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The Setting

We looked at the nearest Rank-1 tensor problem in Lecture 1.

For matrices, the nearest Rank-1 problem is an SVD problem. Is
the nearest Rank-1 problem related to some tensor SVD?

In Lectures 3 and 4 we will look at 4 different tensor SVD ideas.
Structured SVDs, Schur Decompositions, and QR factorizations
will be part of the scene.

We set the stage for this in Lecture 2 by developing various
power methods. It will be an occasion to refine what we know
about tensor rank, tensor symmetry, and tensor unfoldings.
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Rayleigh Quotient Ideas
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Rayleigh Quotient Ideas: The Matrix Case

The Variational Approach to Singular Values and Vectors

The singular values and singular vectors of a general matrix
A ∈ IRm×n are stationary values and vectors for the multilinear form

ψA(x , y) = xTAy =
m∑

i=1

n∑
j=1

aijxiyj

subject to the constraints ‖ x ‖ = ‖ y ‖ = 1

Let us understand this connection and then push the same idea for
tensors.
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Rayleigh Quotient Ideas: The Matrix Case

Gradient Calculations

We seek unit vectors x and y that zero the gradient of

ψ̃A(x , y) = ψ(x , y)− λ

2
(xT x − 1)− µ

2
(yT y − 1)

Since

ψA(x , y) =
m∑

i=1

xi

 n∑
j=1

aijyj

 =
n∑

j=1

yj

(
m∑

i=1

aijxi

)
it follows that we want

∇ψ̃A(x , y) =

"
Ay − λx

AT x − µy

#
=

"
0

0

#
Thus, λ = µ = xTAy = ψA(x , y).
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Rayleigh Quotient Ideas: The Matrix Case

Gradient Calculations

∇ψ̃A(x , y) =

[
Ay − (xTAy)x

AT x − (xTAy)y

]
=

[
0

0

]

Singular Values and Vectors

If UTAV = Σ = diag(σi ) is the SVD of A and U = [ u1 | · · · | um ] and
V = [ v1 | · · · | vn ], then from AV = UΣ and ATU = VΣT we have

Avi = σiui

ATui = σivi

Since σi = uT
i Avi , it follows that

Avi − (uT
i Avi )ui = 0

ATui − (uT
i Avi )vi = 0
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Rayleigh Quotient Ideas: The Matrix Case

Gradient Calculations

∇ψ̃A(x , y) =

[
Ay − (xTAy)x

AT x − (xTAy)y

]
=

[
0

0

]

Singular Values and Vector

If UTAV = Σ = diag(σi ) is the SVD of A and U = [ u1 | · · · | um ] and
V = [ v1 | · · · | vn ], then from AV = UΣ and ATU = VΣT we have

Avi = σiui

ATui = σivi

Since σi = uT
i Avi , it follows that

Avi − (uT
i Avi )ui = 0

ATui − (uT
i Avi )vi = 0
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Rayleigh Quotient Ideas: The Tensor Case

The Singular Values and Vectors of a Tensor: A Definition

If A ∈ IRm×n×p, x ∈ IRm, y ∈ IRn, and z ∈ IRp, then the singular
values and vectors of A are the stationary values and vectors of

ψA(x , y , z) =
m∑

i=1

n∑
j=1

p∑
k=1

aijk xiyjzk

subject to the constraints ‖ x ‖ = ‖ y ‖ = ‖ z ‖ = 1

Order-3 tensors are plenty good enough to show the main ideas.
Generalizations to order d tensors are generally pretty obvious.
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Rayleigh Quotient Ideas: The Tensor Case

Take a look at ψA(x , y , z)

Some handy rearrangements o fψA:

ψA(x , y , z) =
m∑

i=1

n∑
j=1

p∑
k=1

aijk xiyjzk =
m∑

i=1

xi

 n∑
j=1

p∑
k=1

aijk yjzk


=

n∑
j=1

yj

(
m∑

i=1

p∑
k=1

aijk xizk

)

=

p∑
k=1

zk

 m∑
i=1

n∑
j=1

aijk xiyj



Before we go after the gradient, let’s frame the double summations in
linear algebra terms...
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Rayleigh Quotient Ideas: The Tensor Case

Suppose m = 4,n = 3, and p = 2

ψA(x , y , z) =
m∑

i=1

xi

 n∑
j=1

p∑
k=1

aijk yjzk



=
m∑

i=1

xi

[
ai11 ai21 ai31 ai12 ai22 ai32

]


z1y1

z1y2

z1y3

z2y1

z2y2

z2y3



= xT


a111 a121 a131 a112 a122 a132

a211 a221 a231 a212 a222 a232

a311 a321 a331 a312 a322 a332

a411 a421 a431 a412 a422 a432

 z ⊗ y
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Rayleigh Quotient Ideas: The Tensor Case

