Structured Matrix Computations from Structured Tensors

Lecture 2. Tensor Iterations, Symmetries, and Rank

Charles F. Van Loan

Cornell University

CIME-EMS Summer School June 22-26, 2015 Cetraro, Italy

- We looked at the nearest Rank-1 tensor problem in Lecture 1.
- For matrices, the nearest Rank-1 problem is an SVD problem. Is the nearest Rank-1 problem related to some tensor SVD?
- In Lectures 3 and 4 we will look at 4 different tensor SVD ideas. Structured SVDs, Schur Decompositions, and QR factorizations will be part of the scene.
- We set the stage for this in Lecture 2 by developing various power methods. It will be an occasion to refine what we know about tensor rank, tensor symmetry, and tensor unfoldings.

Rayleigh Quotient Ideas

The Variational Approach to Singular Values and Vectors

The singular values and singular vectors of a general matrix $A \in \mathbb{R}^{m \times n}$ are stationary values and vectors for the multilinear form

$$\psi_A(x,y) = x^T A y = \sum_{i=1}^m \sum_{j=1}^n a_{ij} x_i y_j$$

subject to the constraints || x || = || y || = 1

Let us understand this connection and then push the same idea for tensors.

Rayleigh Quotient Ideas: The Matrix Case

Gradient Calculations

We seek unit vectors x and y that zero the gradient of

$$ilde{\psi}_{\scriptscriptstyle A}(x,y) = \psi(x,y) - rac{\lambda}{2}(x^{\mathsf{T}}x-1) - rac{\mu}{2}(y^{\mathsf{T}}y-1)$$

Since

$$\psi_A(x,y) = \sum_{i=1}^m x_i \left(\sum_{j=1}^n a_{ij} y_j \right) = \sum_{j=1}^n y_j \left(\sum_{i=1}^m a_{ij} x_i \right)$$

it follows that we want

$$\nabla \tilde{\psi}_{A}(x,y) = \begin{bmatrix} Ay - \lambda x \\ A^{T}x - \mu y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Thus, $\lambda = \mu = x^T A y = \psi_A(x, y)$.

Rayleigh Quotient Ideas: The Matrix Case

Gradient Calculations

$$\nabla \tilde{\psi}_{A}(x,y) = \begin{bmatrix} Ay - (x^{T}Ay)x \\ A^{T}x - (x^{T}Ay)y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Singular Values and Vectors

If $U^T AV = \Sigma = \text{diag}(\sigma_i)$ is the SVD of A and $U = [u_1 | \cdots | u_m]$ and $V = [v_1 | \cdots | v_n]$, then from $AV = U\Sigma$ and $A^T U = V\Sigma^T$ we have

$$\begin{array}{rcl} A\mathbf{v}_i &=& \sigma_i u_i \\ A^T u_i &=& \sigma_i \mathbf{v}_i \end{array}$$

Since $\sigma_i = u_i^T A v_i$, it follows that

$$Av_i - (u_i^T Av_i)u_i = 0$$

$$A^T u_i - (u_i^T Av_i)v_i = 0$$

Rayleigh Quotient Ideas: The Matrix Case

Gradient Calculations

$$\nabla \tilde{\psi}_{A}(x,y) = \begin{bmatrix} Ay - (x^{T}Ay)x \\ A^{T}x - (x^{T}Ay)y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Singular Values and Vector

If $U^T AV = \Sigma = \text{diag}(\sigma_i)$ is the SVD of A and $U = [u_1 | \cdots | u_m]$ and $V = [v_1 | \cdots | v_n]$, then from $AV = U\Sigma$ and $A^T U = V\Sigma^T$ we have

$$\begin{array}{rcl} \mathsf{A}\mathsf{v}_i &=& \sigma_i u_i \\ \mathsf{A}^\mathsf{T} u_i &=& \sigma_i \mathsf{v}_i \end{array}$$

