
Structured Matrix Computations from Structured Tensors

Lecture 3. The Tucker and Tensor Train
Decompositions

Charles F. Van Loan

Cornell University

CIME-EMS Summer School
June 22-26, 2015

Cetraro, Italy

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 1 / 69



The Setting

Good News/Bad News

The singular values of a general matrix and the eigenvalues of a
symmetric matrix have variational definitions and these ideas can be
extended to tensors.

However, these ideas are not strong enough to put together a tensor
decomposition like the SVD:

A = UΣV T =

rank(A)∑
k=1

σkukvT
k

Why Do We Like Matrix Factorizations?

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 2 / 69



The Factorization Paradigm in Matrix Computations

Typical...

Convert the given problem into an equivalent easy-to-solve problem
by using the “right” matrix decomposition.

PA = LU, Ly = Pb, Ux = y =⇒ Ax = b

Also Typical...

Uncover hidden relationships by computing the “right” decomposition
of the data matrix.

A = UΣV T =⇒ A ≈
r̃∑

i=1

σiuiv
T
i

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 3 / 69



The Factorization Paradigm in Matrix Computations

A = UΣV T PA = LU A = QR A = GGT PAPT = LDLT QTAQ = D
X−1AX = J UTAU = T AP = QR A = ULV T PAQT = LU A = UΣV T

PA = LU A = QR A = GGT PAPT = LDLT QTAQ = D X−1AX = J
UTAU = T AP = QR A = ULV T PAQT = LU A = UΣV T PA = LU
A = QR A = GGT PAPT = LDLT QTAQ = D X−1AX = J UTAU = T
AP = QR A = ULV T PAQT = LU A = UΣV T PA = LU A = QR
A = GGT PAPT = LDLT QTAQ = D X−1AX = J UTAU = T
A = ULV T PAQT = LU A = UΣV T PA = LU A = QR A = GGT

PAPT = LDLT QTAQ = D X−1AX = J UTAU = T AP = QR
A = ULV T PAQT = LU A = UΣV T PA = LU A = QR A = GGT

PAPT = LDLT QTAQ = D X−1AX = J AP = QR A = ULV T

PAQT = LU A = UΣV T PA = LU A = QR A = GGT PAPT = LDLT

QTAQ = D X−1AX = J UTAU = T AP = QR A = ULV T PAQT = LU
A = UΣV T PA = LU A = QR A = GGT PAPT = LDLT QTAQ = D
X−1AX = J UTAU = T AP = QR A = ULV T PAQT = LU A = UΣV T

PA = LU A = QR PAPT = LDLT QTAQ = D X−1AX = J UTAU = T
AP = QR A = ULV T PAQT = LU A = UΣV T PA = LU A = QR

It’s a Language

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 4 / 69



Anticipating the Same Thing for Tensors

= σ1 w1 ◦ v1 ◦ u1 + σ2 w2 ◦ v2 ◦ u2 + . . .

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 5 / 69



Anticipating the Same Thing for Tensors

Question 1

Can we solve tensor problems by converting them to (approximately)
equivalent easy-to-solve problems using a tensor decomposition?

Question 2

Can we uncover hidden patterns in tensor data by computing an
appropriate tensor decomposition?

These questions will be addessed in this lecture and the next.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 6 / 69



What is this Lecture About?

Outline

The Tucker Product Representation and Its Properties

The Mode-k Product and the Tucker Product

The Higher-Order SVD of a tensor

An Alternating Least Squares Framework for Reduced-Rank
Tucker Approximation

The Tensor Train Representation

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 7 / 69



The Tucker Product Representation

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 8 / 69



Tucker Product: The Matrix Case

Definition

The Tucker product between a matrix

S : r1 × r2

and matrices

U1 : n1 × r1

U2 : n2 × r2

is the n1 × n2 matrix defined by

A(i1, i2) =
r1∑

j1=1

r2∑
j2=1

S(j1, j2) · U1(i1, j1) · U2(i2, j2)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 9 / 69



Tucker Product: The Matrix Case

It is Actually Just the Product of Three Matrices

A(i1, i2) =
r1∑

j1=1

r2∑
j2=1

S(j1, j2) · U1(i1, j1) · U2(i2, j2)