Suppose m = 4,n = 3, and p = 2

ψA(x , y , z) =
m∑

i=1

xi

 n∑
j=1

p∑
k=1

aijk yjzk



= yT


a111 a121 a131 a112 a122 a132

a211 a221 a231 a212 a222 a232

a311 a321 a331 a312 a322 a332

a411 a421 a431 a412 a422 a432

 z ⊗ x

The matrix you see here is the mode-1 unfolding of A ∈ IR4×3×2
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Rayleigh Quotient Ideas: The Tensor Case

ψA(x , y , z) in terms of the Mode-1 Unfolding

ψA(x , y , z) =
m∑

i=1

xi

 n∑
j=1

p∑
k=1

aijk yjzk

 = xTA(1) · z ⊗ y

A(1) =


a111 a121 a131 a112 a122 a132

a211 a221 a231 a212 a222 a232

a311 a321 a331 a312 a322 a332

a411 a421 a431 a412 a422 a432


(1,1) (2,1) (3,1) (1,2) (2,2) (3,2)
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Rayleigh Quotient Ideas: The Tensor Case

ψA(x , y , z) in terms of the Mode-2 Unfolding

ψA(x , y , z) =
n∑

j=1

yj

(
m∑

i=1

p∑
k=1

aijk xizk

)
= yTA(2)z ⊗ x

A(2) =

 a111 a211 a311 a411 a112 a212 a312 a412

a121 a221 a321 a421 a122 a222 a322 a422

a131 a231 a331 a431 a132 a232 a332 a432


(1,1) (2,1) (3,1) (4,1) (1,2) (2,2) (3,2) (4,2)
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Rayleigh Quotient Ideas: The Tensor Case

ψA(x , y , z) in terms of the Mode-3 Unfolding

ψA(x , y , z) =

p∑
k=1

zk

 m∑
i=1

n∑
j=1

aijk xiyj

 = zTA(3) · y ⊗ x

A(3) =

[
a111 a211 a311 a411 a121 a221 a321 a421 a131 a231 a331 a431

a112 a212 a312 a412 a122 a222 a322 a422 a132 a232 a332 a432

]
(1,1) (2,1) (3,1) (4,1) (1,2) (2,2) (3,2) (4,2) (1,3) (2,3) (3,3) (4,3)
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Rayleigh Quotient Ideas: The Tensor Case

Important Skill: Framing a Tensor Computation in Matrix Terms

ψA(x , y , z) =
m∑

i=1

n∑
j=1

p∑
k=1

aijkxiyjzk

= xTA(1)(z ⊗ y)

= yTA(2)(z ⊗ x)

= zTA(3)(y ⊗ x)

With these characterizations we can readily compute the stationary vectors
and values of this function subject to the constraint that

‖ x ‖ = ‖ y ‖ = ‖ z ‖ = 1.
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Rayleigh Quotient Ideas: The Tensor Case

The Gradient Computations

Set the gradient of

ψ̃A(x , y , z) = ψA(x , y , z)− λ

2
(xT x − 1)− µ

2
(yT y − 1)− τ

2
(zT z − 1)

to zero. Conclude that λ = µ = τ = ψ(x , y , z). If unit vectors x , y , and z to
satisfy

∇ψ̃A =

2664
A(1)(z ⊗ y) − ψA(x , y , z)x

A(2)(z ⊗ x) − ψA(x , y , z)y

A(3)(y ⊗ x) − ψA(x , y , z)z

3775 =

2664
0

0

0

3775
then σ = ψ(x , y , z) is a singular value of A and x , y , and z the associated singular
vectors.

How can we solve this (highly structured) system of nonlinear
equations?
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A Higher-Order Power Method
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The Power Method for Matrices

The Gradient Equations

Ay = σ · x

AT x = σ · y

where σ = ψA(x , y) = xTAy .

Iterate...

y a given unit vector

Repeat Until Happy

x̃ = Ay , x ← x̃/‖ x̃ ‖

ỹ = AT x , y ← ỹ/‖ ỹ ‖

σ = ψA(x , y)

Same as power method applied to ATA.In the limit, σuvT converges to the closest
rank-1 to A.
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The Higher-Order Power Method for Tensors

The Gradient Equations

A(1) · (z ⊗ y) = σ · x

A(2) · (z ⊗ x) = σ · y

A(3) · (y ⊗ x) = σ · z

where σ = ψA(x , y , z) = xTA(1) · (z ⊗ y) = yTA(2) · (z ⊗ x) = zTA(3) · (y ⊗ x)

Iterate...

y and z given unit vectors
Repeat Until Happy

x̃ = A(1)(z ⊗ y), x = x̃/‖ x̃ ‖

ỹ = A(2)(z ⊗ x), y = ỹ/‖ ỹ ‖

z̃ = A(3)(y ⊗ x), z = z̃/‖ z̃ ‖

σ = ψA(x , y , z)
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The Higher-Order Power Method for Tensors

A Tempting Repetition

Step 1. Compute closest σ1 ·u1 ◦ v1 ◦ w1 to A.

