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The Setting

Good News/Bad News

The singular values of a general matrix and the eigenvalues of a
symmetric matrix have variational definitions and these ideas can be
extended to tensors.

However, these ideas are not strong enough to put together a tensor
decomposition like the SVD:

rank(A

A= UzvT = Z oruEvy

Why Do We Like Matrix Factorizations?
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The Factorization Paradigm in Matrix Computations

Convert the given problem into an equivalent easy-to-solve problem
by using the “right” matrix decomposition.

PA=LU, Ly=Pb, Ux=y =  Ax=b

| A,

Also Typical...

Uncover hidden relationships by computing the “right” decomposition
of the data matrix.

F
A=Uzv — A ~ Za,-u,-v,-T
i=1
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The Factorization Paradigm in Matrix Computations

A=UXVT PA=LU A=QR A=GG" PAPT =IDLT QTAQ=D
XIAX=J UTAU=T AP=QR A=ULVT PAQT =LU A=UZVT
PA=LU A= QR A=GG" PAPT =IDLT QTAQ=D X 'AX=J
UTAU=T AP=QR A=ULVT PAQT =LU A=UXZVT PA=1LU
A=QR A= GGT PAPT = IDLT QTAQ=D X 'AX=J UTAU=T

AP = QR LVT PAQT = LU A= UZVT PA=LU A= QR
A= GGT LeaA Q A ﬁ AU =T
A= ULVT A = GGT

PAPT = LDLT TAQ =D X'AX =J UTAU = AP =
A=ULVT PAQT = LU A=UXVT PA=1LU A= QR A:GGT
PAPT = IDLT QTAQ =D X 'AX =J AP =QR A= ULVT
PAQT = LU A=UZVT PA=LU A=QR A=GG" PAPT =ILDLT
QTAQ=D X AX=J UTAU=T AP=QR A=ULVT PAQT = LU
A=UXVT PA=LU A=QR A=GG" PAPT =ILDL" QTAQ =D
XIAX =J UTAU=T AP=QR A=ULVT PAQT =LU A=UZVT
PA=LU A= QR PAPT =IDLT QTAQ=D X 'AX=J UTAU=T
AP=QR A=ULVT PAQT =LU A=UXV™T PA=LU A=QR
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Anticipating the Same Thing for Tensors

= o1Wioviou; + 0oWwrOoWwwOoulUy+ ...
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Anticipating the Same Thing for Tensors

Can we solve tensor problems by converting them to (approximately)
equivalent easy-to-solve problems using a tensor decomposition?

Can we uncover hidden patterns in tensor data by computing an
appropriate tensor decomposition?

These questions will be addessed in this lecture and the next.
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What is this Lecture About?

@ The Tucker Product Representation and Its Properties
@ The Mode-k Product and the Tucker Product
@ The Higher-Order SVD of a tensor

@ An Alternating Least Squares Framework for Reduced-Rank
Tucker Approximation

@ The Tensor Train Representation
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The Tucker Product Representation

Structured Matrix Computations from Structured Tensors = Lecture 3. Tucker and Tensor Train Decompositions



Tucker Product: The Matrix Case

The Tucker product between a matrix

S: n X rn
and matrices
U1 N Xn
U2 L N X

is the n; X np» matrix defined by

A(i, i2) Z ZS(JI»D Ur(iz, j1) - Ua(i2, j2)

=1 p=1
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Tucker Product: The Matrix Case

It is Actually Just the Product of Three Matrices

Alir, k) = Z Zs(il’jz) ~Ur(in, 1) - Ua((i, J2)

=1 jp=1

A = USU)
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Tucker Product: The Matrix Case

It is Actually the Sum of Rank-1 Matrices

Alin, 2) = Z ZS(flajz) Ui(in, 1) - Ua(i2; J2)
=1 jp=1
A = USU]

A = Z Zs(jlvfé) Us(y1) - Ua(e2) "
=1 jp=1
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Tucker Product: The Matrix Case

