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Using examples, let us first take
a look at what we might
mean by
“hidden structure”
in @ matrix.
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Hidden Matrix Structure: Five Motivating Examples

The Discrete Fourier Transform

Definition
1 1 1 1
1 wy w? Wi 2m .. (27
F, = 2 L 6 wp = cos| — | —isin|{ —
1 w; wy wy n n
1wl o wy

Hidden Structure

Fm _QmFm

Q. = diagonal

I Y e Mo.m = perfect shuffle
F2m|_|2,m -

Recursive Block Structure
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Hidden Matrix Structure: Five Motivating Examples

The DFT Matrix is Data Sparse

The DFT matrix is dense, but can be factored into a product of
sparse matrices:

Fiooa = Aig---AsAPT

The Ag have the form | ® , D = diagonal.

That is what makes the FFT possible:

y=x
for k =1:10
y = Aky

An N-by-N matrix is data sparse if it can be represented with many
fewer than N2 numbers. Fy is data sparse: O(Nlog N) vs O(N?).
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Hidden Matrix Structure: Five Motivating Examples

2. Hamiltonian Matrices

Definition

Eigenvalues come in plus-minus pairs.
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Hidden Matrix Structure: Five Motivating Examples

Transformations that Preserve Structure

Equivalent Definition

0 I,
J27,—7MJ2,, =-M" Sn = [ —1, 0 ]
n

Structured Schur Decomposition
[ QA @

TM Q1 Q@ | T T
—-Q -Q 0o -7

Q is orthogonal and symplectic (J QJ,, = Q= T)

Consequence: Efficient methods for Ricatti equations and various
“nearness” problems.
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Hidden Matrix Structure: Five Motivating Examples

3. Cauchy Matrices

Definition
r 1 1 1 1 7
wWi—A1  wWi—A2  wi—A3 wi—M
1 1 1 1
A — . 1 . wWr—A1  wa—A2  wr—A3  wi—M\g
= (ag) = wr—N /) 1 1 1 1
J wW3—A1  w3—A2  w3—A3  w3—A\g
1 1 1 1
L ws—A1  wa—X2  wis—A3  ws—Ag

Hidden Structure

QA — AN = Rank-1 Q = diag(wj), A = diag(\;),

With respect to 2 and A, A has displacement rank equal to one.
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Hidden Matrix Structure: Five Motivating Examples

First Step:
1 0 0 O 1 0 0 0 ujy uio ui3 Uia
A_ | fa 100 0 by by by 0o 1 0 0
“ | 4 0 1 0 0 b3y b3z bz 0 0 1 0
lyy 0 0 1 0 bgp bz by 0 0 0 1

Do not compute B as the usual rank-1 update of A(2:n,2:n). That
would be O(n?)

Instead, use the fact that B has unit displacement rank.

The displacement rank representation of B costs O(n)

By working with a clever representations it is sometimes possible to
dramatically improve efficiency.
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Hidden Matrix Structure: Five Motivating Examples

4. Matrices with Orthonormal Columns

Definition

Q - [Qll QAU+ Q= |
Q2

Hidden Structure

T .
U1 0 ] [ Ql ] V - [ dlag(c,-) ] ci2 —|—si2 1
0 U Q2 diag(s;)

Ui, Up, V = orthogonal

Q1 and @ have related SVDs. This is the CS Decomposition.
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Hidden Matrix Structure: Five Motivating Examples

Simultaneous Diagonalization of A; and Ap

c o A1 . Ql
1. QR factorization: [ A, ] = [ O ] R

T :
@ v d|.ag(c,-)
@2 diag(s;)
3. Setting X = RV gives the generalized singular
value decomposition:

0

Uy
2. CS decomposition:
0 U

A; = U;-diag(c;)-XT Az = Up-diag(s;)- X7

An example where exploiting the hidden structure of @; and @
ensures numerical stability.
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Hidden Matrix Structure: Five Motivating Examples

5. Block Matrices

Definition
Al A - Aw
Ay Ax - A _
A = ] ] ] Each Aj a matrix.
AMl AM2 T AMN

Hidden Structure

The data in each Aj; is contiguous in memory.

