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The Setting

We looked at the nearest Rank-1 tensor problem in Lecture 1.

For matrices, the nearest Rank-1 problem is an SVD problem. Is
the nearest Rank-1 problem related to some tensor SVD?

In Lectures 3 and 4 we will look at 4 different tensor SVD ideas.
Structured SVDs, Schur Decompositions, and QR factorizations
will be part of the scene.

We set the stage for this in Lecture 2 by developing various
power methods. It will be an occasion to refine what we know
about tensor rank, tensor symmetry, and tensor unfoldings.
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Rayleigh Quotient Ideas
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Rayleigh Quotient Ideas: The Matrix Case

The Variational Approach to Singular Values and Vectors

The singular values and singular vectors of a general matrix
A ∈ IRm×n are stationary values and vectors for the multilinear form

ψA(x , y) = xTAy =
m∑

i=1

n∑
j=1

aijxiyj

subject to the constraints ‖ x ‖ = ‖ y ‖ = 1

Let us understand this connection and then push the same idea for
tensors.
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Rayleigh Quotient Ideas: The Matrix Case

Gradient Calculations

We seek unit vectors x and y that zero the gradient of

ψ̃A(x , y) = ψ(x , y)− λ

2
(xT x − 1)− µ

2
(yT y − 1)

Since

ψA(x , y) =
m∑

i=1

xi

 n∑
j=1

aijyj

 =
n∑

j=1

yj

(
m∑

i=1

aijxi

)
it follows that we want

∇ψ̃A(x , y) =

"
Ay − λx

AT x − µy

#
=

"
0

0

#
Thus, λ = µ = xTAy = ψA(x , y).
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Rayleigh Quotient Ideas: The Matrix Case

Gradient Calculations

∇ψ̃A(x , y) =

[
Ay − (xTAy)x

AT x − (xTAy)y

]
=

[
0

0

]

Singular Values and Vectors

If UTAV = Σ = diag(σi ) is the SVD of A and U = [ u1 | · · · | um ] and
V = [ v1 | · · · | vn ], then from AV = UΣ and ATU = VΣT we have

Avi = σiui

ATui = σivi

Since σi = uT
i Avi , it follows that

Avi − (uT
i Avi )ui = 0

ATui − (uT
i Avi )vi = 0
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Rayleigh Quotient Ideas: The Matrix Case

Gradient Calculations

∇ψ̃A(x , y) =

[
Ay − (xTAy)x

AT x − (xTAy)y

]
=

[
0

0

]

Singular Values and Vector

If UTAV = Σ = diag(σi ) is the SVD of A and U = [ u1 | · · · | um ] and
V = [ v1 | · · · | vn ], then from AV = UΣ and ATU = VΣT we have

Avi = σiui

ATui = σivi

Since σi = uT
i Avi , it follows that

Avi − (uT
i Avi )ui = 0

ATui − (uT
i Avi )vi = 0
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Rayleigh Quotient Ideas: The Tensor Case

The Singular Values and Vectors of a Tensor: A Definition

If A ∈ IRm×n×p, x ∈ IRm, y ∈ IRn, and z ∈ IRp, then the singular
values and vectors of A are the stationary values and vectors of

ψA(x , y , z) =
m∑

i=1

n∑
j=1

p∑
k=1

aijk xiyjzk

subject to the constraints ‖ x ‖ = ‖ y ‖ = ‖ z ‖ = 1

Order-3 tensors are plenty good enough to show the main ideas.
Generalizations to order d tensors are generally pretty obvious.
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Rayleigh Quotient Ideas: The Tensor Case

Take a look at ψA(x , y , z)

Some handy rearrangements o fψA:

ψA(x , y , z) =
m∑

i=1

n∑
j=1

p∑
k=1

aijk xiyjzk =
m∑

i=1

xi

 n∑
j=1

p∑
k=1

aijk yjzk


=

n∑
j=1

yj

(
m∑

i=1

p∑
k=1

aijk xizk

)

=

p∑
k=1

zk

 m∑
i=1

n∑
j=1

aijk xiyj



Before we go after the gradient, let’s frame the double summations in
linear algebra terms...
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Rayleigh Quotient Ideas: The Tensor Case

Suppose m = 4,n = 3, and p = 2

ψA(x , y , z) =
m∑

i=1

xi

 n∑
j=1

p∑
k=1

aijk yjzk



=
m∑

i=1

xi

[
ai11 ai21 ai31 ai12 ai22 ai32

]


z1y1

z1y2

z1y3

z2y1

z2y2

z2y3



= xT


a111 a121 a131 a112 a122 a132

a211 a221 a231 a212 a222 a232

a311 a321 a331 a312 a322 a332

a411 a421 a431 a412 a422 a432

 z ⊗ y
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Rayleigh Quotient Ideas: The Tensor Case