It is Actually the Sum of Kronecker Products Between Vectors

n n
Al ) = D> S(d2) - Ualia, 1) - Ua(izs j2)
J1=1 jp=1
A = USUS
A = Z 23017j2) Ui( 1) - Ua(eia) T
a=1 p=1
vec(A) = > S(ij2) - Ua(:, ) @ Ur(:, o)
h=1 p=1
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Tucker Product: The Matrix Case

It is Actually a Giant Matrix-Vector Product

Al ) = > > 81si2) - Ui, 1) - Ua(io o)
a=1 p=1
A = USUS
r r
A = > D S(d) Ui() - Ua(i )T
a=1 p=1
vec(A) = > > S(j1,2)Ua(:h2) ® Ui (s, o)
=1 p=1
vec(A) = (U ® Uy) - vec(S)
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Tucker Product: The Tensor Case
Definition (Order-3)
The Tucker product between a tensor
S:nXmnxnrn

and matrices

U1 N Xn
U2 L N X
U3 . 3 X3

is the n; X ny X n3 tensor defined by

n r 3
Al iy is) = > Y0 S(irjzods) - Ui, jr) - Uaias j2) - Us(is, ja)

=1 p=1 jz=1
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Tucker Product: The Tensor Case

It is Actually the Sum of Rank-1 Tensors...

n rn i3
S0 Sirzids) - Us(in, o) - Ua(ia, j2) - Us(ia, Js)

=1 p=1 jz=1

A(ilu i27 ’3)

A = 21: 22: 23:5(]1-,]2:]3) Ui(5,1) 0 Ua(s, 12) © Us(:, J3)

a=1l jp=1 jz=1
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Tucker Product: The Tensor Case

It is Actually the Sum of Kronecker Products Between Vectors

A, iyis) = > D> Srdaa) - Us(in.jr) - Ua(io. o) - Us(ia, Ja)
1=l p=1 jz=1
A = D 30> Slireids) - Ui(iof1) 0 Ua(:,2) 0 Us(:,)3)

=1 p=1 j3=1

vec(A) = Zl: DY Slidais) - Us(:ds) @ Ua(s, 2) @ Un(:,a)

=1 p=1 j3=1
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Tucker Product: The Tensor Case

It is Actually a Giant Matrix-Vector Product

rn r 3

A, i) = > D> S(rdaa) - Us(in.jr) - Ua(io. o) - Us(ia, Ja)
=1 jp=1 jz3=1

n r2 3

A = D 30> Slireids) - Ui(iof1) 0 Ua(:,2) 0 Us(:,)3)

=1 p=1 j3=1

vec(A) = Zl: 22: > 8(irsjosds) - Us(:,j3) @ Us(:,j2) @ Un(:,ju)

=1 p=1 jz=1

vec(A) = (Us® Uy ® Uy) - vec(S)
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The Tucker Product

It is a “Representation”

n r

Ali,igis) = > 3> Srij2ods) - Us(in, ) - Ua(ia, j2) - Us(ia, Js)

1=l jp=1 jz=1

We are representing the tensor A in terms of the tensor S and the matrices
U1, U2, and U3.

Can we compute a Tucker Product representation that is
especially illuminating or useful?
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Improving the Tucker Tucker Representation

Computing the SVD of a Matrix

Have:

A= U15U2T U1, U, Orthogonal
Improve:
E.g., make S more diagonal
A= (U1A1)(A, T5A2)(U2A2)T by choosing clever orthogonal
A; and A
Update:

S—A;TSA, Uy — Uy Uy, — U\

We would like to do the same thing for tensors, but what are the
“update operations” ?
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The Mode-k Product
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The Mode-k Product

Main Idea

Given A € IR™*™*™ 3 mode k , and a matrix M, we apply M to
every mode-k fiber.