Since $\sigma_i = u_i^T A v_i$, it follows that

$$Av_i - (u_i^T Av_i)u_i = 0$$

$$A^T u_i - (u_i^T Av_i)v_i = 0$$

The Singular Values and Vectors of a Tensor: A Definition

If $\mathcal{A} \in \mathbb{R}^{m \times n \times p}$, $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, and $z \in \mathbb{R}^p$, then the singular values and vectors of \mathcal{A} are the stationary values and vectors of

$$\psi_{\mathcal{A}}(x,y,z) = \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p} a_{ijk} x_i y_j z_k$$

subject to the constraints $\parallel x \parallel = \parallel y \parallel = \parallel z \parallel = 1$

Order-3 tensors are plenty good enough to show the main ideas. Generalizations to order d tensors are generally pretty obvious.

Take a look at $\psi_{\mathcal{A}}(x, y, z)$

Some handy rearrangements o f ψ_A :

$$\psi_{\mathcal{A}}(x, y, z) = \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p} a_{ijk} x_i y_j z_k = \sum_{i=1}^{m} x_i \left(\sum_{j=1}^{n} \sum_{k=1}^{p} a_{ijk} y_j z_k \right)$$
$$= \sum_{j=1}^{n} y_j \left(\sum_{i=1}^{m} \sum_{k=1}^{p} a_{ijk} x_i z_k \right)$$
$$= \sum_{k=1}^{p} z_k \left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ijk} x_i y_j \right)$$

Before we go after the gradient, let's frame the double summations in linear algebra terms...

Structured Matrix Computations from Structured Tensors Lecture 2. Tensor Symmetries and Rank

Suppose m = 4, n = 3, and p = 2

$$\psi_{\mathcal{A}}(x, y, z) = \sum_{i=1}^{m} x_i \left(\sum_{j=1}^{n} \sum_{k=1}^{p} a_{ijk} y_j z_k \right)$$

$$= \sum_{i=1}^{m} x_{i} \begin{bmatrix} a_{i11} & a_{i21} & a_{i31} & a_{i12} & a_{i22} & a_{i32} \end{bmatrix} \begin{bmatrix} a_{i11} & a_{i21} & a_{i31} & a_{i12} & a_{i22} & a_{i32} \end{bmatrix}$$
$$= x^{T} \begin{bmatrix} a_{111} & a_{121} & a_{131} & a_{112} & a_{122} & a_{132} \\ a_{211} & a_{221} & a_{231} & a_{212} & a_{222} & a_{232} \\ a_{311} & a_{321} & a_{331} & a_{312} & a_{322} & a_{332} \\ a_{411} & a_{421} & a_{431} & a_{412} & a_{422} & a_{432} \end{bmatrix} z \otimes y$$

 $\begin{bmatrix} 7 & V_1 \end{bmatrix}$

Suppose m = 4, n = 3, and p = 2

$$\psi_{\mathcal{A}}(x, y, z) = \sum_{i=1}^{m} x_i \left(\sum_{j=1}^{n} \sum_{k=1}^{p} a_{ijk} y_j z_k \right)$$

= $y^T \begin{bmatrix} a_{111} & a_{121} & a_{131} & a_{112} & a_{122} & a_{132} \\ a_{211} & a_{221} & a_{231} & a_{212} & a_{222} & a_{232} \\ a_{311} & a_{321} & a_{331} & a_{312} & a_{322} & a_{332} \\ a_{411} & a_{421} & a_{431} & a_{412} & a_{422} & a_{432} \end{bmatrix} z \otimes x$

The matrix you see here is the mode-1 unfolding of $\mathcal{A} \in {\rm I\!R}^{4 \times 3 \times 2}$

