/σ

σopt = σ; uopt = u; vopt = v

‖ A− σuvT ‖2F = trace(ATA)− 2σuTAv + σ2

The best u is in the direction of Av. The best v is in the direction of ATu.
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The Nearest Rank-1 Problem for Matrices

An Alternating Least Squares Approach

v = unit vector

Repeat Until Happy:

% Fix v and choose σ and u to minimize ‖ A− σuvT ‖F
x = Av ; σ = ‖ x ‖; u = x/σ

% Fix u and choose σ and v to minimize ‖ A− σuvT ‖F
x = ATu; σ = ‖ x ‖; v = x/σ

σopt = σ; uopt = u; vopt = v

This is just the power method applied to ATA:

x = (ATA)v , v = x/‖ x ‖
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Nearest Rank-1 Problem for Tensors

Formulation

Given A ∈ IRm×n×p, determine unit vectors u ∈ IRm, v ∈ IRn, and
w ∈ IRp and scalar σ so that the following is minimized:

‖ A − σ · w ◦ v ◦ u ‖F =

 m∑
i=1

n∑
j=1

p∑
k=1

(aijk − uivjwk)

1/2

= ‖ vec(A) − σ · w ⊗ v ⊗ u ‖2
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Nearest Rank-1 Problem for Tensors

Alternating Least Squares Framework for min
‖ vec(A) − σ · w ⊗ v ⊗ u ‖2

v and w given unit vectors

Repeat Until Happy

Determine x ∈ IRm that minimizes ‖ vec(A) − w ⊗ v ⊗ x ‖2
and set σ = ‖ x ‖ and u = x/σ

Determine y ∈ IRn that minimizes ‖ vec(A) − w ⊗ y ⊗ u ‖2
and set σ = ‖ y ‖ and v = y/σ

Determine z ∈ IRp that minimizes ‖ vec(A) − z ⊗ v ⊗ u ‖2
and set σ = ‖ z ‖ and w = z/σ

Details in next Lecture. For now, we look at the special structure of
these linear least square problems for the case m = n = p = 2.
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The Nearest Rank-1 Problem for Tensors

The Case m = n = p = 2

minimize

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



a111

a211

a121

a221

a112

a212

a122

a222


− σ · w ⊗ v ⊗ u

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

u =

»
cos(θ1)
sin(θ1)

–
=

»
c1

s1

–
v =

»
cos(θ2)
sin(θ2)

–
=

»
c2

s2

–
w =

»
cos(θ3)
sin(θ3)

–
=

»
c3

s3

–
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A Highly Structured Nonlinear Optimization Problem

It Depends on Four Parameters...

φ(σ, θ1, θ2, θ3) =

∥∥∥∥a − σ

[
cos(θ3)
sin(θ3)

]
⊗

[
cos(θ2)
sin(θ2)

]
⊗

[
cos(θ1)
sin(θ1)

]∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



a111

a211

a121

a221

a112

a212

a122

a222


− σ ·



c3c2c1

c3c2s1
c3s2c1

c3s2s1
s3c2c1

s3c2s1
s3s2c1

s3s2s1



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2
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A Highly Structured Nonlinear Optimization Problem

Set x1 = σ cos(θ1) and y1 = σ sin(θ1) and then Reshape...

φ =

‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚

266666666664

a111

a211

a121

a221

a112

a212

a122

a222

377777777775
− σ ·

266666666664

c3c2c1

c3c2s1

c3s2c1

c3s2s1

s3c2c1

s3c2s1

s3s2c1

s3s2s1

377777777775

‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚
2

=

‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚

266666666664

a111

a211

a121

a221

a112

a212

a122

a222

377777777775
−

266666666664

c3c2 0
0 c3c2

c3s2 0
0 c3s2

s3c2 0
0 s3c2

s3s2 0
0 s3s2

377777777775

»
x1

y1

– ‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚
2

This is an ordinary linear least squares problem for x1 and y1 if we ”freeze”
θ2 and θ3. Solve and update σ and u1 using[

x1

y1

]
= σu1 σ =

√
x2
1 + y2

1
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A Highly Structured Nonlinear Optimization Problem

Set x2 = σ cos(θ2) and y2 = σ sin(θ2) and then Reshape...