Recall that

d111 4211 4d311 4411 4112 4212 d312 4412
A(z) = d121 d221 4d321 4421 4di122 4222 4d322 4422
d131 4231 4331 4431 4d132 4232 d332 d432

is the mode-2 unfolding of A € IR**3*2 and its columns are its
mode-2 fibers
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The Mode-k Product

A Mode-2 Example When A € IR**3x?

bii1 bo1r bsir bazn biio boio bzio baio
bio1 b1 b3ar baoi bizo boox b3z buzo
biz1 b3 b3z1 bazi b1z bozp bzzo buzo
bia1 boar bzar basi biar boao bzao bago
bisi bosi bssi basi biso bosy bssy busp

mz1 M M3 4111 4211 4311 4411 4112 48212 4312 4412
ms31 M3z M3z d121 d221 4a321 4421 d122 4222 d322 4422
M1 Myp M43 4131 d231 4331 4431 d132 4232 d332 d432

Note: (1) BERY™?  and  (2) By = M- Ap).
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The Mode-k Product: Definition

If A e IR™*™*™ and M € IR™*™, then the mode-1 product

B=A x M e Rmmxm

is defined by
m
B(i,in,i3) = M(ix, k)A(k, ia, i3)
k=1 )
Two Equivalent Formulations...
Bua) = M- Aq

vec(B) = (In; ® In, ® M)vec(A)

For now, assume M is square. Not necessary in general.
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The Mode-k Product: Definition

If A€ IR™*™*" and M € IR™*"™, then the mode-2 product
B=Ax,M e R

is defined by

o
B(i, i, i3) = M(iz, k)A(ix, k, i3)
k=1

Two Equivalent Formulations...

By = M- Ay

vec(B) = (In; ® M & I, )vec(A)
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The Mode-k Product: Definition

If A€ IR™M*™*™ and M € IR™*"™, then the mode-3 product
B=A x; M e RMm*mxm

is defined by

n3
B(i17i27i3) — M(I:’nk)A(llaQak)
k=1

Two Equivalent Formulations...

By = M- A,

vec(B) = (M & I, @ I, )vec(.A)
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The Mode-k Product: Properties

Successive Products in the Same Mode

If A€ R™*™*™ and My, My € R™ >, then

(.A Xk Ml) Xy M2 = A Xy (M]_M2).

Successive Products in Different Modes

If A e R™*™XM M, e R ™, M; € RV*", and k # j, then
(A % Mi) <, Mj = (A % Mj) %, My

The order is not important so we just write A x; M; x, M.
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The Tucker Product

It is a Collection of Modal Products

The Tucker Product of the tensor

SE]RﬁXrQXrg

with the matrices U; € R™ ™", U, € R™*"2, and U; € IR™*" is given b
g y

n 2 i3
Ali,iois) = >3 Y Srrjzods) - Uilin, 1) - Ua(iz, j2) - Us(is, js)

=1 p=1 j3=1

= S x U U x;U3
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The Tucker Product Representation

A Simple but Important Result

If AeRM™*™*™ and U; € R™*™, U, € R™*™, and Uz € R™*™
are nonsingular, then

A =S x, U x Uy x5 Us

where
S = Ax Urt x Uyt <, Ut

We will refer to the Uy as the inverse factors and S as the core tensor.

v

The matrix version: A = U1(Uf1AU{1)U2 = U;SU,
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A = A (UMW) % (Uy ') s (U Us)

= (.A o UTY 0 Ut s U;l) o Un 3o Uz xs Us

= S x U % U x5 Us
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An Orthogonal Tucker Product Representation

If the U’s are Orthogonal

If A€ R™*™*™ and U; € R"*™, Us € R™*™, and Uz € R™*"™
are orthogonal, then

A = S><1U1 ><2U2 ><3U3

where
S = Ax Ul U] x3Uy.

We are representing A as Tucker product of a “core tensor” S
and three orthogonal matrices.
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The Higher-Order SVD
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The Tucker Product Representation

The Challenge

Given A € IRM™*MmXM  compute

8 = erxrgxr3

and

Ul c ]Rn1><r1’ U2 c ]];{nger’ U3 c ]Rn3><r3

such that
A =8 x U x,Uxx3 Us

is an “illuminating” Tucker product representation of A.
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The Higher Order SVD (HOSVD)

If the U’s are from the Modal Unfolding SVDs...