Suppose m = 4,n = 3, and p = 2

ψA(x , y , z) =
m∑

i=1

xi

 n∑
j=1

p∑
k=1

aijk yjzk



= yT


a111 a121 a131 a112 a122 a132

a211 a221 a231 a212 a222 a232

a311 a321 a331 a312 a322 a332

a411 a421 a431 a412 a422 a432

 z ⊗ x

The matrix you see here is the mode-1 unfolding of A ∈ IR4×3×2
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Rayleigh Quotient Ideas: The Tensor Case

ψA(x , y , z) in terms of the Mode-1 Unfolding

ψA(x , y , z) =
m∑

i=1

xi

 n∑
j=1

p∑
k=1

aijk yjzk

 = xTA(1) · z ⊗ y

A(1) =


a111 a121 a131 a112 a122 a132

a211 a221 a231 a212 a222 a232

a311 a321 a331 a312 a322 a332

a411 a421 a431 a412 a422 a432


(1,1) (2,1) (3,1) (1,2) (2,2) (3,2)
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Rayleigh Quotient Ideas: The Tensor Case

ψA(x , y , z) in terms of the Mode-2 Unfolding

ψA(x , y , z) =
n∑

j=1

yj

(
m∑

i=1

p∑
k=1

aijk xizk

)
= yTA(2)z ⊗ x

A(2) =

 a111 a211 a311 a411 a112 a212 a312 a412

a121 a221 a321 a421 a122 a222 a322 a422

a131 a231 a331 a431 a132 a232 a332 a432


(1,1) (2,1) (3,1) (4,1) (1,2) (2,2) (3,2) (4,2)
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Rayleigh Quotient Ideas: The Tensor Case

ψA(x , y , z) in terms of the Mode-3 Unfolding

ψA(x , y , z) =

p∑
k=1

zk

 m∑
i=1

n∑
j=1

aijk xiyj

 = zTA(3) · y ⊗ x

A(3) =

[
a111 a211 a311 a411 a121 a221 a321 a421 a131 a231 a331 a431

a112 a212 a312 a412 a122 a222 a322 a422 a132 a232 a332 a432

]
(1,1) (2,1) (3,1) (4,1) (1,2) (2,2) (3,2) (4,2) (1,3) (2,3) (3,3) (4,3)
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Rayleigh Quotient Ideas: The Tensor Case

Important Skill: Framing a Tensor Computation in Matrix Terms

ψA(x , y , z) =
m∑

i=1

n∑
j=1

p∑
k=1

aijkxiyjzk

= xTA(1)(z ⊗ y)

= yTA(2)(z ⊗ x)

= zTA(3)(y ⊗ x)

With these characterizations we can readily compute the stationary vectors
and values of this function subject to the constraint that

‖ x ‖ = ‖ y ‖ = ‖ z ‖ = 1.
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Rayleigh Quotient Ideas: The Tensor Case

The Gradient Computations

Set the gradient of

ψ̃A(x , y , z) = ψA(x , y , z)− λ

2
(xT x − 1)− µ

2
(yT y − 1)− τ

2
(zT z − 1)

to zero. Conclude that λ = µ = τ = ψ(x , y , z). If unit vectors x , y , and z to
satisfy

∇ψ̃A =

2664
A(1)(z ⊗ y) − ψA(x , y , z)x

A(2)(z ⊗ x) − ψA(x , y , z)y

A(3)(y ⊗ x) − ψA(x , y , z)z

3775 =

2664
0

0

0

3775
then σ = ψ(x , y , z) is a singular value of A and x , y , and z the associated singular
vectors.

How can we solve this (highly structured) system of nonlinear
equations?
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A Higher-Order Power Method
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The Power Method for Matrices

The Gradient Equations

Ay = σ · x

AT x = σ · y

where σ = ψA(x , y) = xTAy .

Iterate...

y a given unit vector

Repeat Until Happy

x̃ = Ay , x ← x̃/‖ x̃ ‖

ỹ = AT x , y ← ỹ/‖ ỹ ‖

σ = ψA(x , y)

Same as power method applied to ATA.In the limit, σuvT converges to the closest
rank-1 to A.

Structured Matrix Computations from Structured Tensors Lecture 2. Tensor Symmetries and Rank 18 / 42



The Higher-Order Power Method for Tensors

The Gradient Equations

A(1) · (z ⊗ y) = σ · x

A(2) · (z ⊗ x) = σ · y

A(3) · (y ⊗ x) = σ · z

where σ = ψA(x , y , z) = xTA(1) · (z ⊗ y) = yTA(2) · (z ⊗ x) = zTA(3) · (y ⊗ x)

Iterate...

y and z given unit vectors
Repeat Until Happy

x̃ = A(1)(z ⊗ y), x = x̃/‖ x̃ ‖

ỹ = A(2)(z ⊗ x), y = ỹ/‖ ỹ ‖

z̃ = A(3)(y ⊗ x), z = z̃/‖ z̃ ‖

σ = ψA(x , y , z)
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The Higher-Order Power Method for Tensors

A Tempting Repetition

Step 1. Compute closest σ1 ·u1 ◦ v1 ◦ w1 to A.