Not a hidden “math” structure but a “man-made” hidden data
structure.
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Hidden Matrix Structure: Five Motivating Examples

Respect Data Layout to Minimize Memory Traffic

AL AL ... AT
Ao .21 .22 .2N Overwrite Aj; with AZ—
[ A Al - Al
[ AL AL - AL
AT AT e AT
po | SBE  pan g]
LA AU e A

A 2-pass transpose that exploits the “hidden” data structure.
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Hidden Structure in Matrices

Each of these examples has a connection to our agenda:

Monday
Lecture 1. Matrix-tensor Connections
Lecture 2. Tensor Symmetries and Rank
Tuesday
Lecture 3. The Tucker and Tensor Train Representations
Lecture 4. The CP and KSVD Representations
Thursday

Lecture 5. Unfolding a Tensor with Multiple Symmetries
Lecture 6. A Higher-Order GSVD
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The Plan

Monday
Lecture 1. Matrix-Tensor Connections
Lecture 2. Tensor Symmetries and Rank
Tuesday
Lecture 3. The Tucker and Tensor Train Representations
Lecture 4. The CP and KSVD Representations
Thursday

Lecture 5. Unfolding a Tensor with Multiple Symmetries
Lecture 6. A Higher-Order GSVD

Data Sparsity
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The Plan

Monday
Lecture 1. Matrix-Tensor Connections
Lecture 2. Tensor Symmetries and Rank
Tuesday
Lecture 3. The Tucker and Tensor Train Representations
Lecture 4. The CP and KSVD Representations
Thursday

Lecture 5. Unfolding a Tensor with Multiple Symmetries
Lecture 6. A Higher-Order GSVD

Structured Permutation Similarity
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The Plan

Monday
Lecture 1. Matrix-Tensor Connections
Lecture 2. Tensor Symmetries and Rank
Tuesday
Lecture 3. The Tucker and Tensor Train Representations
Lecture 4. The CP and KSVD Representations
Thursday

Lecture 5. Unfolding a Tensor with Multiple Symmetries
Lecture 6. A Higher-Order GSVD

A Higher-Order CS Decompositions

Structured Matrix Computations from Structured Tensors Lecture 1. Matrix-Tensor Connections



The Plan

Monday
Lecture 1. Matrix-Tensor Connections
Lecture 2. Tensor Symmetries and Rank
Tuesday
Lecture 3. The Tucker and Tensor Train Representations
Lecture 4. The CP and KSVD Representations
Thursday

Lecture 5. Unfolding a Tensor with Multiple Symmetries
Lecture 6. A Higher-Order GSVD

Blocking for Data Locality

Structured Matrix Computations from Structured Tensors Lecture 1. Matrix-Tensor Connections



The Plan

Monday
Lecture 1. Matrix-Tensor Connections
Lecture 2. Tensor Symmetries and Rank
Tuesday
Lecture 3. The Tucker and Tensor Train Representations
Lecture 4. The CP and KSVD Representations
Thursday

Lecture 5. Unfolding a Tensor with Multiple Symmetries
Lecture 6. A Higher-Order GSVD

Clever Representations
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Let us Begin!
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Matrix-Tensor Connections

UT

wooa|lv - oalsrme
~Noools NSO W
a0 WOIN OO
ww~Nlo e alos
38 NE-1] ENRENIEAY N30 T
v a=|o o slo~o
AN W= o ~N|®
S ~Nwlo bk olonw N
nob|lew on]|oalw

Much of the discussion will revolve around SVD-like
operations.
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What is a Tensor?
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What is a Tensor?

An order-d tensor A € R™**"d is a real d-dimensional array
A(1l:n,...,1:ing)

where the index range in the k-th mode is from 1 to ny.

Low-Order Tensors

| A\

A scalar is an order-0 tensor.
A vector is an order-1 tensor.

A matrix is an order-2 tensor.

We use calligraphic font to designate tensors that have order 3 or greater
eg., A, B, C, etc.
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Parts of a Tensor

A fiber of a tensor A is a vector obtained by fixing all but one A'’s
indices. For example, if A = A(1:3,1:5,1:4,1:7), then

A2,1,4
A(2,2,4
A(2,:,4,6) = A(2,15,4,6) = | A(2,3,4
A(2,4,4
A(2,5,4

is a fiber.

