Structured Matrix Computations from Structured Tensors

Lecture 4. CP and KSVD Representations

Charles F. Van Loan

Cornell University

CIME-EMS Summer School June 22-26, 2015 Cetraro, Italy

Two More "Tensor SVDs"

The CP Representation has "diagonal" aspect like the SVD but there is no orthogonality.

The Kronecker Product SVD can be used to write a given matrix as an "optimal" sum of Kronecker products. If the matrix is obtained via a tensor unfolding, then we obtain yet another SVD-like representation.

The CP Representation

The CP Representation

Definition

The CP representation for an $n_1 imes n_2 imes n_3$ tensor $\mathcal A$ has the form

$$\mathcal{A} = \sum_{k=1}^{r} \lambda_k F(:,k) \circ G(:,k) \circ H(:,k)$$

where λ 's are real scalars and $F \in \mathbb{R}^{n_1 \times r}$, $G \in \mathbb{R}^{n_2 \times r}$, and $H \in \mathbb{R}^{n_3 \times r}$

Equivalent

$$\mathcal{A}(i_1, i_2, i_3) = \sum_{j=1}^r \lambda_j \cdot F(i_1, j) \cdot G(i_2, j) \cdot H(i_3, j))$$
$$\operatorname{vec}(\mathcal{A}) = \sum_{j=1}^r \lambda_j \cdot H(:, j) \otimes G(:, j) \otimes F(:, j)$$

Structured Matrix Computations from Structured Tensors

The Tucker Representation

$$\mathcal{A} = \sum_{j_1=1}^{r_1} \sum_{j_2=1}^{r_2} \sum_{j_3=1}^{r_3} \frac{\mathcal{S}(j_1, j_2, j_3)}{\mathcal{S}(j_1, j_2, j_3)} \cdot U_1(:, j_1) \circ U_2(:, j_2) \circ U_3(:, j_3)$$

The CP Representation

$$\mathcal{A} = \sum_{j=1}^{r} \lambda_{j} \cdot F(:,j) \circ G(:,j) \circ H(:,j)$$

In Tucker the U's have orthonormal columns. In CP, the matrices F, G, and H do not have orthonormal columns.

In CP the core tensor is diagonal while in Tucker it is not.

The "CP" Decomposition

It also goes by the name of the CANDECOMP/PARAFAC Decomposition.

CANDECOMP = Canonical Decomposition

PARAFAC = Parallel Factors Decomposition

Structured Matrix Computations from Structured Tensors

A Little More About Tensor Rank

The CP Representation and Rank

Definition

lf

$$\mathcal{A} = \sum_{j=1}^{r} \lambda_{j} \cdot F(:,j) \circ G(:,j) \circ H(:,j)$$

is the shortset possible CP representation of \mathcal{A} , then

$$rank(A) = r$$

Structured Matrix Computations from Structured Tensors

Anomaly 1

The largest rank attainable for an n_1 -by-...- n_d tensor is called the maximum rank. It is *not* a simple formula that depends on the dimensions n_1, \ldots, n_d . Indeed, its precise value is only known for small examples.

Maximum rank does not equal $min\{n_1, \ldots, n_d\}$ unless $d \leq 2$.

Anomaly 2

If the set of rank-k tensors in $\mathbb{R}^{n_1 \times \cdots \times n_d}$ has positive Lebesgue measure, then k is a typical rank.

Size	Typical Ranks	
$2 \times 2 \times 2$	2,3	
$3 \times 3 \times 3$	4	
$3\times 3\times 4$	4,5	
$3 \times 3 \times 5$	5,6	

For n_1 -by- n_2 matrices, typical rank and maximal rank are both equal to the smaller of n_1 and n_2 .

Anomaly 3

The rank of a particular tensor over the real field may be different than its rank over the complex field.

Anomaly 4

A tensor with a given rank may be approximated with arbitrary precision by a tensor of lower rank. Such a tensor is said to be degenerate.

