Lecture 3. The Tucker and Tensor Train Decompositions

Charles F. Van Loan

Cornell University
CIME-EMS Summer School
June 22-26, 2015
Cetraro, Italy

The Setting

Good News/Bad News

The singular values of a general matrix and the eigenvalues of a symmetric matrix have variational definitions and these ideas can be extended to tensors.

However, these ideas are not strong enough to put together a tensor decomposition like the SVD:

$$
A=U \Sigma V^{T}=\sum_{k=1}^{\operatorname{rank}(A)} \sigma_{k} u_{k} v_{k}^{T}
$$

Why Do We Like Matrix Factorizations?

The Factorization Paradigm in Matrix Computations

Typical...

Convert the given problem into an equivalent easy-to-solve problem by using the "right" matrix decomposition.

$$
P A=L U, \quad L y=P b, \quad U x=y \quad \Longrightarrow \quad A x=b
$$

Also Typical...

Uncover hidden relationships by computing the "right" decomposition of the data matrix.

$$
A=U \Sigma V^{T} \Longrightarrow A \approx \sum_{i=1}^{\tilde{r}} \sigma_{i} u_{i} v_{i}^{T}
$$

The Factorization Paradigm in Matrix Computations

$$
\begin{aligned}
& A=U \Sigma V^{T} \quad P A=L U \quad A=Q R \quad A=G G^{T} \quad P A P^{T}=L D L^{T} \quad Q^{T} A Q=D \\
& X^{-1} A X=J \quad U^{T} A U=T \quad A P=Q R \quad A=U L V^{T} \quad P A Q^{T}=L U \quad A=U \Sigma V^{T} \\
& P A=L U \quad A=Q R \quad A=G G^{T} \quad P A P^{T}=L D L^{\top} \quad Q^{\top} A Q=D \quad X^{-1} A X=J \\
& U^{T} A U=T \quad A P=Q R \quad A=U L V^{T} \quad P A Q^{T}=L U \quad A=U \Sigma V^{T} \quad P A=L U \\
& A=Q R \quad A=G G^{T} \quad P A P^{T}=L D L^{T} \quad Q^{T} A Q=D \quad X^{-1} A X=J \quad U^{T} A U=T \\
& A P=Q R \quad A=U L V^{\top} \quad P A Q^{T}=L U \quad A=U \Sigma V^{\top} \quad P A=L U \quad A=Q R
\end{aligned}
$$

$$
\begin{aligned}
& A=U L V^{T} H_{Q}^{T} L U Q_{A}=A Q A \\
& P A P^{T}=L D L^{T} \quad Q^{T} A Q=D \quad X^{-1} A X=J \quad U^{T} A U=T \quad A P=Q R \\
& A=U L V^{T} \quad P A Q^{T}=L U \quad A=U \Sigma V^{T} \quad P A=L U \quad A=Q R \quad A=G G^{T} \\
& P A P^{T}=L D L^{T} \quad Q^{T} A Q=D \quad X^{-1} A X=J \quad A P=Q R \quad A=U L V^{T} \\
& P A Q^{T}=L U \quad A=U \Sigma V^{T} \quad P A=L U \quad A=Q R \quad A=G G^{T} \quad P A P^{T}=L D L^{T} \\
& Q^{T} A Q=D \quad X^{-1} A X=J \quad U^{T} A U=T \quad A P=Q R \quad A=U L V^{T} \quad P A Q^{T}=L U \\
& A=U \Sigma V^{T} \quad P A=L U \quad A=Q R \quad A=G G^{T} \quad P A P^{T}=L D L^{T} \quad Q^{T} A Q=D \\
& X^{-1} A X=J \quad U^{T} A U=T \quad A P=Q R \quad A=U L V^{T} \quad P A Q^{T}=L U \quad A=U \Sigma V^{T} \\
& P A=L U A=Q R \quad P A P^{\top}=L D L^{\top} \quad Q^{\top} A Q=D \quad X^{-1} A X=J \quad U^{\top} A U=T \\
& A P=Q R \quad A=U L V^{T} \quad P A Q^{T}=L U \quad A=U \Sigma V^{T} \quad P A=L U \quad A=Q R
\end{aligned}
$$

Anticipating the Same Thing for Tensors

Anticipating the Same Thing for Tensors

Question 1

Can we solve tensor problems by converting them to (approximately) equivalent easy-to-solve problems using a tensor decomposition?

Question 2

Can we uncover hidden patterns in tensor data by computing an appropriate tensor decomposition?

These questions will be addessed in this lecture and the next.

What is this Lecture About?

Outline

- The Tucker Product Representation and Its Properties
- The Mode-k Product and the Tucker Product
- The Higher-Order SVD of a tensor
- An Alternating Least Squares Framework for Reduced-Rank Tucker Approximation
- The Tensor Train Representation

The Tucker Product Representation

Tucker Product: The Matrix Case

Definition

The Tucker product between a matrix

$$
S: r_{1} \times r_{2}
$$

and matrices

$$
\begin{aligned}
& U_{1}: n_{1} \times r_{1} \\
& U_{2}: \\
& n_{2} \times r_{2}
\end{aligned}
$$

is the $n_{1} \times n_{2}$ matrix defined by

$$
A\left(i_{1}, i_{2}\right)=\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \mathcal{S}\left(j_{1}, j_{2}\right) \cdot U_{1}\left(i_{1}, j_{1}\right) \cdot U_{2}\left(i_{2}, j_{2}\right)
$$

It is Actually Just the Product of Three Matrices

$$
\begin{aligned}
A\left(i_{1}, i_{2}\right) & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \mathcal{S}\left(j_{1}, j_{2}\right) \cdot U_{1}\left(i_{1}, j_{1}\right) \cdot U_{2}\left(i_{2}, j_{2}\right) \\
A & =U_{1} S U_{2}^{\top}
\end{aligned}
$$

Tucker Product: The Matrix Case

It is Actually the Sum of Rank-1 Matrices

$$
\begin{aligned}
A\left(i_{1}, i_{2}\right) & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \mathcal{S}\left(j_{1}, j_{2}\right) \cdot U_{1}\left(i_{1}, j_{1}\right) \cdot U_{2}\left(i_{2}, j_{2}\right) \\
A & =U_{1} S U_{2}^{T} \\
A & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \mathcal{S}\left(j_{1}, j_{2}\right) \cdot U_{1}\left(:, j_{1}\right) \cdot U_{2}\left(:, j_{2}\right)^{T}
\end{aligned}
$$

Tucker Product: The Matrix Case

It is Actually the Sum of Kronecker Products Between Vectors

$$
\begin{aligned}
A\left(i_{1}, i_{2}\right) & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \mathcal{S}\left(j_{1}, j_{2}\right) \cdot U_{1}\left(i_{1}, j_{1}\right) \cdot U_{2}\left(i_{2}, j_{2}\right) \\
A & =U_{1} S U_{2}^{T} \\
A & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \mathcal{S}\left(j_{1}, j_{2}\right) \cdot U_{1}\left(:, j_{1}\right) \cdot U_{2}\left(:, j_{2}\right)^{T} \\
\operatorname{vec}(A) & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} S\left(j_{1}, j_{2}\right) \cdot U_{2}\left(:, j_{2}\right) \otimes U_{1}\left(:, j_{2}\right)
\end{aligned}
$$