Suppose A € IR™ %% s given. If

Agy = ULis v
Ay = UV
.A(3) = UsXj V3T
are SVDs and
S = A x UlT X, U2T X3 U3T,

then
A =8 x U1 x Uz x5 Us,

is the higher-order SVD of A.
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The Higher-Order SVD (HOSVD)

The HOSVD of a Matrix IS the SVD of that Matrix

If d =2 then A is a matrix and the HOSVD is the SVD. Indeed, if

A = Ay = Un Vv
AT = Ap = ULV,

then we canset U = U; = V5 and V = U = V4. Note that

S=UAx U Ul = (UTA) U = U AV, = 5.
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The HOSVD

Core Tensor Properties

If
A(l) = UlZlV]_T A(z) = U222V2T A(3) = U3Z3V3T

are SVDs and
A =S x, U x U x5 Uz

then

Aqy = UiSn) (Us ® U)"  and Sy = T1Vi(Us @ Us)

It follows that the rows of S(;) are mutually orthogonal and that the singular
values of A(y) are the 2-norms of these rows.
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The HOSVD

Core Tensor Properties

If
A(l) = UlZlV]_T A(z) = U222V2T A(3) = U3Z3V3T

are SVDs and
A =S x, U x U x5 Uz

then

Apy = USp) (Us® U)"  and S2) = L2Va(Us @ Us)

It follows that the rows of S(;) are mutually orthogonal and that the singular
values of A, are the 2-norms of these rows.
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The HOSVD

Core Tensor Properties

If
A(l) = UlZlV]_T A(z) = U222V2T A(3) = U3Z3V3T

are SVDs and
A=S8 ><1U1 X2U2 ><3U3

then

Ag) = UsS3 (e ® Up)T  and Sz = T3V3(Uz ® Uy)

It follows that the rows of S(3) are mutually orthogonal and that the singular
values of A(3) are the 2-norms of these rows.
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The Core Tensor S is Graded

Sq = LV ® o) = [|S(,:0) I = ai(Aq)) j=1m
Se) = LVa(Us® U1) = [SGh:) e = O'j(-A(z)) j=1nm

Sa) = L3W(U® Ur) = [ISC,50) lF = 0i(A)  j=1ns

The norms of slices are getting smaller as you move away from A(1,1,1)

Notation: ¢;(C) is the jth largest singular value of the matrix C.
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Thinking About the HOSVD

If A = S x, U % Us %, Uz is the HOSVD of 4 € R™*™*"™  then

n r 3

A - ZZ Zs(jl:.j27.j3) . Ul(:;jl) o UQ(:,j2) o U3(Z,_j3)

1=1=1j3=1

where r; = rank(A(1)), r2 = rank(A2)), and r3 = rank(As))

And It Can Be Truncated...

If A = S x, U; % Us %, Uz is the HOSVD of 4 € R™*™*"™  then

R h

AR ZZ Zs(jl’jz’j3) ~Ui(:,41) o Ua(:, j2) © Us(:, J3)

1=12=1j3=1

where 7, < r, » < r, and i3 < r3.
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The Truncated HOSVD

Just “Shorten” the Summations

A

Zl Z Zs(jlyj27j3) : Ul(:mjl) © U2(:7j2) © U3(:aj3)

a=1 p=1 jz=1

Zl Z ZS(.jlyj27j3) : Ul(:mjl) © U2(:7j2) © U3(:aj3)

=1 p=1 jz3=1

=
I

What can we say about the “thrown away” terms?
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The Truncated HOSVD

Just “Shorten” the Summations

A = 33 Sljeds) - UiGr) o Ua(:,j2) © Us(:, ja)

a=1 p=1 jz=1

51 )

A = Z Z 233(/171'2&) Ui, 1) o Ua(:, j2) o Us (5, 3)

a=1 p=1 jz=1

Use these results...