The Nearest CP Problem

Structured Matrix Computations from Structured Tensors

Definition

Given: $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ and *r*

Determine: $\lambda \in \mathbb{R}^r$ and $F \in \mathbb{R}^{n_1 \times r}$, $G \in \mathbb{R}^{n_2 \times r}$, and $H \in \mathbb{R}^{n_3 \times r}$ (with unit 2-norm columns) so that if

$$\mathcal{X} = \sum_{j=1}^{r} \lambda_j \cdot F(:,j) \circ G(:,j) \circ H(:,j)$$

then

$$\| \mathcal{A} - \mathcal{X} \|_{F}^{2}$$

is minimized.

A multilinear optimization problem.

Structured Matrix Computations from Structured Tensors

Equivalent Formulations

$$\left\| \mathcal{A} - \sum_{j=1}^{r} \lambda_{j} \cdot F(:,j) \circ G(:,j) \circ H(:,j) \right\|_{F}$$

$$=$$

$$\left\| \mathcal{A}_{(1)} - \sum_{j=1}^{r} \lambda_{j} \cdot F(:,j) \otimes (H(:,j) \otimes G(:,j))^{T} \right\|_{F}$$

$$=$$

$$\left\| \mathcal{A}_{(2)} - \sum_{j=1}^{r} \lambda_{j} \cdot G(:,j) \otimes (H(:,j) \otimes F(:,j))^{T} \right\|_{F}$$

$$=$$

$$\left\| \mathcal{A}_{(3)} - \sum_{j=1}^{r} \lambda_{j} \cdot H(:,j) \otimes (G(:,j) \otimes F(:,j))^{T} \right\|_{F}$$

Structured Matrix Computations from Structured Tensors

Introducing the Khatri-Rao Product

Definition

lf

$$B = \begin{bmatrix} b_1 & \cdots & b_r \end{bmatrix} \in \mathbb{R}^{n_1 \times r}$$
$$C = \begin{bmatrix} c_1 & \cdots & c_r \end{bmatrix} \in \mathbb{R}^{n_2 \times r}$$

then the Khatri-Rao product of B and C is given by

$$B \odot C = [b_1 \otimes c_1 | \cdots | b_r \otimes c_r].$$

"Column-wise KPs". Note that $B \odot C \in \mathbb{R}^{n_1 n_2 \times r}$.

Equivalent Formulations

$$\left\| \mathcal{A} - \sum_{j=1}^r \lambda_j \cdot F(:,j) \circ G(:,j) \circ H(:,j) \right\|_F$$

$$\parallel \mathcal{A}_{(1)} - F \cdot \operatorname{diag}(\lambda_j) \cdot (H \odot G)^T \parallel_F$$

=

=

$$|\mathcal{A}_{(2)} - G \cdot \operatorname{diag}(\lambda_j) \cdot (H \odot F)^T ||_F$$

$$= |\mathcal{A}_{(3)} - H \cdot \mathsf{diag}(\lambda_j) \cdot (G \odot F)^T ||_F$$

The Alternating LS Solution Framework...

$$\| \mathcal{A} - \mathcal{X} \|_{F}$$

=

=

$$|\mathcal{A}_{(1)} - F \cdot \operatorname{diag}(\lambda_j) \cdot (H \odot G)^T \|_F \quad \Leftarrow$$

$$= 1. Fix G and H and improve λ and F.$$

$$\|\mathcal{A}_{(2)} - G \cdot \operatorname{diag}(\lambda_j) \cdot (H \odot F)^T\|_F \quad \Leftarrow \quad \begin{array}{l} 2. \ \text{Fix } F \ \text{and } H \ \text{and} \\ \text{improve } \lambda \ \text{and} \ G. \end{array}$$

$$\| \mathcal{A}_{(3)} - H \cdot \operatorname{diag}(\lambda_j) \cdot (G \odot F)^T \|_F \quad \Leftarrow \quad \begin{array}{l} \text{3. Fix } F \text{ and } G \text{ and} \\ \text{improve } \lambda \text{ and } H. \end{array}$$