A = U1SUT
2

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 10 / 69



Tucker Product: The Matrix Case

It is Actually the Sum of Rank-1 Matrices

A(i1, i2) =
r1∑

j1=1

r2∑
j2=1

S(j1, j2) · U1(i1, j1) · U2(i2, j2)

A = U1SUT
2

A =
r1∑

j1=1

r2∑
j2=1

S(j1, j2) · U1(:, j1) · U2(:, j2)
T

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 11 / 69



Tucker Product: The Matrix Case

It is Actually the Sum of Kronecker Products Between Vectors

A(i1, i2) =
r1∑

j1=1

r2∑
j2=1

S(j1, j2) · U1(i1, j1) · U2(i2, j2)

A = U1SUT
2

A =
r1∑

j1=1

r2∑
j2=1

S(j1, j2) · U1(:, j1) · U2(:, j2)
T

vec(A) =
r1∑

j1=1

r2∑
j2=1

S(j1, j2) · U2(:, j2)⊗ U1(:, j2)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 12 / 69



Tucker Product: The Matrix Case

It is Actually a Giant Matrix-Vector Product

A(i1, i2) =
r1∑

j1=1

r2∑
j2=1

S(j1, j2) · U1(i1, j1) · U2(i2, j2)

A = U1SUT
2

A =
r1∑

j1=1

r2∑
j2=1

S(j1, j2) · U1(:, j1) · U2(:, j2)
T

vec(A) =
r1∑

j1=1

r2∑
j2=1

S(j1, j2)U2(:, j2)⊗ U1(:, j2)

vec(A) = (U2 ⊗ U1) · vec(S)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 13 / 69



Tucker Product: The Tensor Case

Definition (Order-3)

The Tucker product between a tensor

S : r1 × r2 × r3

and matrices

U1 : n1 × r1

U2 : n2 × r2

U3 : n3 × r3

is the n1 × n2 × n3 tensor defined by

A(i1, i2, i3) =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(i1, j1) · U2(i2, j2) · U3(i3, j3)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 14 / 69



Tucker Product: The Tensor Case

It is Actually the Sum of Rank-1 Tensors...

A(i1, i2, i3) =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(i1, j1) · U2(i2, j2) · U3(i3, j3)

A =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 15 / 69



Tucker Product: The Tensor Case

It is Actually the Sum of Kronecker Products Between Vectors

A(i1, i2, i3) =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(i1, j1) · U2(i2, j2) · U3(i3, j3)

A =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3)

vec(A) =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U3(:, j3)⊗ U2(:, j2)⊗ U1(:, j1)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 16 / 69



Tucker Product: The Tensor Case

It is Actually a Giant Matrix-Vector Product

A(i1, i2, i3) =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(i1, j1) · U2(i2, j2) · U3(i3, j3)

A =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3)

vec(A) =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U3(:, j3)⊗ U2(:, j2)⊗ U1(:, j1)

vec(A) = (U3 ⊗ U2 ⊗ U1) · vec(S)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 17 / 69



The Tucker Product

It is a “Representation”

A(i1, i2, i3) =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(i1, j1) · U2(i2, j2) · U3(i3, j3)

We are representing the tensor A in terms of the tensor S and the matrices
U1, U2, and U3.

Can we compute a Tucker Product representation that is
especially illuminating or useful?

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 18 / 69



Improving the Tucker Tucker Representation

Computing the SVD of a Matrix

Have:
A = U1SUT

2 U1, U2 Orthogonal

Improve:

A = (U1∆1)(∆1
TS∆2)(U2∆2)

T
E.g., make S more diagonal
by choosing clever orthogonal
∆1 and ∆2

Update:

S ← ∆1
TS∆2 U1 ← U1∆1 U2 ← U2∆2

We would like to do the same thing for tensors, but what are the
“update operations”?

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 19 / 69



The Mode-k Product

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 20 / 69



The Mode-k Product

Main Idea

Given A ∈ IRn1×n2×n3 , a mode k , and a matrix M, we apply M to
every mode-k fiber.