Tucker Product: The Matrix Case

It is Actually a Giant Matrix-Vector Product

$$
\begin{aligned}
A\left(i_{1}, i_{2}\right) & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \mathcal{S}\left(j_{1}, j_{2}\right) \cdot U_{1}\left(i_{1}, j_{1}\right) \cdot U_{2}\left(i_{2}, j_{2}\right) \\
A & =U_{1} S U_{2}^{T} \\
A & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \mathcal{S}\left(j_{1}, j_{2}\right) \cdot U_{1}\left(:, j_{1}\right) \cdot U_{2}\left(:, j_{2}\right)^{T} \\
\operatorname{vec}(A) & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} S\left(j_{1}, j_{2}\right) U_{2}\left(:, j_{2}\right) \otimes U_{1}\left(:, j_{2}\right) \\
\operatorname{vec}(A) & =\left(U_{2} \otimes U_{1}\right) \cdot \operatorname{vec}(S)
\end{aligned}
$$

Tucker Product: The Tensor Case

Definition (Order-3)

The Tucker product between a tensor

$$
\mathcal{S}: r_{1} \times r_{2} \times r_{3}
$$

and matrices

$$
\begin{array}{lll}
U_{1} & : & n_{1} \times r_{1} \\
U_{2} & : & n_{2} \times r_{2} \\
U_{3} & : & n_{3} \times r_{3}
\end{array}
$$

is the $n_{1} \times n_{2} \times n_{3}$ tensor defined by

$$
\mathcal{A}\left(i_{1}, i_{2}, i_{3}\right)=\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(i_{1}, j_{1}\right) \cdot U_{2}\left(i_{2}, j_{2}\right) \cdot U_{3}\left(i_{3}, j_{3}\right)
$$

Tucker Product: The Tensor Case

It is Actually the Sum of Rank-1 Tensors...

$$
\begin{aligned}
\mathcal{A}\left(i_{1}, i_{2}, i_{3}\right) & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(i_{1}, j_{1}\right) \cdot U_{2}\left(i_{2}, j_{2}\right) \cdot U_{3}\left(i_{3}, j_{3}\right) \\
\mathcal{A} & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(:, j_{1}\right) \circ U_{2}\left(:, j_{2}\right) \circ U_{3}\left(:, j_{3}\right)
\end{aligned}
$$

Tucker Product: The Tensor Case

It is Actually the Sum of Kronecker Products Between Vectors

$$
\begin{aligned}
\mathcal{A}\left(i_{1}, i_{2}, i_{3}\right) & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(i_{1}, j_{1}\right) \cdot U_{2}\left(i_{2}, j_{2}\right) \cdot U_{3}\left(i_{3}, j_{3}\right) \\
\mathcal{A} & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(:, j_{1}\right) \circ U_{2}\left(:, j_{2}\right) \circ U_{3}\left(:, j_{3}\right) \\
\operatorname{vec}(\mathcal{A}) & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{3}\left(:, j_{3}\right) \otimes U_{2}\left(:, j_{2}\right) \otimes U_{1}\left(:, j_{1}\right)
\end{aligned}
$$

Tucker Product: The Tensor Case

It is Actually a Giant Matrix-Vector Product

$$
\begin{aligned}
\mathcal{A}\left(i_{1}, i_{2}, i_{3}\right) & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(i_{1}, j_{1}\right) \cdot U_{2}\left(i_{2}, j_{2}\right) \cdot U_{3}\left(i_{3}, j_{3}\right) \\
\mathcal{A} & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(:, j_{1}\right) \circ U_{2}\left(:, j_{2}\right) \circ U_{3}\left(:, j_{3}\right) \\
\operatorname{vec}(\mathcal{A}) & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{3}\left(:, j_{3}\right) \otimes U_{2}\left(:, j_{2}\right) \otimes U_{1}\left(:, j_{1}\right) \\
\operatorname{vec}(\mathcal{A}) & =\left(U_{3} \otimes U_{2} \otimes U_{1}\right) \cdot \operatorname{vec}(\mathcal{S})
\end{aligned}
$$

The Tucker Product

It is a "Representation"

$$
\mathcal{A}\left(i_{1}, i_{2}, i_{3}\right)=\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(i_{1}, j_{1}\right) \cdot U_{2}\left(i_{2}, j_{2}\right) \cdot U_{3}\left(i_{3}, j_{3}\right)
$$

We are representing the tensor \mathcal{A} in terms of the tensor \mathcal{S} and the matrices U_{1}, U_{2}, and U_{3}.

Can we compute a Tucker Product representation that is especially illuminating or useful?

Improving the Tucker Tucker Representation

Computing the SVD of a Matrix

Have:

$$
A=U_{1} S U_{2}^{T} \quad U_{1}, U_{2} \text { Orthogonal }
$$

Improve:

$$
A=\left(U_{1} \Delta_{1}\right)\left(\Delta_{1}^{T} S \Delta_{2}\right)\left(U_{2} \Delta_{2}\right)^{T}
$$

E.g., make S more diagonal by choosing clever orthogonal Δ_{1} and Δ_{2}

Update:

$$
S \leftarrow \Delta_{1}^{T} S \Delta_{2} \quad U_{1} \leftarrow U_{1} \Delta_{1} \quad U_{2} \leftarrow U_{2} \Delta_{2}
$$

We would like to do the same thing for tensors, but what are the "update operations"?

The Mode-k Product

The Mode-k Product

Main Idea

Given $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$, a mode k, and a matrix M, we apply M to every mode- k fiber.

Recall that

$$
\mathcal{A}_{(2)}=\left[\begin{array}{llllllll}
a_{111} & a_{211} & a_{311} & a_{411} & a_{112} & a_{212} & a_{312} & a_{412} \\
a_{121} & a_{221} & a_{321} & a_{421} & a_{122} & a_{222} & a_{322} & a_{422} \\
a_{131} & a_{231} & a_{331} & a_{431} & a_{132} & a_{232} & a_{332} & a_{432}
\end{array}\right]
$$

is the mode- 2 unfolding of $\mathcal{A} \in \mathbb{R}^{4 \times 3 \times 2}$ and its columns are its mode-2 fibers

The Mode- k Product

A Mode-2 Example When $A \in \mathbb{R}^{4 \times 3 \times 2}$

$$
\left[\begin{array}{llllllll}
b_{111} & b_{211} & b_{311} & b_{411} & b_{112} & b_{212} & b_{312} & b_{412} \\
b_{121} & b_{221} & b_{321} & b_{421} & b_{122} & b_{222} & b_{322} & b_{422} \\
b_{131} & b_{231} & b_{331} & b_{431} & b_{132} & b_{232} & b_{332} & b_{432} \\
b_{141} & b_{241} & b_{341} & b_{441} & b_{142} & b_{242} & b_{342} & b_{442} \\
b_{151} & b_{251} & b_{351} & b_{451} & b_{152} & b_{252} & b_{352} & b_{452}
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33} \\
m_{41} & m_{42} & m_{43} \\
m_{51} & m_{52} & m_{53}
\end{array}\right]\left[\begin{array}{llllllll}
a_{111} & a_{211} & a_{311} & a_{411} & a_{112} & a_{212} & a_{312} & a_{412} \\
a_{121} & a_{221} & a_{321} & a_{421} & a_{122} & a_{222} & a_{322} & a_{422} \\
a_{131} & a_{231} & a_{331} & a_{431} & a_{132} & a_{232} & a_{332} & a_{432}
\end{array}\right]
$$

Note: \quad (1) $B \in \mathbb{R}^{4 \times 5 \times 2} \quad$ and \quad (2) $\mathcal{B}_{(2)}=M \cdot \mathcal{A}_{(2)}$.