The Alternating LS Solution Framework

Repeat:

1. Let
$$\tilde{F}$$
 minimize $\| \mathcal{A}_{(1)} - \tilde{F} \cdot (H \odot G)^T \|_F$ and for $j = 1:r$ set
 $\lambda_j = \| \tilde{F}(:,j) \|_2$ and $F(:,j) = \tilde{F}(:,j)/\lambda_j$.

2. Let
$$\tilde{G}$$
 minimize $\| \mathcal{A}_{(2)} - \tilde{G} \cdot (H \odot F)^T \|_F$ and for $j = 1:r$ set
 $\lambda_j = \| \tilde{G}(:,j) \|_2$ and $G(:,j) = \tilde{G}(:,j)/\lambda_j$.

3. Let \tilde{H} minimize $\| \mathcal{A}_{(3)} - \tilde{H} \cdot (G \odot F)^T \|_F$ and for j = 1:r set $\lambda_j = \| \tilde{H}(:,j) \|_2$ and $H(:,j) = \tilde{H}(:,j)/\lambda_j$.

These are linear least squares problems. The columns of F, G, and H are normalized.

Structured Matrix Computations from Structured Tensors

Solving the LS Problems

The solution to

$$\min_{\tilde{F}} \| \mathcal{A}_{(1)} - \tilde{F} \cdot (H \odot G)^{T} \|_{F} = \min_{\tilde{F}} \| \mathcal{A}_{(1)}^{T} - (H \odot G) \tilde{F}^{T} \|_{F}$$

can be obtained by solving the normal equation system

$$(H \odot G)^T (H \odot G) \tilde{F}^T = (H \odot G)^T \mathcal{A}_{(1)}^T$$

Can be solved efficiently by exploiting two properties of the Khatri-Rao product.

"Fast" Property 1.

If $B \in {\rm I\!R}^{n_1 imes r}$ and $C \in {\rm I\!R}^{n_2 imes r}$, then

$$(B \odot C)^{\mathsf{T}}(B \odot C) = (B^{\mathsf{T}}B) \cdot \ast (C^{\mathsf{T}}C)$$

where ".*" denotes pointwise multiplication.

The Khatri-Rao Product

"Fast" Property 2.

lf

$$B = \begin{bmatrix} b_1 & \cdots & b_r \end{bmatrix} \in \mathbb{R}^{n_1 \times r}$$
$$C = \begin{bmatrix} c_1 & \cdots & c_r \end{bmatrix} \in \mathbb{R}^{n_2 \times r}$$

$$z \in {\rm I\!R}^{n_1 n_2}$$
, and $y = (B \odot C)^{\mathsf{T}} z$, then

$$y = \begin{bmatrix} c_1^T Z b_1 \\ \vdots \\ c_r^T Z b_r \end{bmatrix} \qquad Z = \operatorname{reshape}(z, n_2, n_1)$$

Overall: The Khatri-Rao LS Problem

Structure

Given $B \in \mathbb{R}^{n_1 \times r}$, $C \in \mathbb{R}^{n_2 \times r}$, and $b \in \mathbb{R}^{n_1 n_2}$, minimize

$$\parallel B \odot C) x - z \parallel_2$$

Data Sparse: An n_1n_2 -by-r LS problem defined by $O((n_1 + n_2)r)$ data.

Solution Procedure

1. Form
$$M = (B^T B) \cdot (C^T C)$$
. $O((n_1 + n_2)r^2)$

- 2. Cholesky: $M = LL^T$. $O(r^3)$.
- 3. Form $y = (B \odot C)^T$ using Property 2. $O(n_1 n_2 r)$.