$\psi_{\mathcal{A}}(x, y, z)$ in terms of the Mode-1 Unfolding

$$\psi_{\mathcal{A}}(x, y, z) = \sum_{i=1}^{m} x_i \left(\sum_{j=1}^{n} \sum_{k=1}^{p} a_{ijk} y_j z_k \right) = x^T \mathcal{A}_{(1)} \cdot z \otimes y$$
$$\mathcal{A}_{(1)} = \begin{bmatrix} a_{111} & a_{121} & a_{131} & a_{112} & a_{122} & a_{132} \\ a_{211} & a_{221} & a_{231} & a_{212} & a_{222} & a_{232} \\ a_{311} & a_{321} & a_{331} & a_{312} & a_{322} & a_{332} \\ a_{411} & a_{421} & a_{431} & a_{412} & a_{422} & a_{432} \end{bmatrix}$$
$$(1,1) \quad (2,1) \quad (3,1) \quad (1,2) \quad (2,2) \quad (3,2)$$

$\psi_{\mathcal{A}}(x, y, z)$ in terms of the Mode-2 Unfolding

$$\psi_{\mathcal{A}}(x, y, z) = \sum_{j=1}^{n} y_{j} \left(\sum_{i=1}^{m} \sum_{k=1}^{p} a_{ijk} x_{i} z_{k} \right) = y^{T} \mathcal{A}_{(2)} z \otimes x$$
$$\mathcal{A}_{(2)} = \begin{bmatrix} a_{111} & a_{211} & a_{311} & a_{411} & a_{112} & a_{212} & a_{312} & a_{412} \\ a_{121} & a_{221} & a_{321} & a_{421} & a_{122} & a_{222} & a_{322} & a_{422} \\ a_{131} & a_{231} & a_{331} & a_{431} & a_{132} & a_{232} & a_{332} & a_{432} \end{bmatrix}$$
$$(1,1) \quad (2,1) \quad (3,1) \quad (4,1) \quad (1,2) \quad (2,2) \quad (3,2) \quad (4,2)$$

$\psi_{\mathcal{A}}(x, y, z)$ in terms of the Mode-3 Unfolding

$$\psi_{\mathcal{A}}(x, y, z) = \sum_{k=1}^{p} z_k \left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ijk} x_i y_j \right) = z^T \mathcal{A}_{(3)} \cdot y \otimes x$$

Important Skill: Framing a Tensor Computation in Matrix Terms

$$\psi_{\mathcal{A}}(x, y, z) = \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p} a_{ijk} x_i y_j z_k$$
$$= x^T \mathcal{A}_{(1)}(z \otimes y)$$
$$= y^T \mathcal{A}_{(2)}(z \otimes x)$$
$$= z^T \mathcal{A}_{(3)}(y \otimes x)$$

With these characterizations we can readily compute the stationary vectors and values of this function subject to the constraint that ||x|| = ||y|| = ||z|| = 1.

The Gradient Computations

Set the gradient of

$$ilde{\psi}_{\mathcal{A}}(x,y,z) \ = \ \psi_{\mathcal{A}}(x,y,z) - rac{\lambda}{2}(x^{ op}x-1) - rac{\mu}{2}(y^{ op}y-1) - rac{ au}{2}(z^{ op}z-1)$$

to zero. Conclude that $\lambda = \mu = \tau = \psi(x, y, z)$. If unit vectors x, y, and z to satisfy

$$\nabla \tilde{\psi}_{\mathcal{A}} = \begin{bmatrix} \mathcal{A}_{(1)}(z \otimes y) - \psi_{\mathcal{A}}(x, y, z)x \\ \mathcal{A}_{(2)}(z \otimes x) - \psi_{\mathcal{A}}(x, y, z)y \\ \mathcal{A}_{(3)}(y \otimes x) - \psi_{\mathcal{A}}(x, y, z)z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

then $\sigma = \psi(x, y, z)$ is a singular value of A and x, y, and z the associated singular vectors.

How can we solve this (highly structured) system of nonlinear equations?

A Higher-Order Power Method

The Power Method for Matrices

The Gradient Equations

$$Ay = \sigma \cdot x$$
$$A^T x = \sigma \cdot y$$

where $\sigma = \psi_A(x, y) = x^T A y$.