Structured Matrix Computations from Structured Tensors Lecture 1. Matrix-Tensor Connections



Parts of a Tensor

Slices

A slice of a tensor A is a matrix obtained by fixing all but two of A’s
indices. For example, if A = A(1:3,1:5,1:4,1:7), then

)
A(1,3,1,6) A(1,3,2,6) A(1,3,3,6) A(L,3,4,6)
A(:,3,:,6) = | A(2,3,1,6) A(2,3,2,6) A(2,3,3,6) A(2,3,4,6)
A(3,3,1,6) A(3,3,2,6) A(3,3,3,6) .A(3,3,4,6)

)
)

is a slice.
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Where Might They Come From?

Discretization

A(i,j, k,€) might house the value of f(w,x,y,z) at
(w,x,y,z) = (Wi,)97Yk,Ze)-

Multiway Analysis

A(i,j, k,2) is a value that captures an interaction between four
variables/factors.
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You Have Seen them Before

Block Matrices (With Uniformly-Sized Blocks)

dil d12 | 413 4d14 | di5 416

dp1 d22 | @23 d24 | d2s A2

d31 d32 | 433 4d34 | d35 d36

441 942 | 443 d44 | |A45 | 4d46

ds] ds2 | d53 ds4 | dss5 ds6

d61 462 | 463 d64 | 965 966

Matrix entry ass is the (2,1) entry of the (2,3) block:

aas 54 A(2,3,2,1)
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You Have Seen Them Before

Kronecker Products (At the Scalar Level)

bii bip b3 cn
A = by1 b b3 [ ® [ S o ]
bs1 b3y b33

biicii  buicip | biocir  biacip | bizcin  bizcro

biicy  biicop | biocoy  bincop | bizcor  bizcx

boicii  bpicio | byocin  bxcio | bazcin  bazcro

bricor  bpiCop | byoCor  bypCoo | bpzcor  bazcn

bsicii  bsicip | baacin  baacio | bszcin  bszcro

bsi1co1  b31Cop | b3aCoy  b3nCop | bazcor  bszcx

Matrix A is an unfolding of tensor A where A(p, q,r,s) = bpgCrs.
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You Have Seen Them Before

Kronecker Products (At the Block Level)

[ b1 b bis cn
A = b1 b b3 | ® [ on o }
| b1 b3 bs3
b11 C b1, C b13C
= by C by C b3 C

Matrix A is a block matrix whose ij block is b;C.
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You Have Seen Them Before

Matrix: A=B& C® D

Ci1 Cl2 €3 Ci4
b b din di2 di3
. 11 12 €1 C2 €3 C4
by b2 €31 C32 C33 C3a du de d
31 d ds3

Ca1 Ca2 Ca3 Caa

Hierarchy: A is a 2-by-2 block matrix whose entries are 4-by-4 block
matrices whose entries are 3-by-3 matrices.

v

Tensor: A=DoCoB

Al(ir, i2, 3, iay is, ig) = D(i1,i2)C(i3, ia) B(is, i)
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A First Look at Tensor Symmetry

Let’s look at the connection between
Kronecker products and tensors
when symmetry is present.
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A= B ® C with Symmetric B and C

1 2 3 11 12 13
A=B®C = 2 4 5| ® |12 14 15
3 56 13 15 16

[11 12 13|22 24 26|33 36 39
12 14 15124 28 30|36 42 45
13 15 16 (26 30 32|39 45 48
22 24 26|44 48 52|55 60 65

26 30 32|52 60 64|65 75 80
33 36 39|55 60 65|66 72 78
36 42 45|60 70 75|72 84 90
39 45 48|65 75 80|78 90 96
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A= B ® C with Symmetric B and C

1 2 3 11 12 13
A=B®C = 2 4 5| ® |12 14 15
3 5 6 13 15 16

11 12 13 (22 24 26|33 36 39
12 14 15124 28 30|36 42 45
13 15 16 (26 30 32|39 45 48
22 24 26|44 48 52|55 60 65

26 30 32|52 60 64|65 75 80
33 36 39|55 60 65|66 72 78
36 42 45|60 70 75|72 84 90
| 39 45 48|65 75 80|78 90 96

Each block is symmetric.
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A= B ® C with Symmetric B and C