The Mode-k Product: Definition

Mode-1

If $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ and $M \in \mathbb{R}^{n_{1} \times n_{1}}$, then the mode- 1 product

$$
\mathcal{B}=\mathcal{A} \times_{1} M \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}
$$

is defined by

$$
\mathcal{B}\left(i_{1}, i_{2}, i_{3}\right)=\sum_{k=1}^{n_{1}} M\left(i_{1}, k\right) \mathcal{A}\left(k, i_{2}, i_{3}\right)
$$

Two Equivalent Formulations...

$$
\begin{gathered}
\mathcal{B}_{(1)}=M \cdot \mathcal{A}_{(1)} \\
\operatorname{vec}(\mathcal{B})=\left(I_{n_{3}} \otimes I_{n_{2}} \otimes M\right) \operatorname{vec}(\mathcal{A})
\end{gathered}
$$

For now, assume M is square. Not necessary in general.

The Mode-k Product: Definition

Mode-2

If $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ and $M \in \mathbb{R}^{n_{2} \times n_{2}}$, then the mode- 2 product

$$
\mathcal{B}=\mathcal{A} \times_{2} M \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}
$$

is defined by

$$
\mathcal{B}\left(i_{1}, i_{2}, i_{3}\right)=\sum_{k=1}^{n_{2}} M\left(i_{2}, k\right) \mathcal{A}\left(i_{1}, k, i_{3}\right)
$$

Two Equivalent Formulations...

$$
\begin{gathered}
\mathcal{B}_{(2)}=M \cdot \mathcal{A}_{(2)} \\
\operatorname{vec}(\mathcal{B})=\left(I_{n_{3}} \otimes M \otimes I_{n_{1}}\right) \operatorname{vec}(\mathcal{A})
\end{gathered}
$$

The Mode-k Product: Definition

Mode-3

If $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ and $M \in \mathbb{R}^{n_{3} \times n_{3}}$, then the mode- 3 product

$$
\mathcal{B}=\mathcal{A} \times_{3} M \in \mathbb{R}^{n_{1} \times n_{2} \times m_{3}}
$$

is defined by

$$
\mathcal{B}\left(i_{1}, i_{2}, i_{3}\right)=\sum_{k=1}^{n_{3}} M\left(i_{3}, k\right) \mathcal{A}\left(i_{1}, i_{2}, k\right)
$$

Two Equivalent Formulations...

$$
\begin{gathered}
\mathcal{B}_{(3)}=M \cdot \mathcal{A}_{(3)} \\
\operatorname{vec}(\mathcal{B})=\left(M \otimes I_{n_{2}} \otimes I_{n_{1}}\right) \operatorname{vec}(\mathcal{A})
\end{gathered}
$$

The Mode-k Product: Properties

Successive Products in the Same Mode

If $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ and $M_{1}, M_{2} \in \mathbb{R}^{n_{k} \times n_{k}}$, then

$$
\left(\mathcal{A} \times_{k} M_{1}\right) \times_{k} M_{2}=\mathcal{A} \times_{k}\left(M_{1} M_{2}\right)
$$

Successive Products in Different Modes

If $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}, M_{k} \in \mathbb{R}^{n_{k} \times n_{k}}, M_{j} \in \mathbb{R}^{n_{j} \times n_{j}}$, and $k \neq j$, then

$$
\left(\mathcal{A} \times_{k} M_{k}\right) \times_{j} M_{j}=\left(\mathcal{A} \times_{j} M_{j}\right) \times_{k} M_{k}
$$

The order is not important so we just write $\mathcal{A} \times{ }_{j} M_{k} M_{k}$.

The Tucker Product

It is a Collection of Modal Products

The Tucker Product of the tensor

$$
\mathcal{S} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}
$$

with the matrices $U_{1} \in \mathbb{R}^{n_{1} \times r_{1}}, U_{2} \in \mathbb{R}^{n_{2} \times r_{2}}$, and $U_{3} \in \mathbb{R}^{n_{3} \times r_{3}}$ is given by

$$
\begin{aligned}
\mathcal{A}\left(i_{1}, i_{2}, i_{3}\right) & =\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(i_{1}, j_{1}\right) \cdot U_{2}\left(i_{2}, j_{2}\right) \cdot U_{3}\left(i_{3}, j_{3}\right) \\
& =\mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}
\end{aligned}
$$

The Tucker Product Representation

A Simple but Important Result

If $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ and $U_{1} \in \mathbb{R}^{n_{1} \times n_{1}}, U_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$, and $U_{3} \in \mathbb{R}^{n_{3} \times n_{3}}$ are nonsingular, then

$$
\mathcal{A}=\mathcal{S} \times{ }_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}
$$

where

$$
\mathcal{S}=\mathcal{A} \times_{1} U_{1}^{-1} \times_{2} U_{2}^{-1} \times_{3} U_{3}^{-1}
$$

We will refer to the U_{k} as the inverse factors and \mathcal{S} as the core tensor.

The matrix version: $A=U_{1}\left(U_{1}^{-1} A U_{2}^{-1}\right) U_{2}=U_{1} S U_{2}$

Proof.

$$
\begin{aligned}
\mathcal{A} & =\mathcal{A} \times_{1}\left(U_{1}^{-1} U_{1}\right) \times_{2}\left(U_{2}^{-1} U_{2}\right) \times_{3}\left(U_{3}^{-1} U_{3}\right) \\
& =\left(\mathcal{A} \times_{1} U_{1}^{-1} \times_{2} U_{2}^{-1} \times_{3} U_{3}^{-1}\right) \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3} \\
& =\mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}
\end{aligned}
$$

An Orthogonal Tucker Product Representation

If the U 's are Orthogonal

If $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ and $U_{1} \in \mathbb{R}^{n_{1} \times n_{1}}, U_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$, and $U_{3} \in \mathbb{R}^{n_{3} \times n_{3}}$ are orthogonal, then

$$
\mathcal{A}=\mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}
$$

where

$$
\mathcal{S}=\mathcal{A} \times_{1} U_{1}^{T} \times_{2} U_{2}^{T} \times_{3} U_{3}^{T} .
$$

We are representing \mathcal{A} as Tucker product of a "core tensor" \mathcal{S} and three orthogonal matrices.