Recall that

A(2) =

 a111 a211 a311 a411 a112 a212 a312 a412

a121 a221 a321 a421 a122 a222 a322 a422

a131 a231 a331 a431 a132 a232 a332 a432


is the mode-2 unfolding of A ∈ IR4×3×2 and its columns are its
mode-2 fibers

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 21 / 69



The Mode-k Product

A Mode-2 Example When A ∈ IR4×3×2


b111 b211 b311 b411 b112 b212 b312 b412

b121 b221 b321 b421 b122 b222 b322 b422

b131 b231 b331 b431 b132 b232 b332 b432

b141 b241 b341 b441 b142 b242 b342 b442

b151 b251 b351 b451 b152 b252 b352 b452


=

m11 m12 m13

m21 m22 m23

m31 m32 m33

m41 m42 m43

m51 m52 m53


 a111 a211 a311 a411 a112 a212 a312 a412

a121 a221 a321 a421 a122 a222 a322 a422

a131 a231 a331 a431 a132 a232 a332 a432



Note: (1) B ∈ IR4×5×2 and (2) B(2) = M · A(2).

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 22 / 69



The Mode-k Product: Definition

Mode-1

If A ∈ IRn1×n2×n3 and M ∈ IRn1×n1 , then the mode-1 product

B = A ×1 M ∈ IRn1×n2×n3

is defined by

B(i1, i2, i3) =

n1∑
k=1

M(i1, k)A(k, i2, i3)

Two Equivalent Formulations...

B(1) = M · A(1)

vec(B) = (In3
⊗ In2

⊗M)vec(A)

For now, assume M is square. Not necessary in general.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 23 / 69



The Mode-k Product: Definition

Mode-2

If A ∈ IRn1×n2×n3 and M ∈ IRn2×n2 , then the mode-2 product

B = A ×2 M ∈ IRn1×n2×n3

is defined by

B(i1, i2, i3) =

n2∑
k=1

M(i2, k)A(i1, k, i3)

Two Equivalent Formulations...

B(2) = M · A(2)

vec(B) = (In3
⊗M ⊗ In1)vec(A)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 24 / 69



The Mode-k Product: Definition

Mode-3

If A ∈ IRn1×n2×n3 and M ∈ IRn3×n3 , then the mode-3 product

B = A ×3 M ∈ IRn1×n2×m3

is defined by

B(i1, i2, i3) =

n3∑
k=1

M(i3, k)A(i1, i2, k)

Two Equivalent Formulations...

B(3) = M · A(3)

vec(B) = (M ⊗ In2
⊗ In1)vec(A)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 25 / 69



The Mode-k Product: Properties

Successive Products in the Same Mode

If A ∈ IRn1×n2×n3 and M1,M2 ∈ IRnk×nk , then

(A ×k M1) ×k M2 = A ×k (M1M2).

Successive Products in Different Modes

If A ∈ IRn1×n2×n3 , Mk ∈ IRnk×nk , Mj ∈ IRnj×nj , and k 6= j , then

(A ×k Mk) ×j Mj = (A ×j Mj) ×k Mk

The order is not important so we just write A ×j Mj ×k Mk .

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 26 / 69



The Tucker Product

It is a Collection of Modal Products

The Tucker Product of the tensor

S ∈ IRr1× r2× r3

with the matrices U1 ∈ IRn1×r1, U2 ∈ IRn2×r2, and U3 ∈ IRn3×r3 is given by

A(i1, i2, i3) =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(i1, j1) · U2(i2, j2) · U3(i3, j3)

= S ×1 U1 ×2 U2 ×3 U3

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 27 / 69



The Tucker Product Representation

A Simple but Important Result

If A ∈ IRn1×n2×n3 and U1 ∈ IRn1×n1 , U2 ∈ IRn2×n2 , and U3 ∈ IRn3×n3

are nonsingular, then

A = S ×1 U1 ×2 U2 ×3 U3

where
S = A ×1 U−1

1 ×2 U−1
2 ×3 U−1

3 .

We will refer to the Uk as the inverse factors and S as the core tensor.

The matrix version: A = U1(U
−1
1 AU−1

2 )U2 = U1SU2

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 28 / 69



Proof.

A = A ×1 (U−1
1 U1) ×2 (U−1

2 U2) ×3 (U−1
3 U3)

=
“
A ×1 U−1

1 ×2 U−1
2 ×3 U−1

3

”
×1 U1 ×2 U2 ×3 U3

= S ×1 U1 ×2 U2 ×3 U3

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 29 / 69



An Orthogonal Tucker Product Representation

If the U’s are Orthogonal

If A ∈ IRn1×n2×n3 and U1 ∈ IRn1×n1 , U2 ∈ IRn2×n2 , and U3 ∈ IRn3×n3

are orthogonal, then

A = S ×1 U1 ×2 U2 ×3 U3

where
S = A ×1 UT

1 ×2 UT
2 ×3 UT

3 .

We are representing A as Tucker product of a “core tensor” S
and three orthogonal matrices.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 30 / 69



The Higher-Order SVD

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 31 / 69



The Tucker Product Representation

The Challenge

Given A ∈ IRn1×n2×n3 , compute

S ∈ IRr1×r2×r3

and

U1 ∈ IRn1×r1 , U2 ∈ IRn2×r2 , U3 ∈ IRn3×r3

such that

A = S ×1 U1 ×2 U2×3 U3

is an “illuminating” Tucker product representation of A.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 32 / 69



The Higher Order SVD (HOSVD)

If the U’s are from the Modal Unfolding SVDs...

Suppose A ∈ IRn1×n2×n3 is given. If

A(1) = U1Σ1V
T
1

A(2) = U2Σ2V
T
2

A(3) = U3Σ3V
T
3

are SVDs and
S = A ×1 UT

1 ×2 UT
2 ×3 UT

3 ,

then
A = S ×1 U1 ×2 U2 ×3 U3,

is the higher-order SVD of A.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 33 / 69



The Higher-Order SVD (HOSVD)

The HOSVD of a Matrix IS the SVD of that Matrix

If d = 2 then A is a matrix and the HOSVD is the SVD. Indeed, if

A = A(1) = U1Σ1V
T
1

AT = A(2) = U2Σ2V
T
2

then we can set U = U1 = V2 and V = U2 = V1. Note that

S = (A ×1 UT
1 ) ×2 UT

2 = (UT
1 A) ×2 U2 = UT

1 AV1 = Σ1.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 34 / 69



The HOSVD

Core Tensor Properties

If

A(1) = U1Σ1V
T
1 A(2) = U2Σ2V

T
2 A(3) = U3Σ3V

T
3

are SVDs and
A = S ×1 U1 ×2 U2 ×3 U3

then

A(1) = U1S(1) (U3 ⊗ U2)
T and S(1) = Σ1V1(U3 ⊗ U2)

It follows that the rows of S(1) are mutually orthogonal and that the singular

values of A(1) are the 2-norms of these rows.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 35 / 69



The HOSVD

Core Tensor Properties

If

A(1) = U1Σ1V
T
1 A(2) = U2Σ2V

T
2 A(3) = U3Σ3V

T
3

are SVDs and
A = S ×1 U1 ×2 U2 ×3 U3

then

A(2) = U2S(2) (U3 ⊗ U1)
T and S(2) = Σ2V2(U3 ⊗ U1)

It follows that the rows of S(2) are mutually orthogonal and that the singular

values of A(2) are the 2-norms of these rows.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 36 / 69



The HOSVD

Core Tensor Properties

If

A(1) = U1Σ1V
T
1 A(2) = U2Σ2V

T
2 A(3) = U3Σ3V

T
3

are SVDs and
A = S ×1 U1 ×2 U2 ×3 U3

then

A(3) = U3S(3) (U2 ⊗ U1)
T and S(3) = Σ3V3(U2 ⊗ U1)

It follows that the rows of S(3) are mutually orthogonal and that the singular

values of A(3) are the 2-norms of these rows.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 37 / 69



The Core Tensor S is Graded

S(1) = Σ1V1(U3 ⊗ U2) ⇒ ‖ S(j , :, :) ‖F = σj(A(1)) j = 1:n1

S(2) = Σ2V2(U3 ⊗ U1) ⇒ ‖ S(:, j , :) ‖F = σj(A(2)) j = 1:n2

S(3) = Σ3V3(U2 ⊗ U1) ⇒ ‖ S(:, :, j) ‖F = σj(A(3)) j = 1:n3

The norms of slices are getting smaller as you move away from A(1, 1, 1)

Notation: σj(C) is the jth largest singular value of the matrix C .