H’S(jr:v:) HF = Uj(A(l)) _j: 1:m
H 5(:7j7 :) HF = JJ(A(2)) _j =1m
ISCGo0)llp = ai(Ag) =1
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Optional “Fun” Problem

Problem E3. What can you say about || A — A, || assuming that
on(Aqy) < 0, 05, (Aw) <4, and o3 (Ag)) < 67

Problem A3. In the QR with column pivoting (QRP) decomposition
AP = QR the upper triangular matrix R € IR"*" is graded in the sense that

k
2 2 : 2 -
I:UZ Fik k=_/:n

Formulate an HOQRP factorization for a tensor A € IR™*™*" that is
based on the QR-with-column-pivoting factorizations

AwyPx = QxR

for k = 1:3. Does the core tensor have any special “grading” properties?
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The Tucker Nearness Problem
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Modal Rank

Definition
We say that

rn rn r3
A=3"% S S(ijefs) - Uil ) 0 Ua(:oia) o Us(:, j3)
i1=1 p=1 jz3=1

has modal rank (r1, r2, 13) if r1 = rank(A)), r2 = rank(A(2)), and
r3 = rank(A3)),
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The Tucker Nearness Problem

Approximation With a “Shorter” Tucker Product

Assume that A € R™*™*™ has modal rank (r1, 2, r3). Given integers F;, F
and 7 that satisfy 4 < ry, /» < n, and i3 < r3, compute

Ui: nm x F, orthonormal columns

U: ny X B, orthonormal columns

Us: n3 x 3, orthonormal columns

and tensor S € R"*2*% 5o that

h h B

A = S5SN8 s is) - Uin) 0 Ua(,J2) © Us(:.s)

J1=1jp=1jz=1

is minimized.
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The Tucker Nearness Problem

The Plan...

Develop a component-wise optimization framework for minimizing

A= >N S(,jads) - Us(:,1) © Ua(:, j2) © Us(:, j3)

h=1j=1j3=1 =

Equivalent to finding Uy, U, and Us (all with orthonormal columns
q g U1, U,
and core tensor S € IR"*"2*"3 5o that

| vec(A) — (Uz ® Us @ Ur)vec(S) || g

is minimized.
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The Tucker Nearness Problem

The “Removal” of S

Since S must minimize
|| vec(A) — (Uz ® Ur ® Uy) - vec(S) ||
and U3z ® U, ® Uy has orthonormal columns, we see that
S = (U3T ® U] ® ulT) vec(A).
Thus, the goal is to choose the U; so that
| (I = (Us® U>® Uy) (U ® Uj ®UT)) vec(A) ||

is minimized.
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The Tucker Nearness Problem

Reformulation...

Since Uz ® U, ® Uy has orthonormal columns, it follows that
minimizing

| (1 = (Us® Ur® 1) (U] ® UF @ UY)) vec(A4) |
is the same as maximizing

I (U3T ® U2T ® UlT) -vec(A) ||

If @ has orthonormal columns then || (/ — QQ")a H; = |al® - | Q"a Hz
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The Tucker Nearness Problem

Three Reshapings of the Objective Function...

| (U @ Uf @ U]) - vec(A) ||

I U Agy - (Us @ L2) |

F
| U - Ay - (Us® L) I,
| U] Az - (U@ U1) |

Sets the stage for a componentwise optimization solution approach...
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Componentwise Optimization Framework

A Sequence of Three Linear Problems...

I (U3T ® U2T ® UlT) -vec(A) ||

UT - Ay - (Us @ U 1. Fix U, and Us and
U () (Us 2) HF = maximize with Uj.

2. Fix U; and U; and
maximize with U,.

| U] -Agy - (Us® U1) I, -

Ui - Agzy- (U ® Uy 3. Fix Uy and U; and
3 (3) F =
maximize with Us.

These max problems are SVD problems...
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How do you maximize || Q"M || where @ € R™" has orthonormal
columns, M € R™*" and r < n?

If
M=uUzVvT

is the SVD of M, then
2 2 2
1QTM[z = [IQTUEVT [z = [ QTUZ |}

. 2
= Dokl QUK Il
k=1

The best you can do is to set Q = U(:, 1:r).