Iterate...

y a given unit vector

Repeat Until Happy

$$\begin{split} \tilde{x} &= Ay, \ x \leftarrow \tilde{x} / \| \ \tilde{x} \| \\ \tilde{y} &= A^T x, \ y \leftarrow \tilde{y} / \| \ \tilde{y} \| \\ \sigma &= \psi_{\scriptscriptstyle A}(x, y) \end{split}$$

Same as power method applied to $A^T A$.In the limit, σuv^T converges to the closest rank-1 to A.

Structured Matrix Computations from Structured Tensors Lecture 2. Tensor Symmetries and Rank

The Higher-Order Power Method for Tensors

The Gradient Equations

$$\begin{array}{rcl} A_{(1)} \cdot (z \otimes y) &=& \sigma \cdot x \\ A_{(2)} \cdot (z \otimes x) &=& \sigma \cdot y \\ A_{(3)} \cdot (y \otimes x) &=& \sigma \cdot z \end{array}$$

where $\sigma = \psi_A(x,y,z) = x^T A_{(1)} \cdot (z \otimes y) = y^T A_{(2)} \cdot (z \otimes x) = z^T A_{(3)} \cdot (y \otimes x)$

Iterate...

y and z given unit vectors Repeat Until Happy

$$\begin{split} \tilde{x} &= \mathcal{A}_{(1)}(z \otimes y), \quad x = \tilde{x}/\|\tilde{x}\| \\ \tilde{y} &= \mathcal{A}_{(2)}(z \otimes x), \quad y = \tilde{y}/\|\tilde{y}\| \\ \tilde{z} &= \mathcal{A}_{(3)}(y \otimes x), \quad z = \tilde{z}/\|\tilde{z}\| \\ \sigma &= \psi_{\mathcal{A}}(x, y, z) \end{split}$$

The Higher-Order Power Method for Tensors

A Tempting Repetition

Step 1. Compute closest $\sigma_1 \cdot u_1 \circ v_1 \circ w_1$ to \mathcal{A} .

Step 2. Compute closest $\sigma_2 \cdot u_2 \circ v_2 \circ w_2$ to

$$\mathcal{A} - \sigma_1 u_1 \circ v_1 \circ w_1.$$

Step 3. Compute closest $\sigma_3 \cdot u_3 \circ v_3 \circ w_3$ to

$$\mathcal{A} - \sigma_1 \cdot u_1 \circ v_1 \circ w_1 - \sigma_2 \cdot u_2 \circ v_2 \circ w_2.$$

Step r. Compute closest $\sigma_r \cdot u_r \circ v_r \circ w_r$ to

$$\mathcal{A}-\sum_{k=1}^{r-1}\sigma_k\cdot u_k\circ v_k\circ w_k.$$

This does not render a "best" approximation to \mathcal{A} as it does for matrices. So maybe we better look more closely at sums of rank-1 tensors and rank.

The Idea of Tensor Rank

$\mathcal{A} \in \mathrm{I\!R}^{2 \times 2 \times 2}$ as a minimal sum of rank-1 tensors.

$$\begin{bmatrix} a_{111} \\ a_{211} \\ a_{121} \\ a_{221} \\ a_{112} \\ a_{212} \\ a_{122} \\ a_{222} \end{bmatrix} = \sum_{k=1}^{r} z_k \otimes y_k \otimes x_k$$

where $X = [x_1|\cdots|x_r]$, $Y = [y_1|\cdots|y_r]$, and $Z = [z_1|\cdots|z_r]$ are column partitionings.

The minimizing r is the tensor rank.

$\mathcal{A} \in \mathrm{I\!R}^{2 imes 2 imes 2}$ as a minimal sum of rank-1 tensors.

A Surprising Fact

This is very different from the matrix case where A = randn(n,n) implies rank(A) = n with probability 100%.

A strong hint that tensor rank is decidely more complicated than matrix rank. What are the "full rank" 2-by-2-by-2 tensors?

Connection to a Generalized Eigenvalue Problem

If the a_{ijk} are randn, then

$$\det\left(\left[\begin{array}{ccc}a_{111}&a_{121}\\a_{211}&a_{221}\end{array}\right]\ -\ \lambda\left[\begin{array}{ccc}a_{112}&a_{122}\\a_{212}&a_{222}\end{array}\right]\right)\ =\ 0$$

has real distinct roots with probability 79% and complex conjugate roots with probability 21%. The sum-of-rank-ones expansion for \mathcal{A} involves the generalized eigenvectors of this problem.

Yet another example of turning a tensor problem into a matrix problem.

Symmetry

It just means that permuting the indices does not change the value.

$\mathcal{C} \in {\rm I\!R}^{3 imes 3 imes 3}$

There are 10 values to specify...

```
 \begin{array}{l} (1,1,1) \\ (1,1,2),(1,2,1),(2,1,1) \\ (1,1,3),(1,3,1),(3,1,1) \\ (2,2,2) \\ (2,2,1),(2,1,2),(2,2,1) \\ (2,2,3),(2,3,1),(2,2,3) \\ (3,3,3) \\ (3,3,1),(3,1,3),(3,3,1) \\ (3,3,2),(3,2,3),(3,3,2) \\ (1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1) \end{array}
```

The Modal Unfoldings are all the Same									
$C_{(1)} =$	$\begin{bmatrix} c_{111} \\ c_{211} \end{bmatrix}$	C ₁₂₁ C ₂₂₁	с ₁₃₁ с ₂₃₁	C ₁₁₂ C ₂₁₂	C ₁₂₂ C ₂₂₂	C ₁₃₂ C ₂₃₂	c ₁₁₃ c ₂₁₃	C ₁₂₃ C ₂₂₃	$\begin{bmatrix} c_{133} \\ c_{233} \end{bmatrix}$
	c ₃₁₁	<i>c</i> ₃₂₁	<i>c</i> ₃₃₁	<i>c</i> ₃₁₂	<i>c</i> ₃₂₂	<i>c</i> ₃₃₂	3 ₁₁₃	<i>c</i> ₃₂₃	<i>c</i> ₃₃₃
<i>C</i> ₍₂₎ =	c ₁₁₁	<i>c</i> ₂₁₁	<i>c</i> ₃₁₁	<i>c</i> ₁₁₂	<i>c</i> ₂₁₂	<i>c</i> ₃₁₂	<i>c</i> ₁₁₃	<i>c</i> ₂₁₃	<i>c</i> ₃₁₃
	<i>c</i> ₁₂₁	<i>c</i> ₂₂₁	<i>c</i> ₃₂₁	<i>c</i> ₁₂₂	<i>C</i> ₂₂₂	<i>c</i> ₃₂₂	<i>c</i> ₁₂₃	<i>C</i> ₂₂₃	<i>c</i> ₃₂₃
	c ₁₃₁	<i>c</i> ₂₃₁	<i>c</i> ₃₃₁	<i>c</i> ₁₃₂	<i>c</i> ₂₃₂	<i>c</i> ₃₃₂	3113	<i>c</i> ₂₃₃	<i>c</i> ₃₃₃
	c ₁₁₁	<i>c</i> ₂₁₁	<i>c</i> ₃₁₁	<i>c</i> ₁₂₁	<i>C</i> ₂₂₁	<i>c</i> ₃₂₁	<i>c</i> ₁₃₁	<i>c</i> ₂₃₁	<i>c</i> ₃₃₁
$C_{(3)} =$	<i>c</i> ₁₁₂	<i>c</i> ₂₁₂	<i>c</i> ₃₁₂	<i>c</i> ₁₂₂	<i>C</i> ₂₂₂	<i>C</i> ₃₂₂	<i>c</i> ₁₃₂	<i>c</i> ₂₃₂	<i>c</i> ₃₃₂
()	<i>c</i> ₁₁₃	<i>c</i> ₂₁₃	<i>c</i> ₃₁₃	<i>c</i> ₁₂₃	<i>c</i> ₂₂₃	<i>c</i> ₃₂₃	3 ₁₃₃	<i>c</i> ₂₃₃	<i>c</i> ₃₃₃