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 38 / 69



Thinking About the HOSVD

It is a Graded Sum of Rank-1 Tensors...

If A = S ×1 U1 ×2 U2 ×3 U3 is the HOSVD of A ∈ IRn1×n2×n3 , then

A =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3)

where r1 = rank(A(1)), r2 = rank(A(2)), and r3 = rank(A(3))

And It Can Be Truncated...

If A = S ×1 U1 ×2 U2 ×3 U3 is the HOSVD of A ∈ IRn1×n2×n3 , then

A ≈
r̃1∑

j1=1

r̃2∑
j2=1

r̃3∑
j3=1

S(j1, j2, j3) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3)

where r̃1 ≤ r1, r̃2 ≤ r2, and r̃3 ≤ r3.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 39 / 69



The Truncated HOSVD

Just “Shorten” the Summations

A =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3)

Ar =
r̃1∑

j1=1

r̃2∑
j2=1

r̃3∑
j3=1

S(j1, j2, j3) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3)

What can we say about the “thrown away” terms?

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 40 / 69



The Truncated HOSVD

Just “Shorten” the Summations

A =
r1∑

j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3)

Ar =
r̃1∑

j1=1

r̃2∑
j2=1

r̃3∑
j3=1

S(j1, j2, j3) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3)

Use these results...

‖ S(j , :, :) ‖F = σj(A(1)) j = 1:n1

‖ S(:, j , :) ‖F = σj(A(2)) j = 1:n2

‖ S(:, :, j) ‖F = σj(A(3)) j = 1:n3

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 41 / 69



Optional “Fun” Problem

Problem E3. What can you say about ‖ A −Ar ‖F assuming that
σr̃1(A(1)) ≤ δ, σr̃2(A(2)) ≤ δ, and σr̃3(A(3)) ≤ δ?

Problem A3. In the QR with column pivoting (QRP) decomposition
AP = QR the upper triangular matrix R ∈ IRn×n is graded in the sense that

r 2
jj ≥

kX
i=j

r 2
ik k = j :n

Formulate an HOQRP factorization for a tensor A ∈ IRn1×n2×n3 that is
based on the QR-with-column-pivoting factorizations

A(k)Pk = QkRk

for k = 1:3. Does the core tensor have any special “grading” properties?

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 42 / 69



The Tucker Nearness Problem

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 43 / 69



Modal Rank

Definition

We say that

A =

r1∑
j1=1

r2∑
j2=1

r3∑
j3=1

S(j1, j2, j3) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3)

has modal rank (r1, r2, r3) if r1 = rank(A(1)), r2 = rank(A(2)), and
r3 = rank(A(3)),

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 44 / 69



The Tucker Nearness Problem

Approximation With a “Shorter” Tucker Product

Assume that A ∈ IRn1×n2×n3 has modal rank (r1, r2, r3). Given integers r̃1, r̃2
and r̃3 that satisfy r̃1 ≤ r1, r̃2 ≤ r2, and r̃3 ≤ r3, compute

U1: n1 × r̃1, orthonormal columns

U2: n2 × r̃2, orthonormal columns

U3: n3 × r̃3, orthonormal columns

and tensor S ∈ IRr̃1×r̃2×r̃3 so that∥∥∥∥∥∥ A −
r̃1∑

j1=1

r̃2∑
j2=1

r̃3∑
j3=1

S(j1, j2, j3) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3)

∥∥∥∥∥∥
F

is minimized.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 45 / 69



The Tucker Nearness Problem

The Plan...