1 2 3 11 12 13
A=B®C = 2 4 5| ® |12 14 15
3 56 13 15 16

[11 12 13|22 24 26|33 36 39
12 14 1524 28 30|36 42 45
13 15 16|26 30 32|39 45 48
22 24 26|44 48 52|55 60 65
= 24 28 30|48 56 60|60 70 75
26 30 32|52 60 64|65 75 80
33 36 39|55 60 65|66 72 78
36 42 45|60 70 75|72 84 90
| 39 45 48|65 75 80|78 90 96

Block (i,j) equals Block (j, i)
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A= B ® C with Symmetric B and C

2 3 11 12 13
4 5| ® | 12 14 15
5 6 13 15 16

A=B®C =

W N =

11 12 13|22 24 26|33 36 39
12 14 15|24 28 30|36 42 45
13 15 16|26 30 32|39 45 48
22 24 26 |44 48 52|55 60 65
— | 24 28 30|48 56 60|60 70 75
26 30 32|52 60 64|65 75 80
33 36 39|55 60 65|66 72 78
36 42 45|60 70 75|72 84 90
|30 45 48|65 75 80|78 90 96 |
A4, p, .5)
A(p,q,s,r)

If A(p,q,r,s) = bpgcrs then A(p,q,r,s) = {
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A = B ® B with Symmetric B

A=BR®B =

1
o v
© ~ o
© © o
| S

®

1
o v~
o ~ o1

O 0 O
|

16 20 24 [20 25 30 [24 30 36
20 28 [32]|25 35 [40]|30 42 [48]
24 32 36 |30 40 45 |36 48 54
20 25 30 |28 35 42 |32 40 48
= | 25 35 [40]|35 49 [56]|40 56 [64]
30 40 45 |42 56 63 |48 64 72
24 30 36 |32 40 48 |36 45 54

30 42 [48]|40 56 [64]|45 63 [72]

36 48 54 |48 64 72 |54 72 81

Block(i, j) = A(i:n:n?, j:n:n?) Block(2,3) = A(2:3:9, 3:3:9)
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A = B ® B with Symmetric B

4 5 6 4 5 6
A=B®B = 5 7 8| ® |5 7 8
6 8 9 6 8 9

16 20 24 (20 25 30|24 30 36
20 28 32|25 35 40|30 42 48
24 32 36|30 40 45|36 48 54
20 25 30|28 35 42|32 40 48
= 25 35 40|35 49 56|40 56 64
30 40 45|42 56 63|48 64 72
24 30 36|32 40 48|36 45 54
30 42 48|40 56 64|45 63 72
36 48 54|48 64 72|54 72 81

A(q,p,r;s)
If .A(,D/ q,r, S) = bqufs then A(p~ q,r, S) - A(p/ q,S, r)
A(r,s,p,q)
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A First Look at Tensor Symmetry

For a matrix, there is only one type of symmetry:
A(p,q) = Alg, p)

For an order-d tensor, there are d! — 1 possibilities:

A(q,p,r,s)

A(r,q,p,r)
Alp,a,r:8) = A(s,q,r, p)
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A First Look at Rank-1 Tensors

Next, let’s look at the connection between
Kronecker products and tensors
in the rank-1 setting.
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Rank-1 Reshaping

If u and v are vectors, then A= uv' is a Rank-1 Matrix

uy T uvy uivm
Vi
A = u» [ ] = uvy UV
V2
us3 usvi U3V
A is a rank-1 matrix
A=uvT = vec(A)=vQ®u
[ a11 ]| [ uivy ]|
a Up Vv
21 2V1 ’ o
a u
31 _ 3V1 _ 1| & ih
aiz uivo V2
us3
az usvp
L 932 | | uzVv2 |
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In the Language of Tensor Products

If u and v are vectors then A = uo v is a Rank-1 Tensor

uivi
usvq
uzvy
uiva
uz v
uz v
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Higher-Order Rank-1 Tensors

If u, v, and w are vectors, then A = uo v o w is a Rank-1 Tensor

Alp,q,r) = UpVqWr

iviw
Uoviwy
uvow
A: uovow = |: UL :|O|: v :|O|: M :| = VeC(A) = 2

urviw
U Vi W2
uivows

wmvowz |

A tensor product of d vectors produces an order-d rank-1 tensor.
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A Notation Detail: u-v-w versus w-v-u

upviw
uaviwy
upvawi
U Vow;
vec(uovow) = 229 — weveu
upviw?
U viwp
upvowo

uavow2
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A First Look at Multilinear Optimization