Step 2. Compute closest σ2 ·u2 ◦ v2 ◦ w2 to

A− σ1u1 ◦ v1 ◦ w1.

Step 3. Compute closest σ3 ·u3 ◦ v3 ◦ w3 to

A− σ1 ·u1 ◦ v1 ◦ w1 − σ2 ·u2 ◦ v2 ◦ w2.

Step r. Compute closest σr ·ur ◦ vr ◦ wr to

A−
r−1∑
k=1

σk ·uk ◦ vk ◦ wk .

This does not render a “best” approximation to A as it does for matrices. So
maybe we better look more closely at sums of rank-1 tensors and rank.
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The Idea of Tensor Rank
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A ∈ IR2×2×2 as a minimal sum of rank-1 tensors.

Challenge: Find thinnest possible X ,Y ,Z ∈ IR2×r so

a111

a211

a121

a221

a112

a212

a122

a222


=

r∑
k=1

zk ⊗ yk ⊗ xk

where X = [ x1| · · · |xr ], Y = [ y1| · · · |yr ], andZ = [ z1| · · · |zr ] are
column partitionings.

The minimizing r is the tensor rank.
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A ∈ IR2×2×2 as a minimal sum of rank-1 tensors.

A Surprising Fact

If



a111

a211

a121

a221

a112

a212

a122

a222


= randn(8,1), then


rank = 2 with prob 79%

rank = 3 with prob 21%

This is very different from the matrix case where A = randn(n,n)
implies rank(A) = n with probability 100%.

A strong hint that tensor rank is decidely more complicated than matrix
rank. What are the “full rank” 2-by-2-by-2 tensors?
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The 79/21 Property

Connection to a Generalized Eigenvalue Problem

If the aijk are randn, then

det

([
a111 a121

a211 a221

]
− λ

[
a112 a122

a212 a222

])
= 0

has real distinct roots with probability 79% and complex conjugate
roots with probability 21%. The sum-of-rank-ones expansion for A
involves the generalized eigenvectors of this problem.

Yet another example of turning a tensor problem into a matrix problem.
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Symmetry
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What is a Symmetric Tensor?

The Order-3 Definition: C ∈ IRn×n×n

cijk =



cikj

cjik

cjki

ckij

ckji

It just means that permuting the indices does not change the value.

Structured Matrix Computations from Structured Tensors Lecture 2. Tensor Symmetries and Rank 26 / 42



Symmetric Tensors

C ∈ IR3×3×3

There are 10 values to specify...

(1,1,1)
(1,1,2),(1,2,1),(2,1,1)
(1,1,3),(1,3,1),(3,1,1)
(2,2,2)
(2,2,1),(2,1,2),(2,2,1)
(2,2,3),(2,3,1),(2,2,3)
(3,3,3)
(3,3,1),(3,1,3),(3,3,1)
(3,3,2),(3,2,3),(3,3,2)
(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)
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Symmetric Tensors

The Modal Unfoldings are all the Same

C(1) =

 c111 c121 c131 c112 c122 c132 c113 c123 c133

c211 c221 c231 c212 c222 c232 c213 c223 c233

c311 c321 c331 c312 c322 c332 3113 c323 c333


C(2) =

 c111 c211 c311 c112 c212 c312 c113 c213 c313

c121 c221 c321 c122 c222 c322 c123 c223 c323

c131 c231 c331 c132 c232 c332 3113 c233 c333


C(3) =

 c111 c211 c311 c121 c221 c321 c131 c231 c331

c112 c212 c312 c122 c222 c322 c132 c232 c332

c113 c213 c313 c123 c223 c323 3133 c233 c333
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Symmetric Tensors

Rank-1 Symmetric Tensors

If x ∈ IRn, then
C = x ◦ x ◦ x

is a symmetric rank-1 tensor. This is obvious since

cijk = xixjxk .

Note that

vec(x ◦ x ◦ ◦x) = x ⊗ x ⊗ x
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Symmetric Tensors

Symmetric Rank

An order-3 symmetric tensor C has symmetric rank r if there exists
x1, . . . , xr ∈ IRn and σ ∈ IRr such that

C =
r∑

k=1

σk · xk ◦ xk ◦ xk

and no shorter sum of symmetric rank-1 tensors exists. Symmetric
rank is denoted by rankS(C).