4. Solve Mx = y. $O(r^2)$.

$$O(n_1n_2r)$$
 vs $O((n_1n_2r^2))$

The Kronecker Product SVD

Structured Matrix Computations from Structured Tensors

Find B and C so that $||A - B \otimes C||_F = \min$

-	a ₁₁ a ₂₁ a ₃₁ a ₄₁ a ₅₁ a ₆₁	 a₁₂ a₂₂ a₃₂ a₄₂ a₅₂ a₆₂ 	 <i>a</i>₁₃ <i>a</i>₂₃ <i>a</i>₃₃ <i>a</i>₄₃ <i>a</i>₅₃ <i>a</i>₆₃ 	<i>a</i> ₁₄ <i>a</i> ₂₄ <i>a</i> ₃₄ <i>a</i> ₄₄ <i>a</i> ₅₄ <i>a</i> ₆₄	$ \left \begin{array}{ccc} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{array} \right \otimes \left[\begin{array}{ccc} c_{11} & c_{12} \\ c_{21} & c_{22} \end{array} \right] \right _{F} $	
-	a ₁₁ a ₃₁ a ₅₁ a ₁₃	<i>a</i> ₂₁ <i>a</i> ₄₁ <i>a</i> ₆₁ <i>a</i> ₂₃	<i>a</i> ₁₂ <i>a</i> ₃₂ <i>a</i> ₅₂ <i>a</i> ₁₄	<i>a</i> ₂₂ <i>a</i> ₄₂ <i>a</i> ₆₂ <i>a</i> ₂₄	$= \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \\ b_{12} \end{bmatrix} \begin{bmatrix} c_{11} & c_{21} & c_{12} & c_{22} \end{bmatrix}$	
1-	а ₃₃ а ₅₃	а ₄₃ а ₆₃	а ₃₄ а ₅₄	а ₄₄ а ₆₄	$\left[\begin{array}{c} b_{22} \\ b_{32} \end{array}\right] \qquad \qquad$	

Structured Matrix Computations from Structured Tensors

Find B and C so that $||A - B \otimes C||_F = \min$

It is a nearest rank-1 problem,

$$(B,C) = \left\| \begin{bmatrix} \frac{a_{11}}{a_{21}} & \frac{a_{12}}{a_{22}} & \frac{a_{22}}{a_{22}} \\ \frac{a_{31}}{a_{31}} & \frac{a_{41}}{a_{32}} & \frac{a_{32}}{a_{42}} \\ \frac{a_{51}}{a_{51}} & \frac{a_{61}}{a_{52}} & \frac{a_{52}}{a_{62}} \\ \frac{a_{33}}{a_{43}} & \frac{a_{43}}{a_{34}} & \frac{a_{44}}{a_{44}} \\ \frac{a_{53}}{a_{53}} & \frac{a_{63}}{a_{54}} & \frac{a_{54}}{a_{64}} \end{bmatrix} - \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \\ b_{12} \\ b_{22} \\ b_{32} \end{bmatrix} \begin{bmatrix} c_{11} & c_{21} & c_{12} & c_{22} \end{bmatrix} \right\|_{F}$$

$$= \| \tilde{A} - \operatorname{vec}(B) \operatorname{vec}(C)^{\mathsf{T}} \|_{\mathsf{F}}$$

with SVD solution:

 ϕ_A

$$\tilde{A} = U\Sigma V^T$$

 $\operatorname{vec}(B) = \sqrt{\sigma_1}U(:, 1)$
 $\operatorname{vec}(C) = \sqrt{\sigma_1}V(:, 1)$

Structured Matrix Computations from Structured Tensors

The "Tilde Matrix"

	a ₁₁	a ₁₂	a ₁₃	a ₁₄ -	1
	a ₂₁	a ₂₂	a ₂₃	<i>a</i> ₂₄	
Δ —	a ₃₁	a ₃₂	a ₃₃	a ₃₄	
// —	a ₄₁	a ