Structured Matrix Computations from Structured Tensors

Lecture 3. The Tucker and Tensor Train Decompositions

Charles F. Van Loan

Cornell University

CIME-EMS Summer School June 22-26, 2015 Cetraro, Italy

Good News/Bad News

The singular values of a general matrix and the eigenvalues of a symmetric matrix have variational definitions and these ideas can be extended to tensors.

However, these ideas are not strong enough to put together a tensor decomposition like the SVD:

$$A = U\Sigma V^{T} = \sum_{k=1}^{\operatorname{rank}(A)} \sigma_{k} u_{k} v_{k}^{T}$$

Why Do We Like Matrix Factorizations?

The Factorization Paradigm in Matrix Computations

Typical...

<u>Convert</u> the given problem into an equivalent easy-to-solve problem by using the "right" matrix decomposition.

$$PA = LU, Ly = Pb, Ux = y \implies Ax = b$$

Also Typical...

 $\underline{Uncover}$ hidden relationships by computing the "right" decomposition of the data matrix.

$$A = U\Sigma V^T \implies A \approx \sum_{i=1}^r \sigma_i u_i v_i^T$$

The Factorization Paradigm in Matrix Computations

 $A = U\Sigma V^T$ PA = LU A = QR $A = GG^T$ $PAP^T = LDL^T$ $Q^TAQ = D$ $X^{-1}AX = J \quad U^TAU = T \quad AP = QR \quad A = ULV^T \quad PAQ^T = LU \quad A = U\Sigma V^T$ $PA = LU A = QR A = GG^T PAP^T = LDL^T Q^T AQ = D X^{-1}AX = J$ $U^{T}AU = T$ AP = QR $A = ULV^{T}$ $PAQ^{T} = LU$ $A = U\Sigma V^{T}$ PA = LU $A = QR \ A = GG^T \ PAP^T = LDL^T \ Q^TAQ = D \ X^{-1}AX = J \ U^TAU = T$ $AP = QR \quad A = ULV^T \quad PAQ^T = LU \quad A = U\Sigma V^T \quad PA = LU \quad A = QR$ $A = GG^{T} \operatorname{PAP}^{T} \operatorname{S}_{LD} \operatorname{A}_{A} = \operatorname{LD}_{A} \operatorname{A}_{A} \operatorname{Cange}_{A} \operatorname{A}_{A} \operatorname{Cange}_{A} \operatorname{A}_{A} = \operatorname{GG}_{A} \operatorname{Cange}_{A} \operatorname{A}_{A} \operatorname{Cange}_{A} \operatorname{Cang$ $A = ULV^T$ $PAQ^T = LU$ $A = U\Sigma V^T$ PA = LU A = QR $A = GG^T$ $PAP^{T} = LDL^{T} \quad Q^{T}AQ = D \quad X^{-1}AX = J \quad AP = QR \quad A = ULV^{T}$ $PAQ^{T} = LU \quad A = U\Sigma V^{T} \quad PA = LU \quad A = QR \quad A = GG^{T} \quad PAP^{T} = LDL^{T}$ $Q^{T}AQ = D \quad X^{-1}AX = J \quad U^{T}AU = T \quad AP = QR \quad A = ULV^{T} \quad PAQ^{T} = LU$ $A = U\Sigma V^T$ PA = LU A = QR $A = GG^T$ $PAP^T = LDL^T$ $Q^TAQ = D$ $X^{-1}AX = J \quad U^{T}AU = T \quad AP = QR \quad A = ULV^{T} \quad PAQ^{T} = LU \quad A = U\Sigma V^{T}$ $PA = LU A = QR PAP^{T} = LDL^{T} Q^{T}AQ = D X^{-1}AX = J U^{T}AU = T$ AP = QR $A = ULV^T$ $PAQ^T = LU$ $A = U\Sigma V^T$ PA = LU A = QR

Anticipating the Same Thing for Tensors

$$= \sigma_1 w_1 \circ v_1 \circ u_1 + \sigma_2 w_2 \circ v_2 \circ u_2 + \ldots$$

Question 1

Can we solve tensor problems by converting them to (approximately) equivalent easy-to-solve problems using a tensor decomposition?

Question 2

Can we uncover hidden patterns in tensor data by computing an appropriate tensor decomposition?

These questions will be addessed in this lecture and the next.

Outline

- The Tucker Product Representation and Its Properties
- The Mode-k Product and the Tucker Product
- The Higher-Order SVD of a tensor
- An Alternating Least Squares Framework for Reduced-Rank Tucker Approximation
- The Tensor Train Representation

The Tucker Product Representation

Tucker Product: The Matrix Case

Definition

The Tucker product between a matrix

 $S: r_1 \times r_2$

and matrices

 $U_1 : n_1 \times r_1$ $U_2 : n_2 \times r_2$

is the $n_1 \times n_2$ matrix defined by

$$A(i_1, i_2) = \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} S(j_1, j_2) \cdot U_1(i_1, j_1) \cdot U_2(i_2, j_2)$$

It is Actually Just the Product of Three Matrices

$$A(i_1, i_2) = \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} S(j_1, j_2) \cdot U_1(i_1, j_1) \cdot U_2(i_2, j_2)$$
$$A = U_1 S U_2^T$$

Tucker Product: The Matrix Case

It is Actually the Sum of Rank-1 Matrices

$$\begin{aligned} \mathcal{A}(i_1, i_2) &= \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \mathcal{S}(j_1, j_2) \cdot \mathcal{U}_1(i_1, j_1) \cdot \mathcal{U}_2(i_2, j_2) \\ \mathcal{A} &= \mathcal{U}_1 \mathcal{S} \mathcal{U}_2^T \\ \mathcal{A} &= \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \mathcal{S}(j_1, j_2) \cdot \mathcal{U}_1(:, j_1) \cdot \mathcal{U}_2(:, j_2)^T \end{aligned}$$

It is Actually the Sum of Kronecker Products Between Vectors

$$\begin{aligned} A(i_1, i_2) &= \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \mathcal{S}(j_1, j_2) \cdot U_1(i_1, j_1) \cdot U_2(i_2, j_2) \\ A &= U_1 \mathcal{S} U_2^T \\ A &= \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \mathcal{S}(j_1, j_2) \cdot U_1(:, j_1) \cdot U_2(:, j_2)^T \\ \operatorname{vec}(A) &= \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \mathcal{S}(j_1, j_2) \cdot U_2(:, j_2) \otimes U_1(:, j_2) \end{aligned}$$

It is Actually a Giant Matrix-Vector Product

$$\begin{aligned} A(i_1, i_2) &= \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \mathcal{S}(j_1, j_2) \cdot \mathcal{U}_1(i_1, j_1) \cdot \mathcal{U}_2(i_2, j_2) \\ A &= \mathcal{U}_1 \mathcal{S} \mathcal{U}_2^T \\ A &= \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \mathcal{S}(j_1, j_2) \cdot \mathcal{U}_1(:, j_1) \cdot \mathcal{U}_2(:, j_2)^T \\ \operatorname{vec}(\mathcal{A}) &= \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \mathcal{S}(j_1, j_2) \mathcal{U}_2(:, j_2) \otimes \mathcal{U}_1(:, j_2) \\ \operatorname{vec}(\mathcal{A}) &= (\mathcal{U}_2 \otimes \mathcal{U}_1) \cdot \operatorname{vec}(\mathcal{S}) \end{aligned}$$

Tucker Product: The Tensor Case

Definition (Order-3)

The Tucker product between a tensor

 $S: r_1 \times r_2 \times r_3$

and matrices

 $U_1 : n_1 \times r_1$ $U_2 : n_2 \times r_2$ $U_3 : n_3 \times r_3$

is the $n_1 \times n_2 \times n_3$ tensor defined by

$$\mathcal{A}(i_1, i_2, i_3) = \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \sum_{j_3=1}^{r_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(i_1, j_1) \cdot U_2(i_2, j_2) \cdot U_3(i_3, j_3)$$

It is Actually the Sum of Rank-1 Tensors...

$$\mathcal{A}(i_1, i_2, i_3) = \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \sum_{j_3=1}^{r_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(i_1, j_1) \cdot U_2(i_2, j_2) \cdot U_3(i_3, j_3)$$
$$\mathcal{A} = \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \sum_{j_3=1}^{r_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(:, j_1) \circ U_2(:, j_2) \circ U_3(:, j_3)$$

It is Actually the Sum of Kronecker Products Between Vectors

$$\mathcal{A}(i_{1}, i_{2}, i_{3}) = \sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}(j_{1}, j_{2}, j_{3}) \cdot U_{1}(i_{1}, j_{1}) \cdot U_{2}(i_{2}, j_{2}) \cdot U_{3}(i_{3}, j_{3})$$

$$\mathcal{A} = \sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}(j_{1}, j_{2}, j_{3}) \cdot U_{1}(:, j_{1}) \circ U_{2}(:, j_{2}) \circ U_{3}(:, j_{3})$$

$$\mathsf{vec}(\mathcal{A}) = \sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}(j_{1}, j_{2}, j_{3}) \cdot U_{3}(:, j_{3}) \otimes U_{2}(:, j_{2}) \otimes U_{1}(:, j_{1})$$

It is Actually a Giant Matrix-Vector Product

$$\begin{aligned} \mathcal{A}(i_{1},i_{2},i_{3}) &= \sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}(j_{1},j_{2},j_{3}) \cdot U_{1}(i_{1},j_{1}) \cdot U_{2}(i_{2},j_{2}) \cdot U_{3}(i_{3},j_{3}) \\ \mathcal{A} &= \sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}(j_{1},j_{2},j_{3}) \cdot U_{1}(:,j_{1}) \circ U_{2}(:,j_{2}) \circ U_{3}(:,j_{3}) \\ \operatorname{vec}(\mathcal{A}) &= \sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}(j_{1},j_{2},j_{3}) \cdot U_{3}(:,j_{3}) \otimes U_{2}(:,j_{2}) \otimes U_{1}(:,j_{1}) \end{aligned}$$

 $\operatorname{vec}(\mathcal{A}) = (U_3 \otimes U_2 \otimes U_1) \cdot \operatorname{vec}(\mathcal{S})$

The Tucker Product

It is a "Representation"

$$\mathcal{A}(i_1, i_2, i_3) = \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \sum_{j_3=1}^{r_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(i_1, j_1) \cdot U_2(i_2, j_2) \cdot U_3(i_3, j_3)$$

We are **representing** the tensor A in terms of the tensor S and the matrices U_1 , U_2 , and U_3 .

Can we compute a Tucker Product representation that is especially illuminating or useful?

Improving the Tucker Tucker Representation

Computing the SVD of a Matrix

Have:

$$A = U_1 S U_2^T \qquad U_1, \ U_2 \text{ Orthogonal}$$

Improve:

$$A = (U_1 \Delta_1) (\Delta_1^T S \Delta_2) (U_2 \Delta_2)^T$$

E.g., make S more diagonal by choosing clever orthogonal Δ_1 and Δ_2

Update:

$$S \leftarrow \Delta_1^T S \Delta_2$$
 $U_1 \leftarrow U_1 \Delta_1$ $U_2 \leftarrow U_2 \Delta_2$

We would like to do the same thing for tensors, but what are the "update operations"?

The Mode-k Product

The Mode-k Product

Main Idea

Given $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, a mode k, and a matrix M, we apply M to every mode-k fiber.

Recall that

$$\mathcal{A}_{(2)} = \begin{bmatrix} a_{111} & a_{211} & a_{311} & a_{411} & a_{112} & a_{212} & a_{312} & a_{412} \\ a_{121} & a_{221} & a_{321} & a_{421} & a_{122} & a_{222} & a_{322} & a_{422} \\ a_{131} & a_{231} & a_{331} & a_{431} & a_{132} & a_{232} & a_{332} & a_{432} \end{bmatrix}$$

is the mode-2 unfolding of $\mathcal{A} \in {\rm I\!R}^{4 \times 3 \times 2}$ and its columns are its mode-2 fibers