Rank-1 Symmetric Tensors

If $x \in \mathbb{R}^n$, then

$$\mathcal{C} = x \circ x \circ x$$

is a symmetric rank-1 tensor. This is obvious since

 $c_{ijk} = x_i x_j x_k.$

Note that

$$\operatorname{vec}(x \circ x \circ \circ x) = x \otimes x \otimes x$$

Symmetric Tensors

Symmetric Rank

An order-3 symmetric tensor C has symmetric rank r if there exists $x_1, \ldots, x_r \in \mathbb{R}^n$ and $\sigma \in \mathbb{R}^r$ such that

$$\mathcal{C} = \sum_{k=1}^{r} \sigma_k \cdot x_k \circ x_k \circ x_k$$

and no shorter sum of symmetric rank-1 tensors exists. Symmetric rank is denoted by $\operatorname{rank}_{S}(\mathcal{C})$.

Note, there may be a shorter sum so

$$\mathcal{C} = \sum_{k=1}^{\tilde{r}} \tilde{\sigma}_k \cdot \tilde{x}_k \circ \tilde{y}_k \circ \tilde{z}_k$$

Symmetric Tensors: Interesting Aside about Rank

Fact

If $\mathcal{C} \in \mathrm{C}^{n imes \cdots imes n}$ is an order-d symmetric tensor, then with probability 1

$$\operatorname{rank}_{S}(\mathcal{C}) = \begin{cases} f(d, m) + 1 & \text{if } (d, n) = (3,5), (4,3), (4,4), \text{ or } (4,5) \\ \\ f(d, n) & \text{otherwise} \end{cases}$$

where

$$f(d,n) = \operatorname{ceil}\left(rac{\binom{n+d-1}{d}}{n}\right)$$

Symmetric Tensor Rank is "more tractable" than General Tensor Rank.

Structured Matrix Computations from Structured Tensors Lecture 2. Tensor Symmetries and Rank

Symmetric Matrix Eigenvalues

If C is a symmetric matrix, then the stationary values of

$$\phi_C(x) = x^T C x$$

subject to the constraint that $|| x ||_2 = 1$ are the eigenvalues of *C*. The associated stationary vectors are eigenvectors.

Symmetric Tensor Eigenvalues

If $\ensuremath{\mathcal{C}}$ is a symmetric tensor, then the stationary values of

$$\phi_{\mathcal{C}}(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} c_{ijk} x_i x_j x_k = x^{T} C_{(1)}(x \otimes x)$$

subject to the constraint that $||x||_2 = 1$ are the eigenvalues of C. The associated stationary vectors are eigenvectors.

Rayleigh Quotients: Symmetric Tensor Case

Symmetric Higher-Order Power Method

Initialize unit vector x.

Repeat Until Happy

$$\tilde{x} = \mathcal{C}_{(1)}(x \otimes x)$$

$$x = \tilde{x} / \parallel \tilde{x} \parallel$$

Sample Convergence Result

If the order of C is even and M is a square unfolding, then the iteration converges if M is positive definite.

The SVD - SymEig Connection

The "Sym" of a Matrix

sym(A) =
$$\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix} \in \mathbb{R}^{(n_1+n_2)\times(n_1+n_2)}$$

The SVD of A Relates to the EVD of sym(A)

If $A = U \cdot \text{diag}(\sigma_i) \cdot V^T$ is the SVD of $A \in \mathbb{R}^{n_1 \times n_2}$, then for k = 1:rank(A)

$$\left[\begin{array}{cc} 0 & A \\ A^T & 0 \end{array}\right] \left[\begin{array}{c} u_k \\ \pm v_k \end{array}\right] = \pm \sigma_k \left[\begin{array}{c} u_k \\ \pm v_k \end{array}\right]$$

where $u_k = U(:, k)$ and $v_k = V(:, k)$.