Structured Matrix Computations from Structured Tensors = Lecture 3. Tucker and Tensor Train Decompositions



Solution Framework

A Sequence of Three Linear Problems...

Repeat:
1. Compute the SVD A - (U3 ® Up) = Uiom VlT
and set U; = 01(2, 137’1).

2. Compute the SVD Ap) - (Us @ Ur) = ThT,Vy
and set U, = Ug(:,l:?z).

3. Compute the SVD A3, - (U, ® Up) =
and set Uz = 03(:, 1:73).

Usx3 V'

Initial guess via the HOSVD. The highlighted matrix-matrix products
are structured and ecomomies can be realized.
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A Jacobi Variant
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A Jacobi Procedure

Maximizing Mass on the Diagonal

Assume that A is m-by-m-by-m and define

¢(A) = Zaiii
i=1

Our goal is to compute orthogonal U, V, and W so that if the tensor
tensor S is defined by

vec(S) = (W ® V ® U)vec(A)
then ¢(S) is maximized.

The Jacobi SVD procedure for matrices can be derived with a trace max
objective function.
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A Jacobi Procedure

Updating: Make & More Diagonal
Currrent: vec(A) = (W ® V ® U) - vec(S)

Determine: Orthogonal U, V, and W so that if
vec(§) = W@ V@ U)T - vec(S)

then ¢(S) > #(S).
Update:

vec(A) = (W V®U)-vec(S)

Weveu) (WeVel)-ved)

(W- Wev.ve U-U) vec(S)
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A Jacobi Procedure

Simple, Tractable Choices...

I ® Jog(B) ® Jpg(a)
WOVRU = JB) ® 1 © Jpgla)
Jpg(B) ® Jpgla) ® I,

where Jpq(6) is a Jacobi rotation in planes p and q.

These updates modify only two diagonal entries: (p, p, p) and (q, q, q).
Sweep through all possible (p, q) and all three types of updates.
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A Jacobi Procedure

A Sample 2-by-2-by-2 Subproblem

Choose ¢, = cos(w), s,) = sin(a), cg = cos(3), and sg) = sin(/3), so
that if

-
0111 0121 - Co  Sa S111 S121 3 Sp
0211 0221 —Sa  Ca 5211 S221 —S3 Cp

and

-
0112 0122 - Co  Sa S112 S122 B Sp
0212 0222 —Sa  Ca 5212 5222 —S3 Cp

then o111 + 0225 is maximized.
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The Tensor Train Representation

Structured Matrix Computations from Structured Tensors = Lecture 3. Tucker and Tensor Train Decompositions



The Tensor Train ldea

A Data Sparse Representation

Approximate a high-order tensor with a collection of order-3 tensors.

Each order-3 tensor is connected to its left and right “neighbor”
through a simple summation.
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Tensor Train: An Example

Given the " carriages” ...

Gi: mXxXn

Go: nXnmxXn
93: X N3 Xnr
Ga: 3 X ngXn

Gs: 13 X ng

We define the train” A(1:n1,1:n2,1:n3,1:n4,1:n5)...

A(i17 i27 i3, i4, I5)

n r ] a

YD DD Gilis ka)-Golka, ia, ka)-Ga(ka, s, k) Ga(ks, ia, ka)-Gs(ka, is)

ki=1 ko=1 k3=1 ks=1

v

Think of a graph where the nodes are low-order tensors and the edges are
the summations.
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Tensor Train: An Example

Given the "carriages” ...

Gi: mXxXn

Go: X nXn
G3: nXnmxXn
Gs: B3 X NgXn

Gs: 14 X ns

We define the train” A(1:nq1,1:n2,1:n3,1:n4,1:n5)...

A(ilv i27 i3, i4, I5)

rn r &} s

Z Z Z Z G1(ir, k1)-Go( ki, i, k2)-Ga(ko, i3, k3)-Ga(ks, ia, ka)-Gs(ka, is)

ki=1 ko=1 ka=1 ks=1

o’

O(nr?) vs O(n®)
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Tensor Train: An Example

Given the "carriages” ...