The Mode-*k* Product

A Mode-2 Example When $A \in {\rm I\!R}^{4 \times 3 \times 2}$

	$\begin{bmatrix} b_{111} & b_{121} & b_{121} & b_{131} & b_$	$\begin{array}{cccc} p_{211} & b_{311} \\ p_{221} & b_{321} \\ p_{231} & b_{331} \\ p_{331} & b_{331} \end{array}$	b ₄₁₁ b ₄₂₁ b ₄₃₁	<i>b</i> ₁₁₂ <i>b</i> ₁₂₂ <i>b</i> ₁₃₂	b ₂₁₂ b ₂₂₂ b ₂₃₂	b ₃₁₂ b ₃₂₂ b ₃₃₂	b ₄₁₂ b ₄₂₂ b ₄₃₂			
	$\begin{bmatrix} b_{141} \\ b_{151} \end{bmatrix} b_{151}$	b_{251}^{221} b_{351}^{2251}	b ₄₄₁ b ₄₅₁	b_{142} b_{152}	b ₂₄₂ b ₂₅₂	b ₃₄₂ b ₃₅₂	b ₄₄₂ b ₄₅₂			
			=	:						
$\begin{bmatrix} m_{11} & m_{12} \end{bmatrix}$	₁₂ m ₁₃	1								
$m_{21} m_{21}$	$m_{22} m_{23}$	[a ₁₁₁	a <mark>211</mark>	a <mark>311</mark>	a <mark>411</mark>	a ₁₁₂	a ₂₁₂	a ₃₁₂	a ₄₁₂]
m_{31} m_{31}	$m_{32} m_{33}$	a ₁₂₁	a <mark>221</mark>	a <mark>3</mark> 21	a ₄₂₁	a ₁₂₂	a <mark>222</mark>	a ₃₂₂	a ₄₂₂	
$m_{41} m_{41}$	m_{43}	a ₁₃₁	a <mark>2</mark> 31	a <mark>3</mark> 31	a ₄₃₁	a ₁₃₂	a ₂₃₂	a <mark>332</mark>	a ₄₃₂	
$m_{51} m_{51}$	$m_{52} m_{53}$									

Note: (1) $B \in \mathbb{R}^{4 \times 5 \times 2}$ and (2) $\mathcal{B}_{(2)} = M \cdot \mathcal{A}_{(2)}$.

The Mode-k Product: Definition

Mode-1

If $\mathcal{A} \in {\rm I\!R}^{n_1 imes n_2 imes n_3}$ and $M \in {\rm I\!R}^{n_1 imes n_1}$, then the mode-1 product

 $\mathcal{B} = \mathcal{A} \times_{1} \mathcal{M} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$

is defined by

$$\mathcal{B}(i_1, i_2, i_3) = \sum_{k=1}^{n_1} M(i_1, k) \mathcal{A}(k, i_2, i_3)$$

Two Equivalent Formulations...

$$\mathcal{B}_{(1)} = M \cdot \mathcal{A}_{(1)}$$

$$\operatorname{vec}(\mathcal{B}) = (I_{n_3} \otimes I_{n_2} \otimes M)\operatorname{vec}(\mathcal{A})$$

For now, assume M is square. Not necessary in general.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions

The Mode-k Product: Definition

Mode-2

If $\mathcal{A} \in {\rm I\!R}^{n_1 imes n_2 imes n_3}$ and $M \in {\rm I\!R}^{n_2 imes n_2}$, then the mode-2 product

$$\mathcal{B} = \mathcal{A} \times_{\mathbf{2}} M \in \mathbb{R}^{n_1 \times n_2 \times n_3}$$

is defined by

$$\mathcal{B}(i_1, i_2, i_3) = \sum_{k=1}^{n_2} M(i_2, k) \mathcal{A}(i_1, k, i_3)$$

Two Equivalent Formulations...

$$\mathcal{B}_{(2)} = M \cdot \mathcal{A}_{(2)}$$

$$\operatorname{vec}(\mathcal{B}) = (I_{n_3} \otimes M \otimes I_{n_1})\operatorname{vec}(\mathcal{A})$$

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions

The Mode-k Product: Definition

Mode-3

If $\mathcal{A} \in {\rm I\!R}^{n_1 imes n_2 imes n_3}$ and $M \in {\rm I\!R}^{n_3 imes n_3}$, then the mode-3 product

$$\mathcal{B} = \mathcal{A} \times_{\mathbf{3}} \mathcal{M} \in \mathrm{I\!R}^{n_1 \times n_2 \times m_3}$$

is defined by

$$\mathcal{B}(i_1, i_2, i_3) = \sum_{k=1}^{n_3} M(i_3, k) \mathcal{A}(i_1, i_2, k)$$

Two Equivalent Formulations...

$$\mathcal{B}_{(3)} = M \cdot \mathcal{A}_{(3)}$$

$$\operatorname{vec}(\mathcal{B}) = (\mathcal{M} \otimes \mathcal{I}_{n_2} \otimes \mathcal{I}_{n_1})\operatorname{vec}(\mathcal{A})$$

Successive Products in the Same Mode

If $\mathcal{A} \in {\rm I\!R}^{n_1 imes n_2 imes n_3}$ and $M_1, M_2 \in {\rm I\!R}^{n_k imes n_k}$, then

$$(\mathcal{A} \times_{k} M_{1}) \times_{k} M_{2} = \mathcal{A} \times_{k} (M_{1}M_{2}).$$

Successive Products in Different Modes

If
$$\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$$
, $M_k \in \mathbb{R}^{n_k \times n_k}$, $M_j \in \mathbb{R}^{n_j \times n_j}$, and $k \neq j$, then

$$(\mathcal{A} \times_{k} M_{k}) \times_{j} M_{j} = (\mathcal{A} \times_{j} M_{j}) \times_{k} M_{k}$$

The order is not important so we just write $\mathcal{A} \times_i M_i \times_k M_k$.

The Tucker Product

It is a Collection of Modal Products

The Tucker Product of the tensor

$$\mathcal{S} \in \mathbb{R}^{r_1 imes r_2 imes r_3}$$

with the matrices $U_1 \in \mathbb{R}^{n_1 \times r_1}$, $U_2 \in \mathbb{R}^{n_2 \times r_2}$, and $U_3 \in \mathbb{R}^{n_3 \times r_3}$ is given by

$$\begin{aligned} \mathcal{A}(i_1, i_2, i_3) &= \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \sum_{j_3=1}^{r_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(i_1, j_1) \cdot U_2(i_2, j_2) \cdot U_3(i_3, j_3) \\ &= \mathcal{S} \times_1 U_1 \times_2 U_2 \times_3 U_3 \end{aligned}$$

A Simple but Important Result

If $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ and $U_1 \in \mathbb{R}^{n_1 \times n_1}$, $U_2 \in \mathbb{R}^{n_2 \times n_2}$, and $U_3 \in \mathbb{R}^{n_3 \times n_3}$ are nonsingular, then

 $\mathcal{A} = \mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}$

where

$$\mathcal{S} = \mathcal{A} \times_{\mathbf{1}} U_{\mathbf{1}}^{-1} \times_{\mathbf{2}} U_{\mathbf{2}}^{-1} \times_{\mathbf{3}} U_{\mathbf{3}}^{-1}.$$

We will refer to the U_k as the inverse factors and S as the core tensor.