The above SVD-related power method was essentially traditional power method applied to finding the largest eigenvector of sym(A).

Structured Matrix Computations from Structured Tensors Lecture 2. Tensor Symmetries and Rank

The SVD - SymEig Connection

The "Sym" of a Matrix

sym(A) =
$$\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix} \in \mathbb{R}^{(n_1+n_2)\times(n_1+n_2)}$$

The SVD of A Relates to the EVD of sym(A)

If $A = U \cdot \text{diag}(\sigma_i) \cdot V^T$ is the SVD of $A \in \mathbb{R}^{n_1 \times n_2}$, then for k = 1:rank(A)

$$\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} u_k \\ \pm v_k \end{bmatrix} = \pm \sigma_k \begin{bmatrix} u_k \\ \pm v_k \end{bmatrix}$$

where $u_k = U(:, k)$ and $v_k = V(:, k)$.

Let us look at the analog of this for tensors. Need transposition

Tensor Transposition: The Order-3 Case

Six possibilities...

If $C \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, then there are 6 = 3! possible transpositions identified by the notation $C^{<[ijk]>}$ where [ijk] is a permutation of $[1 \ 2 \ 3]$:

$$\mathcal{B} = \begin{cases} \mathcal{C}^{<[1\ 2\ 3]>} \\ \mathcal{C}^{<[1\ 3\ 2]>} \\ \mathcal{C}^{<[2\ 1\ 3]>} \\ \mathcal{C}^{<[2\ 1\ 3]>} \\ \mathcal{C}^{<[2\ 3\ 1]>} \\ \mathcal{C}^{<[3\ 1\ 2]>} \\ \mathcal{C}^{<[3\ 2\ 1]>} \end{cases} \implies \begin{cases} \begin{pmatrix} b_{ijk} \\ b_{ikj} \\ b_{jik} \\ b_{jki} \\ b_{kji} \\ b_{kji} \\ b_{kji} \end{pmatrix} = c_{ijk} \end{cases}$$
for $i = 1:n_1, \ j = 1:n_2, \ k = 1:n_3.$

Symmetric Embedding of a Tensor $C = \operatorname{sym}(A)$

Connecting \mathcal{A} and sym (\mathcal{A})

Algorithms

Interesting connections between power methods with ${\cal A}$ and power methods with ${\rm sym}({\cal A})$

Analysis

lf

$$\sigma, \left[\begin{array}{c} u\\ v\\ z \end{array}\right] \right\}$$

is a stationary pair for $\mathsf{sym}(\mathcal{A})$ then so are

$$\left\{ \sigma, \begin{bmatrix} u \\ -v \\ -z \end{bmatrix} \right\}, \left\{ -\sigma, \begin{bmatrix} u \\ -v \\ z \end{bmatrix} \right\}, \left\{ -\sigma, \begin{bmatrix} u \\ v \\ -z \end{bmatrix} \right\}$$

Interesting Possible Connection

Easy:

$d! \operatorname{rank}(\mathcal{A}) \leq \operatorname{rank}_{\mathcal{S}}(\operatorname{sym}(\mathcal{A}))$

Equality is hard or perhaps not true. But if it could be established, then we would have new insight into the tensor rank problem.

Problem E2. Suppose $A \in \mathbb{R}^{m \times n^2}$ with $m > n^2$. Develop an alternating least squares solution framework for minimizing $||A(x \otimes y) - b||_2$ where $b \in \mathbb{R}^{n^2}$ and $x, y \in \mathbb{R}^n$.

Problem A2. Same notation as E2. What is the gradient of

$$\phi(x,y) = \frac{1}{2} \|A(x \otimes y) - b\|_2^2$$

Closing Remarks

A Common Framework for Tensor Computations...

- 1. Turn tensor \mathcal{A} into a matrix A.
- 2. Through matrix computations, discover things about A.

3. Draw conclusions about tensor \mathcal{A} based on what is learned about matrix \mathcal{A} .