Let’s look at how we might compute the
the nearest rank-1 tensor to
a given tensor.
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The Nearest Rank-1 Problem for Matrices

Given A € R™*", find unit-2 norm vectors u € IR™ and v € IR" and a
nonnegative scalar o that minimizes

¢(U, u, V) = H A—ouv’ ||F

| \

SVD Solution:
If UTAV = ¥ = diag(c;) where
U=[u| - |um] V=Wl - |v]
= oyurvy .

are orthogonal and 01 > --- > 0, > 0, then o—optuopth

opt

Structured Matrix Computations from Structured Tensors Lecture 1. Matrix-Tensor Connections



The Nearest Rank-1 Problem for Matrices

An Alternating Least Squares Approach

v = unit vector

Repeat Until Happy:
% Fix v and choose o and u to minimize || A—ouv’ ||

x=Av;, o=|x]|; u=x/o
% Fix u and choose o and v to minimize || A —ouv’ ||
x=ATu; o= x|; v=x/o

Uopt = Uv uopt = U; Vopt =V

|A—ouv’ Hi = trace(ATA) —20u" Av + 02

The best u is in the direction of Av. The best v is in the direction of AT u.

Lecture 1. Matrix-Tensor Connections
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The Nearest Rank-1 Problem for Matrices

An Alternating Least Squares Approach

v = unit vector

Repeat Until Happy:
% Fix v and choose o and u to minimize || A—ouv’ ||

x=Av;, o=|x]|; u=x/o
% Fix u and choose o and v to minimize || A —ouv’ ||
x=ATu; o= x|; v=x/o

Oopt = O Ugpe = U Vopr = V

This is just the power method applied to AT A:
x=(ATA, v=x/|| x|

Lecture 1. Matrix-Tensor Connections

Structured Matrix Computations from Structured Tensors



Nearest Rank-1 Problem for Tensors

Formulation

Given A € R™*"*P determine unit vectors u € R™, v € IR", and
w € IRP and scalar o so that the following is minimized:

1/2
m n p /

|A—o-wovoul = Z Zauk U;j Vi W)

i=1 j=1 k=1

= |vec(A) —o-w®vul,
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Nearest Rank-1 Problem for Tensors

Alternating Least Squares Framework for min

|vec(A) — oc-w®v®ul|,

v and w given unit vectors
Repeat Until Happy
Determine x € R™ that minimizes || vec(A) — w® v ® x ||,
andset 0 = || x || and v = x/o
Determine y € R” that minimizes || vec(A) — w ® y ® u ||,
andseto= |yl and v=y/o
Determine z € IRP that minimizes || vec(A) — z® v ® u ||,

andset c = | z| and w = z/o

Details in next Lecture. For now, we look at the special structure of
these linear least square problems for the case m=n=p = 2.
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The Nearest Rank-1 Problem for Tensors

The Case m=n=p=2

a111
az11
a121
azi
a112
az12
a122
| 9222 | 5

minimize —o-wQ®vQ®u

O sl B I s N D A e

2]
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A Highly Structured Nonlinear Optimization Problem

It Depends on Four Parameters...

cos( 63 cos(6- cos(61
¢(0,91,92,93) = a — 0'|: sin((03)) :| ® |: sin((ez)) :| © |: Sin((al)) :| 2
a C3C2C1
ani1 C3C251
aiol C382C1
_ a1 . 35251
aiio S3C62C1
as12 S3C251
aioo 5352€C1
| @222 | | 53251 | ||,
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A Highly Structured Nonlinear Optimization Problem

Set x; = o cos(f1) and y1 = osin(f1) and then Reshape...

[ a1 ] [ aea ] [ a1 ] (@ 0 ][ x
2211 C3CoS1 11 0 ao [y1 }
a1 G520 a1 as, 0

6= am | _ | @28 _ api [ 0 s

ai S3C2C1 ai ssc2 0
EST) 53C251 a2 0 s
ai» $352C1 ain $352 0

| a2 | | 3251 | ||, | a2 | | 0 s35 | .