The matrix version:
$$A = U_1(U_1^{-1}AU_2^{-1})U_2 = U_1SU_2$$

Proof.

$$\begin{aligned} \mathcal{A} &= \mathcal{A} \times_{1} (U_{1}^{-1}U_{1}) \times_{2} (U_{2}^{-1}U_{2}) \times_{3} (U_{3}^{-1}U_{3}) \\ &= \left(\mathcal{A} \times_{1} U_{1}^{-1} \times_{2} U_{2}^{-1} \times_{3} U_{3}^{-1} \right) \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3} \\ &= \mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3} \end{aligned}$$

An Orthogonal Tucker Product Representation

If the U's are Orthogonal

If $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ and $U_1 \in \mathbb{R}^{n_1 \times n_1}$, $U_2 \in \mathbb{R}^{n_2 \times n_2}$, and $U_3 \in \mathbb{R}^{n_3 \times n_3}$ are orthogonal, then

$$\mathcal{A} = \mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}$$

where

$$\mathcal{S} = \mathcal{A} \times_{1} U_{1}^{T} \times_{2} U_{2}^{T} \times_{3} U_{3}^{T}.$$

We are representing \mathcal{A} as Tucker product of a "core tensor" \mathcal{S} and three orthogonal matrices.

The Higher-Order SVD

The Tucker Product Representation

The Challenge

Given $\mathcal{A} \in {\rm I\!R}^{n_1 imes n_2 imes n_3}$, compute

 $S \in \mathbb{R}^{r_1 \times r_2 \times r_3}$

and

$$U_1 \in \mathbb{R}^{n_1 \times r_1}, \ U_2 \in \mathbb{R}^{n_2 \times r_2}, \ U_3 \in \mathbb{R}^{n_3 \times r_3}$$

such that

$$\mathcal{A} = \mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}$$

is an "illuminating" Tucker product representation of A.

If the U's are from the Modal Unfolding SVDs...

Suppose $\mathcal{A} \in {\rm I\!R}^{n_1 imes n_2 imes n_3}$ is given. If

$$\begin{aligned} \mathcal{A}_{(1)} &= U_1 \Sigma_1 V_1^{\mathcal{T}} \\ \mathcal{A}_{(2)} &= U_2 \Sigma_2 V_2^{\mathcal{T}} \\ \mathcal{A}_{(3)} &= U_3 \Sigma_3 V_3^{\mathcal{T}} \end{aligned}$$

are SVDs and

$$\mathcal{S} = \mathcal{A} \times_{\mathbf{1}} U_{\mathbf{1}}^{\mathsf{T}} \times_{\mathbf{2}} U_{\mathbf{2}}^{\mathsf{T}} \times_{\mathbf{3}} U_{\mathbf{3}}^{\mathsf{T}},$$

then

$$\mathcal{A} = \mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3},$$

is the higher-order SVD of \mathcal{A} .

The HOSVD of a Matrix IS the SVD of that Matrix

If d = 2 then A is a matrix and the HOSVD is the SVD. Indeed, if

$$A = A_{(1)} = U_1 \Sigma_1 V_1^{T}$$
$$A^{T} = A_{(2)} = U_2 \Sigma_2 V_2^{T}$$

then we can set $U = U_1 = V_2$ and $V = U_2 = V_1$. Note that

$$\mathcal{S} = (\mathcal{A} \times_{\mathbf{1}} U_1^{\mathsf{T}}) \times_{\mathbf{2}} U_2^{\mathsf{T}} = (U_1^{\mathsf{T}} \mathcal{A}) \times_{\mathbf{2}} U_2 = U_1^{\mathsf{T}} \mathcal{A} V_1 = \Sigma_1.$$

The HOSVD

Core Tensor Properties

lf

$$A_{(1)} = U_1 \Sigma_1 V_1^T \qquad A_{(2)} = U_2 \Sigma_2 V_2^T \qquad A_{(3)} = U_3 \Sigma_3 V_3^T$$

are SVDs and

$$\mathcal{A} = \mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}$$

then

$$\mathcal{A}_{(1)} = U_1 \mathcal{S}_{(1)} (U_3 \otimes U_2)^T$$
 and $\mathcal{S}_{(1)} = \Sigma_1 V_1 (U_3 \otimes U_2)$

It follows that the rows of $S_{(1)}$ are mutually orthogonal and that the singular values of $A_{(1)}$ are the 2-norms of these rows.

The HOSVD

Core Tensor Properties

lf

$$A_{(1)} = U_1 \Sigma_1 V_1^T \qquad A_{(2)} = U_2 \Sigma_2 V_2^T \qquad A_{(3)} = U_3 \Sigma_3 V_3^T$$

are SVDs and

$$\mathcal{A} = \mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}$$

then

$$\mathcal{A}_{(2)} = U_2 \mathcal{S}_{(2)} (U_3 \otimes U_1)^T$$
 and $\mathcal{S}_{(2)} = \Sigma_2 V_2 (U_3 \otimes U_1)$

It follows that the rows of $S_{(2)}$ are mutually orthogonal and that the singular values of $A_{(2)}$ are the 2-norms of these rows.

The HOSVD

Core Tensor Properties

lf

$$A_{(1)} = U_1 \Sigma_1 V_1^T \qquad A_{(2)} = U_2 \Sigma_2 V_2^T \qquad A_{(3)} = U_3 \Sigma_3 V_3^T$$

are SVDs and

$$\mathcal{A} = \mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}$$

then

$$\mathcal{A}_{(3)} = U_3 \mathcal{S}_{(3)} (U_2 \otimes U_1)^T$$
 and $\mathcal{S}_{(3)} = \Sigma_3 V_3 (U_2 \otimes U_1)$

It follows that the rows of $S_{(3)}$ are mutually orthogonal and that the singular values of $A_{(3)}$ are the 2-norms of these rows.