The Higher-Order SVD

The Tucker Product Representation

The Challenge

Given $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$, compute

$$
\mathcal{S} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}
$$

and

$$
U_{1} \in \mathbb{R}^{n_{1} \times r_{1}}, U_{2} \in \mathbb{R}^{n_{2} \times r_{2}}, U_{3} \in \mathbb{R}^{n_{3} \times r_{3}}
$$

such that

$$
\mathcal{A}=\mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}
$$

is an "illuminating" Tucker product representation of \mathcal{A}.

The Higher Order SVD (HOSVD)

If the U's are from the Modal Unfolding SVDs...

Suppose $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ is given. If

$$
\begin{aligned}
\mathcal{A}_{(1)} & =U_{1} \Sigma_{1} V_{1}^{T} \\
\mathcal{A}_{(2)} & =U_{2} \Sigma_{2} V_{2}^{T} \\
\mathcal{A}_{(3)} & =U_{3} \Sigma_{3} V_{3}^{T}
\end{aligned}
$$

are SVDs and

$$
\mathcal{S}=\mathcal{A} \times_{1} U_{1}^{T} \times_{2} U_{2}^{T} \times_{3} U_{3}^{T},
$$

then

$$
\mathcal{A}=\mathcal{S} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3},
$$

is the higher-order SVD of \mathcal{A}.

The Higher-Order SVD (HOSVD)

The HOSVD of a Matrix IS the SVD of that Matrix

If $d=2$ then \mathcal{A} is a matrix and the HOSVD is the SVD. Indeed, if

$$
\begin{aligned}
& A=A_{(1)}=U_{1} \Sigma_{1} V_{1}^{T} \\
& A^{T}=A_{(2)}=U_{2} \Sigma_{2} V_{2}^{T}
\end{aligned}
$$

then we can set $U=U_{1}=V_{2}$ and $V=U_{2}=V_{1}$. Note that

$$
\mathcal{S}=\left(\mathcal{A} \times_{1} U_{1}^{T}\right) \times_{2} U_{2}^{T}=\left(U_{1}^{T} A\right) \times_{2} U_{2}=U_{1}^{T} A V_{1}=\Sigma_{1} .
$$

The HOSVD

Core Tensor Properties

If

$$
\mathcal{A}_{(1)}=U_{1} \Sigma_{1} V_{1}^{T} \quad \mathcal{A}_{(2)}=U_{2} \Sigma_{2} V_{2}^{T} \quad \mathcal{A}_{(3)}=U_{3} \Sigma_{3} V_{3}^{T}
$$

are SVDs and

$$
\mathcal{A}=\mathcal{S} \times{ }_{1} U_{1} \times{ }_{2} U_{2} \times{ }_{3} U_{3}
$$

then

$$
\mathcal{A}_{(1)}=U_{1} \mathcal{S}_{(1)}\left(U_{3} \otimes U_{2}\right)^{T} \quad \text { and } \quad \mathcal{S}_{(1)}=\Sigma_{1} V_{1}\left(U_{3} \otimes U_{2}\right)
$$

It follows that the rows of $S_{(1)}$ are mutually orthogonal and that the singular values of $\mathcal{A}_{(1)}$ are the 2 -norms of these rows.

The HOSVD

Core Tensor Properties

If

$$
\mathcal{A}_{(1)}=U_{1} \Sigma_{1} V_{1}^{T} \quad \mathcal{A}_{(2)}=U_{2} \Sigma_{2} V_{2}^{T} \quad \mathcal{A}_{(3)}=U_{3} \Sigma_{3} V_{3}^{T}
$$

are SVDs and

$$
\mathcal{A}=\mathcal{S} \times{ }_{1} U_{1} \times{ }_{2} U_{2} \times{ }_{3} U_{3}
$$

then

$$
\mathcal{A}_{(2)}=U_{2} \mathcal{S}_{(2)}\left(U_{3} \otimes U_{1}\right)^{T} \quad \text { and } \quad \mathcal{S}_{(2)}=\Sigma_{2} V_{2}\left(U_{3} \otimes U_{1}\right)
$$

It follows that the rows of $S_{(2)}$ are mutually orthogonal and that the singular values of $\mathcal{A}_{(2)}$ are the 2 -norms of these rows.

The HOSVD

Core Tensor Properties

If

$$
\mathcal{A}_{(1)}=U_{1} \Sigma_{1} V_{1}^{T} \quad \mathcal{A}_{(2)}=U_{2} \Sigma_{2} V_{2}^{T} \quad \mathcal{A}_{(3)}=U_{3} \Sigma_{3} V_{3}^{T}
$$

are SVDs and

$$
\mathcal{A}=\mathcal{S} \times{ }_{1} U_{1} \times{ }_{2} U_{2} \times{ }_{3} U_{3}
$$

then

$$
\mathcal{A}_{(3)}=U_{3} \mathcal{S}_{(3)}\left(U_{2} \otimes U_{1}\right)^{T} \quad \text { and } \quad \mathcal{S}_{(3)}=\Sigma_{3} V_{3}\left(U_{2} \otimes U_{1}\right)
$$

It follows that the rows of $S_{(3)}$ are mutually orthogonal and that the singular values of $\mathcal{A}_{(3)}$ are the 2 -norms of these rows.

The Core Tensor \mathcal{S} is Graded

$$
\begin{array}{ll}
\mathcal{S}_{(1)}=\Sigma_{1} V_{1}\left(U_{3} \otimes U_{2}\right) \Rightarrow\|\mathcal{S}(j,:,:)\|_{F}=\sigma_{j}\left(\mathcal{A}_{(1)}\right) & j=1: n_{1} \\
\mathcal{S}_{(2)}=\Sigma_{2} V_{2}\left(U_{3} \otimes U_{1}\right) \Rightarrow\|\mathcal{S}(:, j,:)\|_{F}=\sigma_{j}\left(\mathcal{A}_{(2)}\right) & j=1: n_{2} \\
\mathcal{S}_{(3)}=\Sigma_{3} V_{3}\left(U_{2} \otimes U_{1}\right) \Rightarrow\|\mathcal{S}(:,:, j)\|_{F}=\sigma_{j}\left(\mathcal{A}_{(3)}\right) & j=1: n_{3}
\end{array}
$$

The norms of slices are getting smaller as you move away from $\mathcal{A}(1,1,1)$
Notation: $\sigma_{j}(\mathrm{C})$ is the j th largest singular value of the matrix C.

Thinking About the HOSVD

It is a Graded Sum of Rank-1 Tensors...

If $\mathcal{A}=\mathcal{S} \times{ }_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}$ is the HOSVD of $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$, then

$$
\mathcal{A}=\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(:, j_{1}\right) \circ U_{2}\left(:, j_{2}\right) \circ U_{3}\left(:, j_{3}\right)
$$

where $r_{1}=\operatorname{rank}\left(A_{(1)}\right), r_{2}=\operatorname{rank}\left(A_{(2)}\right)$, and $r_{3}=\operatorname{rank}\left(A_{(3)}\right)$

And It Can Be Truncated...