Step 2. Compute closest σ2 ·u2 ◦ v2 ◦ w2 to

A− σ1u1 ◦ v1 ◦ w1.

Step 3. Compute closest σ3 ·u3 ◦ v3 ◦ w3 to

A− σ1 ·u1 ◦ v1 ◦ w1 − σ2 ·u2 ◦ v2 ◦ w2.

Step r. Compute closest σr ·ur ◦ vr ◦ wr to

A−
r−1∑
k=1

σk ·uk ◦ vk ◦ wk .

This does not render a “best” approximation to A as it does for matrices. So
maybe we better look more closely at sums of rank-1 tensors and rank.
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The Idea of Tensor Rank
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A ∈ IR2×2×2 as a minimal sum of rank-1 tensors.

Challenge: Find thinnest possible X ,Y ,Z ∈ IR2×r so

a111

a211

a121

a221

a112

a212

a122

a222


=

r∑
k=1

zk ⊗ yk ⊗ xk

where X = [ x1| · · · |xr ], Y = [ y1| · · · |yr ], andZ = [ z1| · · · |zr ] are
column partitionings.

The minimizing r is the tensor rank.
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A ∈ IR2×2×2 as a minimal sum of rank-1 tensors.

A Surprising Fact

If



a111

a211

a121

a221

a112

a212

a122

a222


= randn(8,1), then


rank = 2 with prob 79%

rank = 3 with prob 21%

This is very different from the matrix case where A = randn(n,n)
implies rank(A) = n with probability 100%.

A strong hint that tensor rank is decidely more complicated than matrix
rank. What are the “full rank” 2-by-2-by-2 tensors?
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The 79/21 Property

Connection to a Generalized Eigenvalue Problem

If the aijk are randn, then

det

([
a111 a121

a211 a221

]
− λ

[
a112 a122

a212 a222

])
= 0

has real distinct roots with probability 79% and complex conjugate
roots with probability 21%. The sum-of-rank-ones expansion for A
involves the generalized eigenvectors of this problem.

Yet another example of turning a tensor problem into a matrix problem.
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Symmetry
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What is a Symmetric Tensor?

The Order-3 Definition: C ∈ IRn×n×n

cijk =



cikj

cjik

cjki

ckij

ckji

It just means that permuting the indices does not change the value.
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Symmetric Tensors

C ∈ IR3×3×3

There are 10 values to specify...

(1,1,1)
(1,1,2),(1,2,1),(2,1,1)
(1,1,3),(1,3,1),(3,1,1)
(2,2,2)
(2,2,1),(2,1,2),(2,2,1)
(2,2,3),(2,3,1),(2,2,3)
(3,3,3)
(3,3,1),(3,1,3),(3,3,1)
(3,3,2),(3,2,3),(3,3,2)
(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)
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Symmetric Tensors

The Modal Unfoldings are all the Same

C(1) =

 c111 c121 c131 c112 c122 c132 c113 c123 c133

c211 c221 c231 c212 c222 c232 c213 c223 c233

c311 c321 c331 c312 c322 c332 3113 c323 c333


C(2) =

 c111 c211 c311 c112 c212 c312 c113 c213 c313

c121 c221 c321 c122 c222 c322 c123 c223 c323

c131 c231 c331 c132 c232 c332 3113 c233 c333


C(3) =

 c111 c211 c311 c121 c221 c321 c131 c231 c331

c112 c212 c312 c122 c222 c322 c132 c232 c332

c113 c213 c313 c123 c223 c323 3133 c233 c333


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Symmetric Tensors

Rank-1 Symmetric Tensors

If x ∈ IRn, then
C = x ◦ x ◦ x

is a symmetric rank-1 tensor. This is obvious since

cijk = xixjxk .

Note that

vec(x ◦ x ◦ ◦x) = x ⊗ x ⊗ x
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Symmetric Tensors

Symmetric Rank

An order-3 symmetric tensor C has symmetric rank r if there exists
x1, . . . , xr ∈ IRn and σ ∈ IRr such that

C =
r∑

k=1

σk · xk ◦ xk ◦ xk

and no shorter sum of symmetric rank-1 tensors exists. Symmetric
rank is denoted by rankS(C).