69

$$\mathcal{S}_{(1)} = \Sigma_1 V_1(U_3 \otimes U_2) \Rightarrow \| \mathcal{S}(j, :, :) \|_F = \sigma_j(\mathcal{A}_{(1)}) \qquad j = 1: n_1$$

$$\mathcal{S}_{(2)} = \Sigma_2 V_2(U_3 \otimes U_1) \Rightarrow \| \mathcal{S}(:,j,:) \|_F = \sigma_j(\mathcal{A}_{(2)}) \qquad j = 1:n_2$$

$$\mathcal{S}_{(3)} = \Sigma_3 V_3 (U_2 \otimes U_1) \Rightarrow \| \mathcal{S}(:,:,j) \|_F = \sigma_j(\mathcal{A}_{(3)}) \qquad j = 1: n_3$$

The norms of slices are getting smaller as you move away from $\mathcal{A}(1, 1, 1)$ Notation: $\sigma_j(C)$ is the *j*th largest singular value of the matrix *C*.

It is a Graded Sum of Rank-1 Tensors...

If $\mathcal{A} = \mathcal{S} \times_1 U_1 \times_2 U_2 \times_3 U_3$ is the HOSVD of $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, then

$$\mathcal{A} = \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \sum_{j_3=1}^{r_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(:, j_1) \circ U_2(:, j_2) \circ U_3(:, j_3)$$

where
$$r_1 = \text{rank}(A_{(1)})$$
, $r_2 = \text{rank}(A_{(2)})$, and $r_3 = \text{rank}(A_{(3)})$

And It Can Be Truncated...

If $\mathcal{A} = \mathcal{S} \times_1 U_1 \times_2 U_2 \times_3 U_3$ is the HOSVD of $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, then

$$\mathcal{A} \ pprox \ \sum_{j_1=1}^{ ilde{r}_1} \sum_{j_2=1}^{ ilde{r}_2} \sum_{j_3=1}^{ ilde{r}_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(:, j_1) \circ U_2(:, j_2) \circ U_3(:, j_3)$$

39 / 69

where $\tilde{r}_1 \leq r_1$, $\tilde{r}_2 \leq r_2$, and $\tilde{r}_3 \leq r_3$.

Just "Shorten" the Summations

$$\mathcal{A} = \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \sum_{j_3=1}^{r_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(:, j_1) \circ U_2(:, j_2) \circ U_3(:, j_3)$$

$$\mathcal{A}_{\mathbf{r}} = \sum_{j_1=1}^{\tilde{r}_1} \sum_{j_2=1}^{\tilde{r}_2} \sum_{j_3=1}^{\tilde{r}_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(:, j_1) \circ U_2(:, j_2) \circ U_3(:, j_3)$$

What can we say about the "thrown away" terms?

The Truncated HOSVD

Just "Shorten" the Summations

$$\mathcal{A} = \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \sum_{j_3=1}^{r_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(:, j_1) \circ U_2(:, j_2) \circ U_3(:, j_3)$$
$$\mathcal{A}_{\mathbf{r}} = \sum_{j_1=1}^{\tilde{\mathbf{r}}_1} \sum_{j_2=1}^{\tilde{\mathbf{r}}_2} \sum_{j_3=1}^{\tilde{\mathbf{r}}_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(:, j_1) \circ U_2(:, j_2) \circ U_3(:, j_3)$$

Use these results...

$$\| S(j,:,:) \|_{F} = \sigma_{j}(A_{(1)}) \quad j = 1:n_{1} \\ \| S(:,j,:) \|_{F} = \sigma_{j}(A_{(2)}) \quad j = 1:n_{2} \\ \| S(:,:,j) \|_{F} = \sigma_{j}(A_{(3)}) \quad j = 1:n_{3}$$

Problem E3. What can you say about $\| \mathcal{A} - \mathcal{A}_r \|_F$ assuming that $\sigma_{\tilde{r}_1}(\mathcal{A}_{(1)}) \leq \delta$, $\sigma_{\tilde{r}_2}(\mathcal{A}_{(2)}) \leq \delta$, and $\sigma_{\tilde{r}_3}(\mathcal{A}_{(3)}) \leq \delta$?

Problem A3. In the QR with column pivoting (QRP) decomposition AP = QR the upper triangular matrix $R \in \mathbb{R}^{n \times n}$ is graded in the sense that

$$r_{jj}^2 \ge \sum_{i=j}^k r_{ik}^2 \qquad k=j:n$$

Formulate an HOQRP factorization for a tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ that is based on the QR-with-column-pivoting factorizations

$$\mathcal{A}_{(k)} \mathcal{P}_k = \mathcal{Q}_k \mathcal{R}_k$$

for k = 1:3. Does the core tensor have any special "grading" properties?

The Tucker Nearness Problem

Definition

We say that

$$\mathcal{A} = \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \sum_{j_3=1}^{r_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(:, j_1) \circ U_2(:, j_2) \circ U_3(:, j_3)$$

has modal rank (r_1, r_2, r_3) if $r_1 = rank(A_{(1)})$, $r_2 = rank(A_{(2)})$, and $r_3 = rank(A_{(3)})$,

Approximation With a "Shorter" Tucker Product

Assume that $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ has modal rank (r_1, r_2, r_3) . Given integers \tilde{r}_1 , \tilde{r}_2 and \tilde{r}_3 that satisfy $\tilde{r}_1 \leq r_1$, $\tilde{r}_2 \leq r_2$, and $\tilde{r}_3 \leq r_3$, compute

 $\begin{array}{ll} U_1: & n_1 \times \tilde{r}_1, & \text{orthonormal columns} \\ U_2: & n_2 \times \tilde{r}_2, & \text{orthonormal columns} \\ U_3: & n_3 \times \tilde{r}_3, & \text{orthonormal columns} \end{array}$

and tensor $\mathcal{S} \in {\rm I\!R}^{ ilde{r}_1 imes ilde{r}_2 imes ilde{r}_3}$ so that

$$\left\| \left| \mathcal{A} \right| - \left| \sum_{j_1=1}^{\tilde{r}_1} \sum_{j_2=1}^{\tilde{r}_2} \sum_{j_3=1}^{\tilde{r}_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(:, j_1) \circ U_2(:, j_2) \circ U_3(:, j_3) \right| \right|_F$$

is minimized.

The Plan...