If $\mathcal{A}=\mathcal{S} \times{ }_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}$ is the HOSVD of $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$, then

$$
\mathcal{A} \approx \sum_{j_{1}=1}^{\tilde{r}_{1}} \sum_{j_{2}=1}^{\tilde{r}_{2}} \sum_{j_{3}=1}^{\tilde{r}_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(:, j_{1}\right) \circ U_{2}\left(:, j_{2}\right) \circ U_{3}\left(:, j_{3}\right)
$$

where $\tilde{r}_{1} \leq r_{1}, \tilde{r}_{2} \leq r_{2}$, and $\tilde{r}_{3} \leq r_{3}$.

Just "Shorten" the Summations

$$
\begin{aligned}
& \mathcal{A}=\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(:, j_{1}\right) \circ U_{2}\left(:, j_{2}\right) \circ U_{3}\left(:, j_{3}\right) \\
& \mathcal{A}_{r}=\sum_{j_{1}=1}^{\tilde{r}_{1}} \sum_{j_{2}=1}^{\tilde{r}_{2}} \sum_{j_{3}=1}^{\tilde{r}_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(:, j_{1}\right) \circ U_{2}\left(:, j_{2}\right) \circ U_{3}\left(:, j_{3}\right)
\end{aligned}
$$

What can we say about the "thrown away" terms?

The Truncated HOSVD

Just "Shorten" the Summations

$$
\begin{aligned}
& \mathcal{A}=\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(:, j_{1}\right) \circ U_{2}\left(:, j_{2}\right) \circ U_{3}\left(:, j_{3}\right) \\
& \mathcal{A}_{r}=\sum_{j_{1}=1}^{\tilde{r}_{1}} \sum_{j_{2}=1}^{\tilde{r}_{2}} \sum_{j_{3}=1}^{\tilde{r}_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(:, j_{1}\right) \circ U_{2}\left(:, j_{2}\right) \circ U_{3}\left(:, j_{3}\right)
\end{aligned}
$$

Use these results...

$$
\begin{array}{lll}
\|\mathcal{S}(j,:,:)\|_{F}=\sigma_{j}\left(\mathcal{A}_{(1)}\right) & & j=1: n_{1} \\
\|\mathcal{S}(:, j,:)\|_{F}=\sigma_{j}\left(\mathcal{A}_{(2)}\right) & & j=1: n_{2} \\
\|\mathcal{S}(:,:, j)\|_{F}=\sigma_{j}\left(\mathcal{A}_{(3)}\right) & & j=1: n_{3}
\end{array}
$$

Optional "Fun" Problem

Problem E3. What can you say about $\left\|\mathcal{A}-\mathcal{A}_{r}\right\|_{F}$ assuming that $\sigma_{r_{1}}\left(A_{(1)}\right) \leq \delta, \sigma_{r_{2}}\left(A_{(2)}\right) \leq \delta$, and $\sigma_{r_{3}}\left(A_{(3)}\right) \leq \delta$?

Problem A3. In the QR with column pivoting (QRP) decomposition $A P=Q R$ the upper triangular matrix $R \in \mathbb{R}^{n \times n}$ is graded in the sense that

$$
r_{j j}^{2} \geq \sum_{i=j}^{k} r_{i k}^{2} \quad k=j: n
$$

Formulate an HOQRP factorization for a tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ that is based on the QR-with-column-pivoting factorizations

$$
\mathcal{A}_{(k)} P_{k}=Q_{k} R_{k}
$$

for $k=1: 3$. Does the core tensor have any special "grading" properties?

The Tucker Nearness Problem

Modal Rank

Definition

We say that

$$
\mathcal{A}=\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(:, j_{1}\right) \circ U_{2}\left(:, j_{2}\right) \circ U_{3}\left(:, j_{3}\right)
$$

has modal rank $\left(r_{1}, r_{2}, r_{3}\right)$ if $r_{1}=\operatorname{rank}\left(A_{(1)}\right), r_{2}=\operatorname{rank}\left(A_{(2)}\right)$, and $r_{3}=\operatorname{rank}\left(A_{(3)}\right)$,

The Tucker Nearness Problem

Approximation With a "Shorter" Tucker Product

Assume that $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ has modal rank $\left(r_{1}, r_{2}, r_{3}\right)$. Given integers $\tilde{r}_{1}, \tilde{r}_{2}$ and \tilde{r}_{3} that satisfy $\tilde{r}_{1} \leq r_{1}, \tilde{r}_{2} \leq r_{2}$, and $\tilde{r}_{3} \leq r_{3}$, compute
$U_{1}: \quad n_{1} \times \tilde{r}_{1}, \quad$ orthonormal columns
$U_{2}: n_{2} \times \tilde{r}_{2}, \quad$ orthonormal columns
$U_{3}: n_{3} \times \tilde{r}_{3}, \quad$ orthonormal columns
and tensor $\mathcal{S} \in \mathbb{R}^{\tilde{r}_{1} \times \tilde{r}_{2} \times \tilde{r}_{3}}$ so that

$$
\left\|\mathcal{A}-\sum_{j_{1}=1}^{\tilde{r}_{1}} \sum_{j_{2}=1}^{\tilde{r}_{2}} \sum_{j_{3}=1}^{\tilde{3}_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(:, j_{1}\right) \circ U_{2}\left(:, j_{2}\right) \circ U_{3}\left(:, j_{3}\right)\right\|_{F}
$$

is minimized.

The Tucker Nearness Problem

The Plan...

Develop a component-wise optimization framework for minimizing

$$
\left\|\mathcal{A}-\sum_{j_{1}=1}^{\tilde{r}_{1}} \sum_{j_{2}=1}^{\tilde{r}_{2}} \sum_{j_{3}=1}^{\tilde{r}_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(:, j_{1}\right) \circ U_{2}\left(:, j_{2}\right) \circ U_{3}\left(:, j_{3}\right)\right\|_{F}
$$

Equivalent to finding U_{1}, U_{2}, and U_{3} (all with orthonormal columns) and core tensor $\mathcal{S} \in \mathbb{R}^{\tilde{r}_{1} \times \tilde{r}_{2} \times \tilde{r}_{3}}$ so that

$$
\left\|\operatorname{vec}(\mathcal{A})-\left(U_{3} \otimes U_{2} \otimes U_{1}\right) \operatorname{vec}(\mathcal{S})\right\|_{F}
$$

is minimized.

The Tucker Nearness Problem

The "Removal" of \mathcal{S}

Since \mathcal{S} must minimize

$$
\left\|\operatorname{vec}(\mathcal{A})-\left(U_{3} \otimes U_{2} \otimes U_{1}\right) \cdot \operatorname{vec}(\mathcal{S})\right\|
$$

and $U_{3} \otimes U_{2} \otimes U_{1}$ has orthonormal columns, we see that

$$
\mathcal{S}=\left(U_{3}^{T} \otimes U_{2}^{T} \otimes U_{1}^{T}\right) \cdot \operatorname{vec}(\mathcal{A})
$$

Thus, the goal is to choose the U_{i} so that

$$
\left\|\left(I-\left(U_{3} \otimes U_{2} \otimes U_{1}\right)\left(U_{3}^{T} \otimes U_{2}^{T} \otimes U_{1}^{T}\right)\right) \operatorname{vec}(\mathcal{A})\right\|
$$

is minimized.

The Tucker Nearness Problem

Reformulation...