This is an ordinary linear least squares problem for x; and y; if we "freeze”
0> and 05. Solve and update o and uy using

[X1:|:O'U1 O':N/X12+y12
31
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A Highly Structured Nonlinear Optimization Problem

Set x, = o cos(f2) and y» = osin(f2) and then Reshape...

[ a1 ] [ aea ] [ a1 ] [@a 0 [ x
a1l GBS a1l as 0 [y2 }
a1 G520 a1 0 aa

6= am | _ | @28 _ api [ 0 as1

ai S3C2C1 ai ssc; 0
EST) 53C251 a2 5351 0
ai» $352C1 ain 0 s3a

| a2 | | 3251 | ||, | a2 | | 0 s3s1 | .

This is an ordinary linear least squares problem for x, and y» if we "freeze”
0y and 05. Solve and update o and up using

[X2:|:G,—u2 O':N/X22+y22
y2
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A Highly Structured Nonlinear Optimization Problem

Set x3 = o cos(f3) and y3 = osin(f3) and then Reshape...

[ au ] [ aea ] [ ai ] [a 0 [ x
a1 C3C251 a1 st 0 { vs }
a1 G352€1 a1 s 0

b= am | _ | =8 _ a1 | | 5 0

ai $3C2C1 ai 0 cs
az12 53C251 a1z 0 cos
a1» $352€C1 a1» 0 sa

| a2 | | 39251 |||, | a2 | L 0 ss1 | .

This is an ordinary linear least squares problem for x3 and ys if we "freeze”
0y and 0. Solve and update o and uz using

X3 2 2
= ou g = 1\/ X +
[}’3] 3 3T
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Componentwise Optimization

A Common Framework for Tensor-Related Optimization

@ Choose a subset of the unknowns such that if they are
(temporarily) fixed, then we are presented with some standard
matrix problem in the remaining unknowns.

@ By choosing different subsets, cycle through all the unknowns.

@ Repeat until converged.

In tensor computations, the “standard matrix problem” that we end up
solving is usually the linear least squares problem. In that case, the overall
solution process is referred to as alternating least squares.
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Optional “Fun” Problems

Problem E1. Consider the the three linear least (LS) squares problems
that arise when the alternating least squares framework is applied to the
2-by-2-by-2 problem. Outline a solution approach when these linear LS
problems are solved using the method of normal equations. (Recall that the
method of normal equations for the LS problem min || Mu — b ||, involves
solving the symmetric positive definite linear system M" Mu = MTb.)

Problem Al. Repeat E1 but when A € R**?*"*2 is an order-d tensor.
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Closing Remarks
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Where Do We Go From Here?

To sums of rank-1’s...

r
VEC(A) = ZO’ka & Vi ® Uy
k=1

To more general unfoldings...

4111 4121 4131 d112 4122 4132
A€ R*2x3 a211 4221 4231 d212 d222 a232
d311 4321 4331 4312 4322 4332
d411 2421 d431 d412 422 4432

To more complicated multilinear optimizations...

min lvec(A) — (W& V & U)s|,
U,V,W e R™" orthogonal
scR”
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How Will the Structured Matrix Computations Show Up?

Tensor computations are typically disguised matrix computations and
that is because of

Kronecker Products

A=A ® A, ® A3 an order 6 tensor

Tensor Unfoldings

Rubik Cube — 3x 9 matrix

Alternating Least Squares

Multilinear optimization via component-wise linear optimization

These are the three ways that structured tensor computations will
lead to structured matrix computations.
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Context

Preparation for the Next Big Thing...

Scalar-Level Thinking

, The factorization paradigm:
1960's |} < LU, LDLT, QR, USVT, etc.

Matrix-Level Thinking

Cache utilization,  parallel

1980's | = computing, LAPACK, etc.

Block Matrix-Level Thinking

New applications, factoriza-
2000's | - t_|ons, data _structur_es,_ non-
linear analysis, optimization
strategies, etc.

Tensor-Level Thinking
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More Context

A Changing Definition of “Big”

In Matrix Computations, to say that A € IR™*"™ is “big" is to say
that both n; and ny are big.

In Tensor Computations, to say that A € IR™*"*™ is “big” is to say
that nyny - - - ng is big and this need not require big ny. E.g.
np = nmy ="+ = nioo = 2.

Algorithms that scale with d will induce a transition...

Matrix-Based Scientific Computation

4

Tensor-Based Scientific Computation
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