φ =

‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚

266666666664

a111

a211

a121

a221

a112

a212

a122

a222

377777777775
− σ ·

266666666664

c3c2c1

c3c2s1

c3s2c1

c3s2s1

s3c2c1

s3c2s1

s3s2c1

s3s2s1

377777777775

‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚
2

=

‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚

266666666664

a111

a211

a121

a221

a112

a212

a122

a222

377777777775
−

266666666664

c3c1 0
c3s1 0
0 c3c1

0 c3s1

s3c1 0
s3s1 0
0 s3c1

0 s3s1

377777777775

»
x2

y2

– ‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚
2

This is an ordinary linear least squares problem for x2 and y2 if we ”freeze”
θ1 and θ3. Solve and update σ and u2 using[

x2

y2

]
= σu2 σ =

√
x2
2 + y2

2
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A Highly Structured Nonlinear Optimization Problem

Set x3 = σ cos(θ3) and y3 = σ sin(θ3) and then Reshape...

φ =

‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚

266666666664

a111

a211

a121

a221

a112

a212

a122

a222

377777777775
− σ ·

266666666664

c3c2c1

c3c2s1

c3s2c1

c3s2s1

s3c2c1

s3c2s1

s3s2c1

s3s2s1

377777777775

‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚
2

=

‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚

266666666664

a111

a211

a121

a221

a112

a212

a122

a222

377777777775
−

266666666664

c2c1 0
c2s1 0
s2c1 0
s2s1 0
0 c2s1

0 c2s1

0 s2c1

0 s2s1

377777777775

»
x3

y3

– ‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚
2

This is an ordinary linear least squares problem for x3 and y3 if we ”freeze”
θ1 and θ2. Solve and update σ and u3 using[

x3

y3

]
= σu3 σ =

√
x2
3 + y2

3
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Componentwise Optimization

A Common Framework for Tensor-Related Optimization

Choose a subset of the unknowns such that if they are
(temporarily) fixed, then we are presented with some standard
matrix problem in the remaining unknowns.

By choosing different subsets, cycle through all the unknowns.

Repeat until converged.

In tensor computations, the “standard matrix problem” that we end up
solving is usually the linear least squares problem. In that case, the overall

solution process is referred to as alternating least squares.
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Optional “Fun” Problems

Problem E1. Consider the the three linear least (LS) squares problems
that arise when the alternating least squares framework is applied to the
2-by-2-by-2 problem. Outline a solution approach when these linear LS
problems are solved using the method of normal equations. (Recall that the
method of normal equations for the LS problem min ‖Mu − b ‖2 involves
solving the symmetric positive definite linear system MTMu = MTb.)

Problem A1. Repeat E1 but when A ∈ IR2×2×···×2 is an order-d tensor.
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Closing Remarks
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Where Do We Go From Here?

To sums of rank-1’s...

vec(A) =
r∑

k=1

σkwk ⊗ vk ⊗ uk

To more general unfoldings...

A ∈ IR4×2×3 ⇒


a111 a121 a131 a112 a122 a132

a211 a221 a231 a212 a222 a232

a311 a321 a331 a312 a322 a332

a411 a421 a431 a412 a422 a432


To more complicated multilinear optimizations...

min
U, V , W ∈ IRn×n orthogonal

s ∈ IRn3

‖vec(A) − (W ⊗ V ⊗ U)s‖2
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How Will the Structured Matrix Computations Show Up?

Tensor computations are typically disguised matrix computations and
that is because of

Kronecker Products

A = A1 ⊗ A2 ⊗ A3 an order 6 tensor

Tensor Unfoldings

Rubik Cube −→ 3× 9 matrix

Alternating Least Squares

Multilinear optimization via component-wise linear optimization

These are the three ways that structured tensor computations will
lead to structured matrix computations.
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Context

Preparation for the Next Big Thing...

Scalar-Level Thinking

1960’s ⇓

Matrix-Level Thinking

1980’s ⇓

Block Matrix-Level Thinking

2000’s ⇓

Tensor-Level Thinking

⇐ The factorization paradigm:
LU, LDLT , QR, UΣV T , etc.

⇐ Cache utilization, parallel
computing, LAPACK, etc.

⇐
New applications, factoriza-
tions, data structures, non-
linear analysis, optimization
strategies, etc.
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More Context

A Changing Definition of “Big”

In Matrix Computations, to say that A ∈ IRn1×n2 is “big” is to say
that both n1 and n2 are big.

In Tensor Computations, to say that A ∈ IRn1×···×nd is “big” is to say
that n1n2 · · · nd is big and this need not require big nk . E.g.
n1 = n2 = · · · = n1000 = 2.

Algorithms that scale with d will induce a transition...

Matrix-Based Scientific Computation

⇓
Tensor-Based Scientific Computation
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