Since $U_{3} \otimes U_{2} \otimes U_{1}$ has orthonormal columns, it follows that minimizing

$$
\left\|\left(I-\left(U_{3} \otimes U_{2} \otimes U_{1}\right)\left(U_{3}^{T} \otimes U_{2}^{T} \otimes U_{1}^{T}\right)\right) \operatorname{vec}(\mathcal{A})\right\|
$$

is the same as maximizing

$$
\left\|\left(U_{3}^{T} \otimes U_{2}^{T} \otimes U_{1}^{T}\right) \cdot \operatorname{vec}(\mathcal{A})\right\|
$$

If Q has orthonormal columns then $\left\|\left(I-Q Q^{\top}\right) a\right\|_{2}^{2}=\|a\|^{2}-\left\|Q^{\top} a\right\|_{2}^{2}$.

The Tucker Nearness Problem

Three Reshapings of the Objective Function...

$$
\begin{gathered}
\left\|\left(U_{3}^{T} \otimes U_{2}^{T} \otimes U_{1}^{T}\right) \cdot \operatorname{vec}(\mathcal{A})\right\| \\
= \\
\left\|U_{1}^{T} \cdot A_{(1)} \cdot\left(U_{3} \otimes U_{2}\right)\right\|_{F} \\
= \\
\left\|U_{2}^{T} \cdot A_{(2)} \cdot\left(U_{3} \otimes U_{1}\right)\right\|_{F} \\
= \\
\left\|U_{3}^{T} \cdot A_{(3)} \cdot\left(U_{2} \otimes U_{1}\right)\right\|_{F}
\end{gathered}
$$

Sets the stage for a componentwise optimization solution approach...

Componentwise Optimization Framework

A Sequence of Three Linear Problems...

$$
\begin{aligned}
&\left\|\left(U_{3}^{T} \otimes U_{2}^{T} \otimes U_{1}^{T}\right) \cdot \operatorname{vec}(\mathcal{A})\right\| \\
&= \Leftarrow \begin{array}{l}
1 . \text { Fix } U_{2} \text { and } U_{3} \text { and } \\
\text { maximize with } U_{1} .
\end{array} \\
&\left\|U_{1}^{T} \cdot A_{(1)} \cdot\left(U_{3} \otimes U_{2}\right)\right\|_{F} \Leftarrow \\
&\left\|U_{2}^{T} \cdot A_{(2)} \cdot\left(U_{3} \otimes U_{1}\right)\right\|_{F} \Leftarrow \begin{array}{l}
2 \text {. Fix } U_{1} \text { and } U_{3} \text { and } \\
= \\
\left\|U_{3}^{T} \cdot A_{(3)} \cdot\left(U_{2} \otimes U_{1}\right)\right\|_{F}
\end{array} \\
& \Leftarrow \begin{array}{l}
\text { 3. Fix } U_{1} \text { and } U_{2} \text { and } \\
\text { maximize with } U_{3} .
\end{array}
\end{aligned}
$$

How do you maximize $\left\|Q^{T} M\right\|_{F}$ where $Q \in \mathbb{R}^{m \times r}$ has orthonormal columns, $M \in \mathbb{R}^{m \times n}$, and $r \leq n$?

If

$$
M=U \Sigma V^{T}
$$

is the SVD of M, then

$$
\begin{aligned}
\left\|Q^{T} M\right\|_{F}^{2} & =\left\|Q^{T} U \Sigma V^{T}\right\|_{F}^{2}=\left\|Q^{T} U \Sigma\right\|_{F}^{2} \\
& =\sum_{k=1}^{n} \sigma_{k}^{2}\left\|Q^{T} U(:, k)\right\|_{2}^{2}
\end{aligned}
$$

The best you can do is to set $Q=U(:, 1: r)$.

Solution Framework

A Sequence of Three Linear Problems...

Repeat:

1. Compute the SVD $\mathcal{A}_{(1)} \cdot\left(U_{3} \otimes U_{2}\right)=\tilde{U}_{1} \Sigma_{1} V_{1}^{T}$ and set $U_{1}=\tilde{U}_{1}\left(:, 1: \tilde{r}_{1}\right)$.
2. Compute the SVD $\mathcal{A}_{(2)} \cdot\left(U_{3} \otimes U_{1}\right)=\tilde{U}_{2} \Sigma_{2} V_{2}^{T}$ and set $U_{2}=\tilde{U}_{2}\left(:, 1: \tilde{r}_{2}\right)$.
3. Compute the SVD $\mathcal{A}_{(3)} \cdot\left(U_{2} \otimes U_{1}\right)=\tilde{U}_{3} \Sigma_{3} V_{3}^{T}$ and set $U_{3}=\tilde{U}_{3}\left(:, 1: \tilde{r}_{3}\right)$.

Initial guess via the HOSVD. The highlighted matrix-matrix products are structured and ecomomies can be realized.

A Jacobi Variant

A Jacobi Procedure

Maximizing Mass on the Diagonal

Assume that \mathcal{A} is m-by- m-by- m and define

$$
\phi(\mathcal{A})=\sum_{i=1}^{n} a_{i i i}
$$

Our goal is to compute orthogonal U, V, and W so that if the tensor tensor \mathcal{S} is defined by

$$
\operatorname{vec}(\mathcal{S})=(W \otimes V \otimes U) \operatorname{vec}(\mathcal{A})
$$

then $\phi(\mathcal{S})$ is maximized.

The Jacobi SVD procedure for matrices can be derived with a trace max objective function.

A Jacobi Procedure

Updating: Make \mathcal{S} More Diagonal

Currrent: $\operatorname{vec}(\mathcal{A})=(W \otimes V \otimes U) \cdot \operatorname{vec}(\mathcal{S})$
Determine: Orthogonal \tilde{U}, \tilde{V}, and \tilde{W} so that if

$$
\operatorname{vec}(\tilde{\mathcal{S}})=(\tilde{W} \otimes \tilde{V} \otimes \tilde{U})^{T} \cdot \operatorname{vec}(\mathcal{S})
$$

then $\phi(\tilde{\mathcal{S}})>\phi(\mathcal{S})$.
Update:

$$
\begin{aligned}
\operatorname{vec}(\mathcal{A}) & =(W \otimes V \otimes U) \cdot \operatorname{vec}(\mathcal{S}) \\
& =(W \otimes V \otimes U) \cdot(\tilde{W} \otimes \tilde{V} \otimes \tilde{U}) \cdot \operatorname{vec}(\tilde{\mathcal{S}}) \\
& =(W \cdot \tilde{W} \otimes V \cdot \tilde{V} \otimes U \cdot \tilde{U}) \cdot \operatorname{vec}(\tilde{\mathcal{S}})
\end{aligned}
$$

A Jacobi Procedure

Simple, Tractable Choices...

$$
\tilde{W} \otimes \tilde{V} \otimes \tilde{U}=\left\{\begin{array}{rcccl}
I_{n} & \otimes & J_{p q}(\beta) & \otimes & J_{p q}(\alpha) \\
J_{p q}(\beta) & \otimes & I_{n} & \otimes & J_{p q}(\alpha) \\
J_{p q}(\beta) & \otimes & J_{p q}(\alpha) & \otimes & I_{n}
\end{array}\right.
$$

where $J_{p q}(\theta)$ is a Jacobi rotation in planes p and q.