Develop a component-wise optimization framework for minimizing

$$\mathcal{A} \ - \ \sum_{j_1=1}^{\tilde{r}_1} \sum_{j_2=1}^{\tilde{r}_2} \sum_{j_3=1}^{\tilde{r}_3} \mathcal{S}(j_1, j_2, j_3) \cdot U_1(:, j_1) \circ U_2(:, j_2) \circ U_3(:, j_3) \Bigg\|_{F}$$

Equivalent to finding U_1 , U_2 , and U_3 (all with orthonormal columns) and core tensor $S \in \mathbb{R}^{\tilde{r}_1 \times \tilde{r}_2 \times \tilde{r}_3}$ so that

$$\|\operatorname{\mathsf{vec}}(\mathcal{A}) - (U_3 \otimes U_2 \otimes U_1)\operatorname{\mathsf{vec}}(\mathcal{S})\|_{F}$$

is minimized.

The "Removal" of ${\mathcal S}$

Since \mathcal{S} must minimize

$$\parallel \mathsf{vec}(\mathcal{A}) \ - \ (U_3 \otimes U_2 \otimes U_1) \cdot \mathsf{vec}(\mathcal{S}) \parallel$$

and $U_3 \otimes U_2 \otimes U_1$ has orthonormal columns, we see that

$$\mathcal{S} = \left(\textit{U}_3^{\mathsf{T}} \otimes \textit{U}_2^{\mathsf{T}} \otimes \textit{U}_1^{\mathsf{T}}
ight) \cdot \mathsf{vec}(\mathcal{A}).$$

Thus, the goal is to choose the U_i so that

$$\parallel \left(I \ - \ (U_3 \otimes U_2 \otimes U_1) \left(U_3^T \otimes U_2^T \otimes U_1^T
ight)
ight)$$
 vec $(\mathcal{A}) \mid$

47 / 69

is minimized.

Reformulation...

Since $U_3 \otimes U_2 \otimes U_1$ has orthonormal columns, it follows that minimizing

$$\parallel \left(\mathit{I} \ - \ (\mathit{U}_3 \otimes \mathit{U}_2 \otimes \mathit{U}_1) \left(\mathit{U}_3^{\mathsf{T}} \otimes \mathit{U}_2^{\mathsf{T}} \otimes \mathit{U}_1^{\mathsf{T}}
ight)
ight)$$
 vec $(\mathcal{A}) \mid$

is the same as maximizing

$$\parallel \left(U_3^{\mathsf{T}} \otimes U_2^{\mathsf{T}} \otimes U_1^{\mathsf{T}}
ight) \cdot \mathsf{vec}(\mathcal{A}) \parallel$$

If Q has orthonormal columns then $\|(I - QQ^T)a\|_2^2 = \|a\|^2 - \|Q^Ta\|_2^2$.

The Tucker Nearness Problem

Three Reshapings of the Objective Function...

$$\begin{array}{c} \left(U_{3}^{T} \otimes U_{2}^{T} \otimes U_{1}^{T} \right) \cdot \operatorname{vec}(\mathcal{A}) \parallel \\ = \\ \parallel U_{1}^{T} \cdot A_{(1)} \cdot (U_{3} \otimes U_{2}) \parallel_{F} \\ = \\ \parallel U_{2}^{T} \cdot A_{(2)} \cdot (U_{3} \otimes U_{1}) \parallel_{F} \\ = \\ \parallel U_{3}^{T} \cdot A_{(3)} \cdot (U_{2} \otimes U_{1}) \parallel_{F} \end{array}$$

Sets the stage for a componentwise optimization solution approach...

Componentwise Optimization Framework

A Sequence of Three Linear Problems...

$$\| \left(U_3^T \otimes U_2^T \otimes U_1^T \right) \cdot \operatorname{vec}(\mathcal{A}) \|$$

$$=$$

$$\| U_1^T \cdot A_{(1)} \cdot \left(U_3 \otimes U_2 \right) \|_F \qquad \Leftarrow \qquad \begin{array}{l} 1. \text{ Fix } U_2 \text{ and } U_3 \text{ and } \\ \text{maximize with } U_1. \end{array}$$

$$=$$

$$\| U_2^T \cdot A_{(2)} \cdot \left(U_3 \otimes U_1 \right) \|_F \qquad \Leftarrow \qquad \begin{array}{l} 2. \text{ Fix } U_1 \text{ and } U_3 \text{ and } \\ \text{maximize with } U_2. \end{array}$$

$$=$$

$$\| U_3^T \cdot A_{(3)} \cdot \left(U_2 \otimes U_1 \right) \|_F \qquad \Leftarrow \qquad \begin{array}{l} 3. \text{ Fix } U_1 \text{ and } U_2 \text{ and } \\ \text{maximize with } U_3. \end{array}$$

These max problems are SVD problems...

How do you maximize $|| Q^T M ||_F$ where $Q \in \mathbb{R}^{m \times r}$ has orthonormal columns, $M \in \mathbb{R}^{m \times n}$, and $r \leq n$?

lf

$$M = U \Sigma V^T$$

is the SVD of M, then

$$\| Q^{T} M \|_{F}^{2} = \| Q^{T} U \Sigma V^{T} \|_{F}^{2} = \| Q^{T} U \Sigma \|_{F}^{2}$$
$$= \sum_{k=1}^{n} \sigma_{k}^{2} \| Q^{T} U(:,k) \|_{2}^{2}.$$

The best you can do is to set Q = U(:, 1:r).

Solution Framework

A Sequence of Three Linear Problems...

Repeat:

- 1. Compute the SVD $\mathcal{A}_{(1)} \cdot (\mathcal{U}_3 \otimes \mathcal{U}_2) = \tilde{\mathcal{U}}_1 \Sigma_1 V_1^T$ and set $\mathcal{U}_1 = \tilde{\mathcal{U}}_1(:, 1:\tilde{r}_1)$.
- 2. Compute the SVD $\mathcal{A}_{(2)} \cdot (\mathcal{U}_3 \otimes \mathcal{U}_1) = \tilde{\mathcal{U}}_2 \Sigma_2 V_2^T$ and set $\mathcal{U}_2 = \tilde{\mathcal{U}}_2(:, 1:\tilde{r}_2).$
- 3. Compute the SVD $\mathcal{A}_{(3)} \cdot (U_2 \otimes U_1) = \tilde{U}_3 \Sigma_3 V_3^T$ and set $U_3 = \tilde{U}_3(:, 1:\tilde{r}_3)$.