Note, there may be a shorter sum so

C =
r̃∑

k=1

σ̃k · x̃k ◦ ỹk ◦ z̃k
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Symmetric Tensors: Interesting Aside about Rank

Fact

If C ∈ Cn×···×n is an order-d symmetric tensor, then with probability 1

rankS(C) =


f (d ,m) + 1 if (d , n) = (3,5),(4,3),(4,4), or (4,5)

f (d , n) otherwise

where

f (d , n) = ceil


(

n + d − 1
d

)
n



Symmetric Tensor Rank is “more tractable” than General Tensor
Rank.
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Rayleigh Quotient Ideas

Symmetric Matrix Eigenvalues

If C is a symmeytric matrix, then the stationary values of

φC (x) = xTCx

subject to the constraint that ‖ x ‖2 = 1 are the eigenvalues of C . The
associated stationary vectors are eigenvectors.

Symmetric Tensor Eigenvalues

If C is a symmetric tensor, then the stationary values of

φC(x) =
n∑

i=1

n∑
j=1

n∑
k=1

cijkxixjxk = xTC(1)(x ⊗ x)

subject to the constraint that ‖ x ‖2 = 1 are the eigenvalues of C. The
associated stationary vectors are eigenvectors.
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Rayleigh Quotients: Symmetric Tensor Case

Symmetric Higher-Order Power Method

Initialize unit vector x .

Repeat Until Happy

x̃ = C(1)(x ⊗ x)

x = x̃/‖ x̃ ‖

Sample Convergence Result

If the order of C is even and M is a square unfolding, then the
iteration converges if M is positive definite.
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The SVD - SymEig Connection

The “Sym” of a Matrix

sym(A) =

[
0 A

AT 0

]
∈ IR(n1+n2)×(n1+n2)

The SVD of A Relates to the EVD of sym(A)

If A = U · diag(σi ) · V T is the SVD of A ∈ IRn1×n2 , then for
k = 1:rank(A) [

0 A
AT 0

] [
uk

±vk

]
= ±σk

[
uk

±vk

]
where uk = U(:, k) and vk = V (:, k).

The above SVD-related power method was essentially traditional power
method applied to finding the largest eigenvector of sym(A).
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The SVD - SymEig Connection

The “Sym” of a Matrix

sym(A) =

[
0 A

AT 0

]
∈ IR(n1+n2)×(n1+n2)

The SVD of A Relates to the EVD of sym(A)

If A = U · diag(σi ) · V T is the SVD of A ∈ IRn1×n2 , then for
k = 1:rank(A) [

0 A
AT 0

] [
uk

±vk

]
= ±σk

[
uk

±vk

]
where uk = U(:, k) and vk = V (:, k).

Let us look at the analog of this for tensors. Need transposition
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Tensor Transposition: The Order-3 Case

Six possibilities...

If C ∈ IRn1×n2×n3 , then there are 6 = 3! possible transpositions
identified by the notation C< [i j k] > where [i j k] is a permutation of
[1 2 3]:

B =



C< [1 2 3] >

C< [1 3 2] >

C< [2 1 3] >

C< [2 3 1] >

C< [3 1 2] >

C< [3 2 1] >


=⇒



bijk

bikj

bjik

bjki

bkij

bkji


= cijk

for i = 1:n1, j = 1:n2, k = 1:n3.

Structured Matrix Computations from Structured Tensors Lecture 2. Tensor Symmetries and Rank 36 / 42



Symmetric Embedding of a Tensor C = sym(A)

An Order-3 Example...

Note the careful placement of A’s six transposes

C(:, :, 1)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�A<[321]>

A<[231]>

C(:, :, 2)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�A<[312]>

A<[132]>

C(:, :, 3)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

A<[123]>

A<[213]>
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Connecting A and sym(A)

Algorithms

Interesting connections between power methods with A and power
methods with sym(A)

Analysis

If  σ,

 u
v
z


is a stationary pair for sym(A) then so are σ,

 u
−v
−z

 ,

 −σ,
 u
−v

z

 ,

 −σ,
 u

v
−z


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Symmetric Tensors: Interesting Aside about Rank

Interesting Possible Connection

Easy:
d! rank(A) ≤ rankS(sym(A))

Equality is hard or perhaps not true. But if it could be established,
then we would have new insight into the tensor rank problem.
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Optional “Fun” Problems

Problem E2. Suppose A ∈ IRm×n2

with m > n2. Develop an alternating
least squares solution framework for minimizing ‖ A(x ⊗ y)− b ‖2 where

b ∈ IRn2

and x , y ∈ IRn.

Problem A2. Same notation as E2. What is the gradient of

φ(x , y) =
1

2
‖ A(x ⊗ y)− b ‖2

2
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Closing Remarks
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Bridging the Gap via Tensor Unfoldings

A Common Framework for Tensor Computations...

1. Turn tensor A into a matrix A.

2. Through matrix computations, discover things about A.

3. Draw conclusions about tensor A based on what is learned about
matrix A.
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