Gi: mXxXn

Go: X nXn
G3: nXnmxXn
Gs: B3 X NgXn

Gs: 14 X ns

We define the train” A(1:nq1,1:n2,1:n3,1:n4,1:n5)...

A(ilv i27 i3, i4, I5)

r &} s

SO YD Gilin ka)-Galka, i, k2)-Ga(ka, is, ks)-Ga(ks, ia, ka)-Gs (Kas is)

ki=1 ko=1 k3=1 ks=1

o’

O(nr?) vs O(n®)
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Tensor Train: An Example

Given the "carriages” ...

Gi: mXxXn

Go: X nXn
G3: nXnmxXn
Gs: B3 X NgXn

Gs: 14 X ns

We define the train” A(1:nq1,1:n2,1:n3,1:n4,1:n5)...

A(ilv i27 i3, i4, I5)

n r r3 s

DX DD Galis ka)-Golka, o, ko)-Ga(ka, s, ka)-Galks, a, ka)-Gs(ka i)

ki=1 ko=1 k3=1 ka=1

o’

O(nr?) vs O(n®)
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Tensor Train: An Example

Given the "carriages” ...

Gi: mXxXn

Go: X nXn
G3: nXnmxXn
Gs: B3 X NgXn

Gs: 14 X ns

We define the train” A(1:nq1,1:n2,1:n3,1:n4,1:n5)...

A(ila i2a i37 i47 l5)

n rn r r

DD Gl ka)-Galka o, ko)-Ga(ko, i, ka)-Ga(ks, i, ka)-Gs(ka )

ki=1 ko=1 k3=1 k=1

o’

O(nr?) vs O(n®)

Structured Matrix Computations from Structured Tensors = Lecture 3. Tucker and Tensor Train Decompositions



Computing a Tensor Train Representation

Main ldea

A sequence of unfoldings is produced.
The unfoldings get narrower and narrower.
A rank-revealing SVD U(XV ") = UZ is computed each time.

The “carriages” are reshaped U-matrices.
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Computing a Tensor Train Representation

1(a) Rank-revealing SVD: reshape(A, [n1 , npnsmans]) = Ui Z;. J

G1 = reshape(U, [m, n]).
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Computing a Tensor Train Representation

1(a) Rank-revealing SVD: reshape(A, [y, mpnsmans]) = Ui Z;.

G1 = reshape(Us, [n1, r1]).

2(a) Rank-revealing SVD: reshape(Zy, [riny, n3ngns]) = U Zs.

Gy = reshape(Us, [r1, N2, 12]).
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Computing a Tensor Train Representation

1(a) Rank-revealing SVD: reshape(A, [y, mpn3mans]) = Ui Z;.

G1 = reshape(U, [m, n]).

2(a) Rank-revealing SVD: reshape(Zy, [ ny, n3ngns]) = U Zs.

G> = reshape(Us, [, m, 12])-

3(a) Rank-revealing SVD: reshape(Zy, [ran3, nans]) = UsZs.

G3 = reshape(Us, [, n3, 13]).

Structured Matrix Computations from Structured Tensors = Lecture 3. Tucker and Tensor Train Decompositions



Computing a Tensor Train Representation

1(a) Rank-revealing SVD: reshape(A, [n1, mnznans]) = Ui Z;.

G1 = reshape(U, [m, n]).

2(a) Rank-revealing SVD: reshape(Z1, [rm, n3nans]) = UxZs.

G, = reshape(Us, [r1, n2, 12]).

3(a) Rank-revealing SVD: reshape(Zz, [ran3, mns|) = UsZs.

G3 = reshape(Us, [, n3, 13]).

4(a) Rank-revealing SVD: reshape(Zs, [r3n4, n5]) = UsZy.

G4 = reshape(Us, [r3, N4, r4]).

Gs = reshape(Zy, [r4, ns]).
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