Initial guess via the HOSVD. The highlighted matrix-matrix products are structured and ecomomies can be realized.

A Jacobi Variant

A Jacobi Procedure

Maximizing Mass on the Diagonal

Assume that \mathcal{A} is *m*-by-*m*-by-*m* and define

$$\phi(\mathcal{A}) = \sum_{i=1}^{n} a_{iii}$$

Our goal is to compute orthogonal U, V, and W so that if the tensor tensor S is defined by

$$\mathsf{vec}(\mathcal{S}) \,=\, (W \otimes V \otimes U)\mathsf{vec}(\mathcal{A})$$

then $\phi(S)$ is maximized.

The Jacobi SVD procedure for matrices can be derived with a trace max objective function.

Updating: Make \overline{S} More Diagonal

Currrent: $vec(A) = (W \otimes V \otimes U) \cdot vec(S)$

Determine: Orthogonal \tilde{U} , \tilde{V} , and \tilde{W} so that if

$$\mathsf{vec}(ilde{\mathcal{S}}) \;=\; (ilde{\mathcal{W}} \otimes ilde{\mathcal{V}} \otimes ilde{\mathcal{U}})^{\mathcal{T}} \cdot \mathsf{vec}(\mathcal{S})$$

then $\phi(\tilde{S}) > \phi(S)$. Update:

$$\begin{aligned} \mathsf{vec}(\mathcal{A}) &= (W \otimes V \otimes U) \cdot \mathsf{vec}(\mathcal{S}) \\ &= (W \otimes V \otimes U) \cdot \left(\tilde{W} \otimes \tilde{V} \otimes \tilde{U} \right) \cdot \mathsf{vec}(\tilde{\mathcal{S}}) \\ &= \left(W \cdot \tilde{W} \otimes V \cdot \tilde{V} \otimes U \cdot \tilde{U} \right) \cdot \mathsf{vec}(\tilde{\mathcal{S}}) \end{aligned}$$

Simple, Tractable Choices...

$$\tilde{W} \otimes \tilde{V} \otimes \tilde{U} = \begin{cases} I_n \otimes J_{pq}(\beta) \otimes J_{pq}(\alpha) \\ J_{pq}(\beta) \otimes I_n \otimes J_{pq}(\alpha) \\ J_{pq}(\beta) \otimes J_{pq}(\alpha) \otimes I_n \end{cases}$$

where $J_{pq}(\theta)$ is a Jacobi rotation in planes p and q.

These updates modify only two diagonal entries: (p, p, p) and (q, q, q). Sweep through all possible (p, q) and all three types of updates.

A Jacobi Procedure

an

A Sample 2-by-2-by-2 Subproblem

Choose $c_{\alpha} = \cos(\alpha)$, s_{α}) = sin(α), $c_{\beta} = \cos(\beta)$, and s_{β}) = sin(β), so that if

$$\begin{bmatrix} \sigma_{111} & \sigma_{121} \\ \sigma_{211} & \sigma_{221} \end{bmatrix} = \begin{bmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{bmatrix}^{T} \begin{bmatrix} s_{111} & s_{121} \\ s_{211} & s_{221} \end{bmatrix} \begin{bmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{bmatrix}$$
d
$$\begin{bmatrix} \sigma_{112} & \sigma_{122} \\ \sigma_{212} & \sigma_{222} \end{bmatrix} = \begin{bmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{bmatrix}^{T} \begin{bmatrix} s_{112} & s_{122} \\ s_{212} & s_{222} \end{bmatrix} \begin{bmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{bmatrix}$$

then $\sigma_{111} + \sigma_{222}$ is maximized.

69

The Tensor Train Representation

A Data Sparse Representation

Approximate a high-order tensor with a collection of order-3 tensors.

Each order-3 tensor is connected to its left and right "neighbor" through a simple summation.

Given the "carriages" ...

\mathcal{G}_1 :	$n_1 imes r_1$
\mathcal{G}_2 :	$r_1 \times n_2 \times r_2$
\mathcal{G}_3 :	$r_2 \times n_3 \times r_3$
\mathcal{G}_4 :	$r_3 \times n_4 \times r_4$
\mathcal{G}_5 :	$r_4 \times n_5$

We define the train" $\mathcal{A}(1:n_1, 1:n_2, 1:n_3, 1:n_4, 1:n_5)...$

 $\mathcal{A}(i_1,i_2,i_3,i_4,i_5)$

 $\sum_{k_1=1}^{r_1} \sum_{k_2=1}^{r_2} \sum_{k_3=1}^{r_3} \sum_{k_4=1}^{r_4} \mathcal{G}_1(i_1, k_1) \cdot \mathcal{G}_2(k_1, i_2, k_2) \cdot \mathcal{G}_3(k_2, i_3, k_3) \cdot \mathcal{G}_4(k_3, i_4, k_4) \cdot \mathcal{G}_5(k_4, i_5)$

Think of a graph where the nodes are low-order tensors and the edges are the summations.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions

Given the "carriages"...

\mathcal{G}_1 :	$n_1 imes r_1$
\mathcal{G}_2 :	$r_1 \times n_2 \times r_2$
\mathcal{G}_3 :	$r_2 \times n_3 \times r_3$
\mathcal{G}_4 :	$r_3 \times n_4 \times r_4$
\mathcal{G}_5 :	$r_4 imes n_5$

We define the train" $\mathcal{A}(1:n_1, 1:n_2, 1:n_3, 1:n_4, 1:n_5)...$

 $\mathcal{A}(i_1, i_2, i_3, i_4, i_5)$

 $\sum_{k_1=1}^{r_1} \sum_{k_2=1}^{r_2} \sum_{k_3=1}^{r_3} \sum_{k_4=1}^{r_4} \frac{\mathcal{G}_1(i_1, k_1) \cdot \mathcal{G}_2(k_1, i_2, k_2) \cdot \mathcal{G}_3(k_2, i_3, k_3) \cdot \mathcal{G}_4(k_3, i_4, k_4) \cdot \mathcal{G}_5(k_4, i_5)}{k_1 \cdot k_2 \cdot k_2 \cdot k_3 \cdot k_3 \cdot \mathcal{G}_4(k_3, i_4, k_4) \cdot \mathcal{G}_5(k_4, i_5)}$

 $O(nr^2)$ vs $O(n^5)$

69

Given the "carriages"...