These updates modify only two diagonal entries: (p, p, p) and (q, q, q). Sweep through all possible (p, q) and all three types of updates.

A Jacobi Procedure

A Sample 2-by-2-by-2 Subproblem

Choose $\left.c_{\alpha}=\cos (\alpha), s_{\alpha}\right)=\sin (\alpha), c_{\beta}=\cos (\beta)$, and $\left.s_{\beta}\right)=\sin (\beta)$, so that if

$$
\left[\begin{array}{ll}
\sigma_{111} & \sigma_{121} \\
\sigma_{211} & \sigma_{221}
\end{array}\right]=\left[\begin{array}{rr}
c_{\alpha} & s_{\alpha} \\
-s_{\alpha} & c_{\alpha}
\end{array}\right]^{T}\left[\begin{array}{ll}
s_{111} & s_{121} \\
s_{211} & s_{221}
\end{array}\right]\left[\begin{array}{rr}
c_{\beta} & s_{\beta} \\
-s_{\beta} & c_{\beta}
\end{array}\right]
$$

and

$$
\left[\begin{array}{ll}
\sigma_{112} & \sigma_{122} \\
\sigma_{212} & \sigma_{222}
\end{array}\right]=\left[\begin{array}{rr}
c_{\alpha} & s_{\alpha} \\
-s_{\alpha} & c_{\alpha}
\end{array}\right]^{T}\left[\begin{array}{ll}
s_{112} & s_{122} \\
s_{212} & s_{222}
\end{array}\right]\left[\begin{array}{rr}
c_{\beta} & s_{\beta} \\
-s_{\beta} & c_{\beta}
\end{array}\right]
$$

then $\sigma_{111}+\sigma_{222}$ is maximized.

The Tensor Train Representation

The Tensor Train Idea

A Data Sparse Representation

Approximate a high-order tensor with a collection of order-3 tensors.
Each order-3 tensor is connected to its left and right "neighbor" through a simple summation.

Tensor Train: An Example

Given the "carriages" ...

$$
\begin{array}{ll}
\mathcal{\mathcal { G } _ { 1 }}: & n_{1} \times r_{1} \\
\mathcal{G}_{2}: & r_{1} \times n_{2} \times r_{2} \\
\mathcal{G}_{3}: & r_{2} \times n_{3} \times r_{3} \\
\mathcal{G}_{4}: & r_{3} \times n_{4} \times r_{4} \\
\mathcal{G}_{5}: & r_{4} \times n_{5}
\end{array}
$$

We define the train" $\mathcal{A}\left(1: n_{1}, 1: n_{2}, 1: n_{3}, 1: n_{4}, 1: n_{5}\right) \ldots$

$$
\begin{gathered}
\mathcal{A}\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right) \\
=
\end{gathered}
$$

$$
\sum_{k_{1}=1}^{r_{1}} \sum_{k_{2}=1}^{r_{2}} \sum_{k_{3}=1}^{r_{3}} \sum_{k_{4}=1}^{r_{4}} \mathcal{G}_{1}\left(i_{1}, k_{1}\right) \cdot \mathcal{G}_{2}\left(k_{1}, i_{2}, k_{2}\right) \cdot \mathcal{G}_{3}\left(k_{2}, i_{3}, k_{3}\right) \cdot \mathcal{G}_{4}\left(k_{3}, i_{4}, k_{4}\right) \cdot \mathcal{G}_{5}\left(k_{4}, i_{5}\right)
$$

Think of a graph where the nodes are low-order tensors and the edges are the summations.

Tensor Train: An Example

Given the "carriages" ...

$$
\begin{array}{ll}
\mathcal{\mathcal { G } _ { 1 }}: & n_{1} \times r_{1} \\
\mathcal{G}_{2}: & r_{1} \times n_{2} \times r_{2} \\
\mathcal{G}_{3}: & r_{2} \times n_{3} \times r_{3} \\
\mathcal{G}_{4}: & r_{3} \times n_{4} \times r_{4} \\
\mathcal{G}_{5}: & r_{4} \times n_{5}
\end{array}
$$

We define the train" $\mathcal{A}\left(1: n_{1}, 1: n_{2}, 1: n_{3}, 1: n_{4}, 1: n_{5}\right) \ldots$

$$
\begin{gathered}
\mathcal{A}\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right) \\
= \\
\sum_{k_{1}=1}^{r_{1}} \sum_{k_{2}=1}^{r_{2}} \sum_{k_{3}=1}^{r_{3}} \sum_{k_{4}=1}^{r_{4}} \mathcal{G}_{1}\left(i_{1}, k_{1}\right) \cdot \mathcal{G}_{2}\left(k_{1}, i_{2}, k_{2}\right) \cdot \mathcal{G}_{3}\left(k_{2}, i_{3}, k_{3}\right) \cdot \mathcal{G}_{4}\left(k_{3}, i_{4}, k_{4}\right) \cdot \mathcal{G}_{5}\left(k_{4}, i_{5}\right)
\end{gathered}
$$

$$
O\left(n r^{2}\right) \text { vs } O\left(n^{5}\right)
$$

Tensor Train: An Example

Given the "carriages" ...

$$
\begin{array}{ll}
\mathcal{\mathcal { G } _ { 1 }}: & n_{1} \times r_{1} \\
\mathcal{G}_{2}: & r_{1} \times n_{2} \times r_{2} \\
\mathcal{G}_{3}: & r_{2} \times n_{3} \times r_{3} \\
\mathcal{G}_{4}: & r_{3} \times n_{4} \times r_{4} \\
\mathcal{G}_{5}: & r_{4} \times n_{5}
\end{array}
$$

We define the train" $\mathcal{A}\left(1: n_{1}, 1: n_{2}, 1: n_{3}, 1: n_{4}, 1: n_{5}\right) \ldots$

$$
\begin{gathered}
\mathcal{A}\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right) \\
= \\
\sum_{k_{1}=1}^{r_{1}} \sum_{k_{2}=1}^{r_{2}} \sum_{k_{3}=1}^{r_{3}} \sum_{k_{4}=1}^{r_{4}} \mathcal{G}_{1}\left(i_{1}, k_{1}\right) \cdot \mathcal{G}_{2}\left(k_{1}, i_{2}, k_{2}\right) \cdot \mathcal{G}_{3}\left(k_{2}, i_{3}, k_{3}\right) \cdot \mathcal{G}_{4}\left(k_{3}, i_{4}, k_{4}\right) \cdot \mathcal{G}_{5}\left(k_{4}, i_{5}\right)
\end{gathered}
$$

$$
O\left(n r^{2}\right) \text { vs } O\left(n^{5}\right)
$$

Tensor Train: An Example

Given the "carriages" ...

$$
\begin{array}{ll}
\mathcal{\mathcal { G } _ { 1 }}: & n_{1} \times r_{1} \\
\mathcal{G}_{2}: & r_{1} \times n_{2} \times r_{2} \\
\mathcal{G}_{3}: & r_{2} \times n_{3} \times r_{3} \\
\mathcal{G}_{4}: & r_{3} \times n_{4} \times r_{4} \\
\mathcal{G}_{5}: & r_{4} \times n_{5}
\end{array}
$$