Develop a component-wise optimization framework for minimizing∥∥∥∥∥∥ A −
r̃1∑

j1=1

r̃2∑
j2=1

r̃3∑
j3=1

S(j1, j2, j3) · U1(:, j1) ◦ U2(:, j2) ◦ U3(:, j3)

∥∥∥∥∥∥
F

Equivalent to finding U1, U2, and U3 (all with orthonormal columns)
and core tensor S ∈ IRr̃1×r̃2×r̃3 so that

‖ vec(A) − (U3 ⊗ U2 ⊗ U1)vec(S) ‖F

is minimized.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 46 / 69



The Tucker Nearness Problem

The “Removal” of S
Since S must minimize

‖ vec(A) − (U3 ⊗ U2 ⊗ U1) · vec(S) ‖

and U3 ⊗ U2 ⊗ U1 has orthonormal columns, we see that

S =
(
UT

3 ⊗ UT
2 ⊗ UT

1

)
· vec(A).

Thus, the goal is to choose the Ui so that

‖
(
I − (U3 ⊗ U2 ⊗ U1)

(
UT

3 ⊗ UT
2 ⊗ UT

1

))
vec(A) ‖

is minimized.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 47 / 69



The Tucker Nearness Problem

Reformulation...

Since U3 ⊗ U2 ⊗ U1 has orthonormal columns, it follows that
minimizing

‖
(
I − (U3 ⊗ U2 ⊗ U1)

(
UT

3 ⊗ UT
2 ⊗ UT

1

))
vec(A) ‖

is the same as maximizing

‖
(
UT

3 ⊗ UT
2 ⊗ UT

1

)
· vec(A) ‖

If Q has orthonormal columns then ‖ (I − QQT )a ‖2

2 = ‖ a ‖2 − ‖ QTa ‖2

2.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 48 / 69



The Tucker Nearness Problem

Three Reshapings of the Objective Function...

‖
(
UT

3 ⊗ UT
2 ⊗ UT

1

)
· vec(A) ‖

=

‖ UT
1 · A(1) · (U3 ⊗ U2) ‖F

=

‖ UT
2 · A(2) · (U3 ⊗ U1) ‖F

=

‖ UT
3 · A(3) · (U2 ⊗ U1) ‖F

Sets the stage for a componentwise optimization solution approach...

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 49 / 69



Componentwise Optimization Framework

A Sequence of Three Linear Problems...

‖
(
UT

3 ⊗ UT
2 ⊗ UT

1

)
· vec(A) ‖

=

‖ UT
1 · A(1) · (U3 ⊗ U2) ‖F

=

‖ UT
2 · A(2) · (U3 ⊗ U1) ‖F

=

‖ UT
3 · A(3) · (U2 ⊗ U1) ‖F

⇐ 1. Fix U2 and U3 and
maximize with U1.

⇐ 2. Fix U1 and U3 and
maximize with U2.

⇐ 3. Fix U1 and U2 and
maximize with U3.

These max problems are SVD problems...

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 50 / 69



How do you maximize ‖ QTM ‖F where Q ∈ IRm×r has orthonormal
columns, M ∈ IRm×n, and r ≤ n?

If
M = UΣV T

is the SVD of M, then

‖ QTM ‖2F = ‖ QTUΣV T ‖2F = ‖ QTUΣ ‖2F

=
n∑

k=1

σ2
k‖ QTU(:, k) ‖22.

The best you can do is to set Q = U(:, 1:r).

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 51 / 69



Solution Framework

A Sequence of Three Linear Problems...

Repeat:

1. Compute the SVD A(1) · (U3 ⊗ U2) = Ũ1Σ1V
T
1

and set U1 = Ũ1(:, 1:r̃1).

2. Compute the SVD A(2) · (U3 ⊗ U1) = Ũ2Σ2V
T
2

and set U2 = Ũ2(:, 1:r̃2).

3. Compute the SVD A(3) · (U2 ⊗ U1) = Ũ3Σ3V
T
3

and set U3 = Ũ3(:, 1:r̃3).