Note, there may be a shorter sum so

C =
r̃∑

k=1

σ̃k · x̃k ◦ ỹk ◦ z̃k
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Symmetric Tensors: Interesting Aside about Rank

Fact

If C ∈ Cn×···×n is an order-d symmetric tensor, then with probability 1

rankS(C) =


f (d ,m) + 1 if (d , n) = (3,5),(4,3),(4,4), or (4,5)

f (d , n) otherwise

where

f (d , n) = ceil


(

n + d − 1
d

)
n



Symmetric Tensor Rank is “more tractable” than General Tensor
Rank.
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Rayleigh Quotient Ideas

Symmetric Matrix Eigenvalues

If C is a symmeytric matrix, then the stationary values of

φC (x) = xTCx

subject to the constraint that ‖ x ‖2 = 1 are the eigenvalues of C . The
associated stationary vectors are eigenvectors.

Symmetric Tensor Eigenvalues

If C is a symmetric tensor, then the stationary values of

φC(x) =
n∑

i=1

n∑
j=1

n∑
k=1

cijkxixjxk = xTC(1)(x ⊗ x)

subject to the constraint that ‖ x ‖2 = 1 are the eigenvalues of C. The
associated stationary vectors are eigenvectors.
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Rayleigh Quotients: Symmetric Tensor Case

Symmetric Higher-Order Power Method

Initialize unit vector x .

Repeat Until Happy

x̃ = C(1)(x ⊗ x)

x = x̃/‖ x̃ ‖

Sample Convergence Result

If the order of C is even and M is a square unfolding, then the
iteration converges if M is positive definite.
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The SVD - SymEig Connection

The “Sym” of a Matrix

sym(A) =

[
0 A

AT 0

]
∈ IR(n1+n2)×(n1+n2)

The SVD of A Relates to the EVD of sym(A)

If A = U · diag(σi ) · V T is the SVD of A ∈ IRn1×n2 , then for
k = 1:rank(A) [

0 A
AT 0

] [
uk

±vk

]
= ±σk

[
uk

±vk

]
where uk = U(:, k) and vk = V (:, k).

The above SVD-related power method was essentially traditional power
method applied to finding the largest eigenvector of sym(A).
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The SVD - SymEig Connection

The “Sym” of a Matrix

sym(A) =

[
0 A

AT 0

]
∈ IR(n1+n2)×(n1+n2)

The SVD of A Relates to the EVD of sym(A)

If A = U · diag(σi ) · V T is the SVD of A ∈ IRn1×n2 , then for
k = 1:rank(A) [

0 A
AT 0

] [
uk

±vk

]
= ±σk

[
uk

±vk

]
where uk = U(:, k) and vk = V (:, k).

Let us look at the analog of this for tensors. Need transposition
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Tensor Transposition: The Order-3 Case

Six possibilities...

If C ∈ IRn1×n2×n3 , then there are 6 = 3! possible transpositions
identified by the notation C< [i j k] > where [i j k] is a permutation of
[1 2 3]:

B =



C< [1 2 3] >

C< [1 3 2] >

C< [2 1 3] >

C< [2 3 1] >

C< [3 1 2] >

C< [3 2 1] >


=⇒



bijk

bikj

bjik

bjki

bkij

bkji


= cijk

for i = 1:n1, j = 1:n2, k = 1:n3.
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Symmetric Embedding of a Tensor C = sym(A)

An Order-3 Example...

Note the careful placement of A’s six transposes

C(:, :, 1)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�A<[321]>

A<[231]>

C(:, :, 2)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�A<[312]>

A<[132]>

C(:, :, 3)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

A<[123]>

A<[213]>
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Connecting A and sym(A)

Algorithms

Interesting connections between power methods with A and power
methods with sym(A)

Analysis

If  σ,

 u
v
z


is a stationary pair for sym(A) then so are σ,

 u
−v
−z

 ,

 −σ,
 u
−v

z

 ,

 −σ,
 u

v
−z
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Symmetric Tensors: Interesting Aside about Rank

Interesting Possible Connection

Easy:
d! rank(A) ≤ rankS(sym(A))

Equality is hard or perhaps not true. But if it could be established,
then we would have new insight into the tensor rank problem.
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Optional “Fun” Problems

Problem E2. Suppose A ∈ IRm×n2

with m > n2. Develop an alternating
least squares solution framework for minimizing ‖ A(x ⊗ y)− b ‖2 where

b ∈ IRn2

and x , y ∈ IRn.

Problem A2. Same notation as E2. What is the gradient of

φ(x , y) =
1

2
‖ A(x ⊗ y)− b ‖2

2
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Closing Remarks
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Bridging the Gap via Tensor Unfoldings

A Common Framework for Tensor Computations...

1. Turn tensor A into a matrix A.

2. Through matrix computations, discover things about A.

3. Draw conclusions about tensor A based on what is learned about
matrix A.
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