\mathcal{G}_1 :	$n_1 imes r_1$
\mathcal{G}_2 :	$r_1 \times n_2 \times r_2$
\mathcal{G}_3 :	$r_2 \times n_3 \times r_3$
\mathcal{G}_4 :	$r_3 \times n_4 \times r_4$
\mathcal{G}_5 :	$r_4 imes n_5$

We define the train" $\mathcal{A}(1:n_1, 1:n_2, 1:n_3, 1:n_4, 1:n_5)...$

 $\mathcal{A}(i_1, i_2, i_3, i_4, i_5)$

 $\sum_{k_1=1}^{r_1} \sum_{k_2=1}^{r_2} \sum_{k_3=1}^{r_3} \sum_{k_4=1}^{r_4} \mathcal{G}_1(i_1, k_1) \cdot \frac{\mathcal{G}_2(k_1, i_2, k_2)}{\mathcal{G}_3(k_2, i_3, k_3)} \cdot \mathcal{G}_4(k_3, i_4, k_4) \cdot \mathcal{G}_5(k_4, i_5)$

 $O(nr^2)$ vs $O(n^5)$

69

Given the "carriages"...

\mathcal{G}_1 :	$n_1 imes r_1$
\mathcal{G}_2 :	$r_1 \times n_2 \times r_2$
\mathcal{G}_3 :	$r_2 \times n_3 \times r_3$
\mathcal{G}_4 :	$r_3 \times n_4 \times r_4$
\mathcal{G}_5 :	$r_4 imes n_5$

We define the train" $\mathcal{A}(1:n_1, 1:n_2, 1:n_3, 1:n_4, 1:n_5)...$

 $\mathcal{A}(i_1, i_2, i_3, i_4, i_5)$

 $\sum_{k_1=1}^{r_1} \sum_{k_2=1}^{r_2} \sum_{k_3=1}^{r_3} \sum_{k_4=1}^{r_4} \mathcal{G}_1(i_1, k_1) \cdot \mathcal{G}_2(k_1, i_2, k_2) \cdot \frac{\mathcal{G}_3(k_2, i_3, k_3) \cdot \mathcal{G}_4(k_3, i_4, k_4) \cdot \mathcal{G}_5(k_4, i_5)}{\mathbf{G}_3(k_2, i_3, k_3) \cdot \mathcal{G}_4(k_3, i_4, k_4) \cdot \mathcal{G}_5(k_4, i_5)}$

 $O(nr^2)$ vs $O(n^5)$

Given the "carriages"...

\mathcal{G}_1 :	$n_1 imes r_1$
\mathcal{G}_2 :	$r_1 \times n_2 \times r_2$
\mathcal{G}_3 :	$r_2 \times n_3 \times r_3$
\mathcal{G}_4 :	$r_3 \times n_4 \times r_4$
\mathcal{G}_5 :	$r_4 imes n_5$

We define the train $\mathcal{A}(1:n_1, 1:n_2, 1:n_3, 1:n_4, 1:n_5)...$

 $\mathcal{A}(i_1, i_2, i_3, i_4, i_5)$

 $\sum_{k_1=1}^{r_1} \sum_{k_2=1}^{r_2} \sum_{k_3=1}^{r_3} \sum_{k_4=1}^{r_4} \mathcal{G}_1(i_1, k_1) \cdot \mathcal{G}_2(k_1, i_2, k_2) \cdot \mathcal{G}_3(k_2, i_3, k_3) \cdot \mathcal{G}_4(k_3, i_4, k_4) \cdot \mathcal{G}_5(k_4, i_5)$

 $O(nr^2)$ vs $O(n^5)$

Main Idea

A sequence of unfoldings is produced.

The unfoldings get narrower and narrower.

A rank-revealing SVD $U(\Sigma V^T) = UZ$ is computed each time.

The "carriages" are reshaped U-matrices.

1(a) Rank-revealing SVD:

reshape
$$(A, [n_1, n_2 n_3 n_4 n_5]) = U_1 Z_1.$$

 $\mathcal{G}_1 = \text{reshape}(U_1, [n_1, r_1]).$

1(a) Rank-revealing SVD: reshape
$$(A, [n_1, n_2n_3n_4n_5]) = U_1Z_1$$
.
 $\mathcal{G}_1 = \operatorname{reshape}(U_1, [n_1, r_1])$.
2(a) Rank-revealing SVD: reshape $(Z_1, [r_1n_2, n_3n_4n_5]) = U_2Z_2$.
 $\mathcal{G}_2 = \operatorname{reshape}(U_2, [r_1, n_2, r_2])$.

- 1(a) Rank-revealing SVD: reshape $(A, [n_1, n_2n_3n_4n_5]) = U_1Z_1$. $\mathcal{G}_1 = \text{reshape}(U_1, [n_1, r_1])$.
- 2(a) Rank-revealing SVD: reshape $(Z_1, [r_1n_2, n_3n_4n_5]) = U_2Z_2$. $\mathcal{G}_2 = \text{reshape}(U_2, [r_1, n_2, r_2])$.
- 3(a) Rank-revealing SVD: reshape $(Z_2, [r_2n_3, n_4n_5]) = U_3Z_3$. $\mathcal{G}_3 = \text{reshape}(U_3, [r_2, n_3, r_3])$.

1(a) Rank-revealing SVD: reshape $(A, [n_1, n_2n_3n_4n_5]) = U_1Z_1$. $\mathcal{G}_1 = \operatorname{reshape}(U_1, [n_1, r_1]).$ 2(a) Rank-revealing SVD: reshape $(Z_1, [r_1n_2, n_3n_4n_5]) = U_2Z_2$. $\mathcal{G}_2 = \text{reshape}(U_2, [r_1, n_2, r_2]).$ 3(a) Rank-revealing SVD: reshape $(Z_2, [r_2n_3, n_4n_5]) = U_3Z_3$. $\mathcal{G}_3 = \text{reshape}(U_3, [r_2, n_3, r_3]).$ $reshape(Z_3, [r_3n_4, n_5]) = U_4Z_4.$ 4(a) Rank-revealing SVD: $\mathcal{G}_4 = \text{reshape}(U_4, [r_3, n_4, r_4]).$ $\mathcal{G}_5 = \operatorname{reshape}(Z_4, [r_4, n_5]).$