Initial guess via the HOSVD. The highlighted matrix-matrix products
are structured and ecomomies can be realized.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 52 / 69



A Jacobi Variant

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 53 / 69



A Jacobi Procedure

Maximizing Mass on the Diagonal

Assume that A is m-by-m-by-m and define

φ(A) =
n∑

i=1

aiii

Our goal is to compute orthogonal U, V , and W so that if the tensor
tensor S is defined by

vec(S) = (W ⊗ V ⊗ U)vec(A)

then φ(S) is maximized.

The Jacobi SVD procedure for matrices can be derived with a trace max
objective function.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 54 / 69



A Jacobi Procedure

Updating: Make S More Diagonal

Currrent: vec(A) = (W ⊗ V ⊗ U) · vec(S)

Determine: Orthogonal Ũ, Ṽ , and W̃ so that if

vec(S̃) = (W̃ ⊗ Ṽ ⊗ Ũ)T · vec(S)

then φ(S̃) > φ(S).

Update:

vec(A) = (W ⊗ V ⊗ U) · vec(S)

= (W ⊗ V ⊗ U) ·
(
W̃ ⊗ Ṽ ⊗ Ũ

)
· vec(S̃)

=
(
W ·W̃ ⊗ V ·Ṽ ⊗ U ·Ũ

)
· vec(S̃)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 55 / 69



A Jacobi Procedure

Simple, Tractable Choices...

W̃ ⊗ Ṽ ⊗ Ũ =


In ⊗ Jpq(β) ⊗ Jpq(α)

Jpq(β) ⊗ In ⊗ Jpq(α)

Jpq(β) ⊗ Jpq(α) ⊗ In

where Jpq(θ) is a Jacobi rotation in planes p and q.

These updates modify only two diagonal entries: (p, p, p) and (q, q, q).
Sweep through all possible (p, q) and all three types of updates.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 56 / 69



A Jacobi Procedure

A Sample 2-by-2-by-2 Subproblem

Choose cα = cos(α), sα) = sin(α), cβ = cos(β), and sβ) = sin(β), so
that if[

σ111 σ121

σ211 σ221

]
=

[
cα sα
−sα cα

]T [
s111 s121

s211 s221

] [
cβ sβ
−sβ cβ

]
and[

σ112 σ122

σ212 σ222

]
=

[
cα sα
−sα cα

]T [
s112 s122

s212 s222

] [
cβ sβ
−sβ cβ

]
then σ111 + σ222 is maximized.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 57 / 69



The Tensor Train Representation

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 58 / 69



The Tensor Train Idea

A Data Sparse Representation

Approximate a high-order tensor with a collection of order-3 tensors.

Each order-3 tensor is connected to its left and right “neighbor”
through a simple summation.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 59 / 69



Tensor Train: An Example

Given the ”carriages”...

G1: n1 × r1

G2: r1 × n2 × r2

G3: r2 × n3 × r3

G4: r3 × n4 × r4

G5: r4 × n5

We define the train” A(1:n1, 1:n2, 1:n3, 1:n4, 1:n5)...

A(i1, i2, i3, i4, i5)
=

r1∑
k1=1

r2∑
k2=1

r3∑
k3=1

r4∑
k4=1

G1(i1, k1)·G2(k1, i2, k2)·G3(k2, i3, k3)·G4(k3, i4, k4)·G5(k4, i5)

Think of a graph where the nodes are low-order tensors and the edges are
the summations.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 60 / 69



Tensor Train: An Example

Given the ”carriages”...

G1: n1 × r1

G2: r1 × n2 × r2

G3: r2 × n3 × r3

G4: r3 × n4 × r4

G5: r4 × n5

We define the train” A(1:n1, 1:n2, 1:n3, 1:n4, 1:n5)...

A(i1, i2, i3, i4, i5)
=

r1∑
k1=1

r2∑
k2=1

r3∑
k3=1

r4∑
k4=1

G1(i1, k1)·G2(k1, i2, k2)·G3(k2, i3, k3)·G4(k3, i4, k4)·G5(k4, i5)

O(nr2) vs O(n5)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 61 / 69



Tensor Train: An Example

Given the ”carriages”...