We define the train" $\mathcal{A}\left(1: n_{1}, 1: n_{2}, 1: n_{3}, 1: n_{4}, 1: n_{5}\right) \ldots$

$$
\begin{gathered}
\mathcal{A}\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right) \\
= \\
\sum_{k_{1}=1}^{r_{1}} \sum_{k_{2}=1}^{r_{2}} \sum_{k_{3}=1}^{r_{3}} \sum_{k_{4}=1}^{r_{4}} \mathcal{G}_{1}\left(i_{1}, k_{1}\right) \cdot \mathcal{G}_{2}\left(k_{1}, i_{2}, k_{2}\right) \cdot \mathcal{G}_{3}\left(k_{2}, i_{3}, k_{3}\right) \cdot \mathcal{G}_{4}\left(k_{3}, i_{4}, k_{4}\right) \cdot \mathcal{G}_{5}\left(k_{4}, i_{5}\right)
\end{gathered}
$$

$$
O\left(n r^{2}\right) \text { vs } O\left(n^{5}\right)
$$

Tensor Train: An Example

Given the "carriages" ...

$$
\begin{array}{ll}
\mathcal{\mathcal { G } _ { 1 }}: & n_{1} \times r_{1} \\
\mathcal{G}_{2}: & r_{1} \times n_{2} \times r_{2} \\
\mathcal{G}_{3}: & r_{2} \times n_{3} \times r_{3} \\
\mathcal{G}_{4}: & r_{3} \times n_{4} \times r_{4} \\
\mathcal{G}_{5}: & r_{4} \times n_{5}
\end{array}
$$

We define the train" $\mathcal{A}\left(1: n_{1}, 1: n_{2}, 1: n_{3}, 1: n_{4}, 1: n_{5}\right) \ldots$

$$
\begin{gathered}
\mathcal{A}\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right) \\
= \\
\sum_{k_{1}=1}^{r_{1}} \sum_{k_{2}=1}^{r_{2}} \sum_{k_{3}=1}^{r_{3}} \sum_{k_{4}=1}^{r_{4}} \mathcal{G}_{1}\left(i_{1}, k_{1}\right) \cdot \mathcal{G}_{2}\left(k_{1}, i_{2}, k_{2}\right) \cdot \mathcal{G}_{3}\left(k_{2}, i_{3}, k_{3}\right) \cdot \mathcal{G}_{4}\left(k_{3}, i_{4}, k_{4}\right) \cdot \mathcal{G}_{5}\left(k_{4}, i_{5}\right)
\end{gathered}
$$

$$
O\left(n r^{2}\right) \text { vs } O\left(n^{5}\right)
$$

Computing a Tensor Train Representation

Main Idea

A sequence of unfoldings is produced.

The unfoldings get narrower and narrower.

A rank-revealing SVD $U\left(\Sigma V^{T}\right)=U Z$ is computed each time.

The "carriages" are reshaped U-matrices.

Computing a Tensor Train Representation

1(a) Rank-revealing SVD: $\quad \operatorname{reshape}\left(A,\left[n_{1}, n_{2} n_{3} n_{4} n_{5}\right]\right)=U_{1} Z_{1}$.

$$
\mathcal{G}_{1}=\operatorname{reshape}\left(U_{1},\left[n_{1}, r_{1}\right]\right) .
$$

Computing a Tensor Train Representation

1(a) Rank-revealing SVD:

$$
\begin{aligned}
& \operatorname{reshape}\left(A,\left[n_{1}, n_{2} n_{3} n_{4} n_{5}\right]\right)=U_{1} Z_{1} . \\
& \mathcal{G}_{1}=\operatorname{reshape}\left(U_{1},\left[n_{1}, r_{1}\right]\right) .
\end{aligned}
$$

2(a) Rank-revealing SVD:
$\operatorname{reshape}\left(Z_{1},\left[r_{1} n_{2}, n_{3} n_{4} n_{5}\right]\right)=U_{2} Z_{2}$.
$\mathcal{G}_{2}=\operatorname{reshape}\left(U_{2},\left[r_{1}, n_{2}, r_{2}\right]\right)$.

Computing a Tensor Train Representation

1(a) Rank-revealing SVD:

$$
\begin{aligned}
& \operatorname{reshape}\left(A,\left[n_{1}, n_{2} n_{3} n_{4} n_{5}\right]\right)=U_{1} Z_{1} . \\
& \mathcal{G}_{1}=\operatorname{reshape}\left(U_{1},\left[n_{1}, r_{1}\right]\right) .
\end{aligned}
$$

2(a) Rank-revealing SVD:

$$
\begin{aligned}
& \text { reshape }\left(Z_{1},\left[r_{1} n_{2}, n_{3} n_{4} n_{5}\right]\right)=U_{2} Z_{2} . \\
& \mathcal{G}_{2}=\operatorname{reshape}\left(U_{2},\left[r_{1}, n_{2}, r_{2}\right]\right) .
\end{aligned}
$$

3(a) Rank-revealing SVD: $\quad \operatorname{reshape}\left(Z_{2},\left[r_{2} n_{3}, n_{4} n_{5}\right]\right)=U_{3} Z_{3}$.
$\mathcal{G}_{3}=\operatorname{reshape}\left(U_{3},\left[r_{2}, n_{3}, r_{3}\right]\right)$.

Computing a Tensor Train Representation

1(a) Rank-revealing SVD:

$$
\begin{aligned}
& \operatorname{reshape}\left(A,\left[n_{1}, n_{2} n_{3} n_{4} n_{5}\right]\right)=U_{1} Z_{1} . \\
& \mathcal{G}_{1}=\operatorname{reshape}\left(U_{1},\left[n_{1}, r_{1}\right]\right) .
\end{aligned}
$$

2(a) Rank-revealing SVD: $\quad \operatorname{reshape}\left(Z_{1},\left[r_{1} n_{2}, n_{3} n_{4} n_{5}\right]\right)=U_{2} Z_{2}$.

$$
\mathcal{G}_{2}=\operatorname{reshape}\left(U_{2},\left[r_{1}, n_{2}, r_{2}\right]\right) .
$$

3(a) Rank-revealing SVD:
$\operatorname{reshape}\left(Z_{2},\left[r_{2} n_{3}, n_{4} n_{5}\right]\right)=U_{3} Z_{3}$. $\mathcal{G}_{3}=\operatorname{reshape}\left(U_{3},\left[r_{2}, n_{3}, r_{3}\right]\right)$.

4(a) Rank-revealing SVD:

$$
\begin{aligned}
& \operatorname{reshape}\left(Z_{3},\left[r_{3} n_{4}, n_{5}\right]\right)=U_{4} Z_{4} . \\
& \mathcal{G}_{4}=\operatorname{reshape}\left(U_{4},\left[r_{3}, n_{4}, r_{4}\right]\right) . \\
& \mathcal{G}_{5}=\operatorname{reshape}\left(Z_{4},\left[r_{4}, n_{5}\right]\right) .
\end{aligned}
$$