G1: n1 × r1

G2: r1 × n2 × r2

G3: r2 × n3 × r3

G4: r3 × n4 × r4

G5: r4 × n5

We define the train” A(1:n1, 1:n2, 1:n3, 1:n4, 1:n5)...

A(i1, i2, i3, i4, i5)
=

r1∑
k1=1

r2∑
k2=1

r3∑
k3=1

r4∑
k4=1

G1(i1, k1)·G2(k1, i2, k2)·G3(k2, i3, k3)·G4(k3, i4, k4)·G5(k4, i5)

O(nr2) vs O(n5)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 62 / 69



Tensor Train: An Example

Given the ”carriages”...

G1: n1 × r1

G2: r1 × n2 × r2

G3: r2 × n3 × r3

G4: r3 × n4 × r4

G5: r4 × n5

We define the train” A(1:n1, 1:n2, 1:n3, 1:n4, 1:n5)...

A(i1, i2, i3, i4, i5)
=

r1∑
k1=1

r2∑
k2=1

r3∑
k3=1

r4∑
k4=1

G1(i1, k1)·G2(k1, i2, k2)·G3(k2, i3, k3)·G4(k3, i4, k4)·G5(k4, i5)

O(nr2) vs O(n5)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 63 / 69



Tensor Train: An Example

Given the ”carriages”...

G1: n1 × r1

G2: r1 × n2 × r2

G3: r2 × n3 × r3

G4: r3 × n4 × r4

G5: r4 × n5

We define the train” A(1:n1, 1:n2, 1:n3, 1:n4, 1:n5)...

A(i1, i2, i3, i4, i5)
=

r1∑
k1=1

r2∑
k2=1

r3∑
k3=1

r4∑
k4=1

G1(i1, k1)·G2(k1, i2, k2)·G3(k2, i3, k3)·G4(k3, i4, k4)·G5(k4, i5)

O(nr2) vs O(n5)

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 64 / 69



Computing a Tensor Train Representation

Main Idea

A sequence of unfoldings is produced.

The unfoldings get narrower and narrower.

A rank-revealing SVD U(ΣV T ) = UZ is computed each time.

The “carriages” are reshaped U-matrices.

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 65 / 69



Computing a Tensor Train Representation

1(a) Rank-revealing SVD: reshape(A, [n1 , n2n3n4n5]) = U1Z1.

G1 = reshape(U1, [n1, r1]).

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 66 / 69



Computing a Tensor Train Representation

1(a) Rank-revealing SVD: reshape(A, [n1 , n2n3n4n5]) = U1Z1.

G1 = reshape(U1, [n1, r1]).

2(a) Rank-revealing SVD: reshape(Z1, [r1n2, n3n4n5]) = U2Z2.

G2 = reshape(U2, [r1, n2, r2]).

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 67 / 69



Computing a Tensor Train Representation

1(a) Rank-revealing SVD: reshape(A, [n1 , n2n3n4n5]) = U1Z1.

G1 = reshape(U1, [n1, r1]).

2(a) Rank-revealing SVD: reshape(Z1, [r1n2, n3n4n5]) = U2Z2.

G2 = reshape(U2, [r1, n2, r2]).

3(a) Rank-revealing SVD: reshape(Z2, [r2n3, n4n5]) = U3Z3.

G3 = reshape(U3, [r2, n3, r3]).

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 68 / 69



Computing a Tensor Train Representation

1(a) Rank-revealing SVD: reshape(A, [n1 , n2n3n4n5]) = U1Z1.

G1 = reshape(U1, [n1, r1]).

2(a) Rank-revealing SVD: reshape(Z1, [r1n2, n3n4n5]) = U2Z2.

G2 = reshape(U2, [r1, n2, r2]).

3(a) Rank-revealing SVD: reshape(Z2, [r2n3, n4n5]) = U3Z3.

G3 = reshape(U3, [r2, n3, r3]).

4(a) Rank-revealing SVD: reshape(Z3, [r3n4, n5]) = U4Z4.

G4 = reshape(U4, [r3, n4, r4]).

G5 = reshape(Z4, [r4, n5]).

Structured Matrix Computations from Structured Tensors Lecture 3. Tucker and Tensor Train Decompositions 69 / 69


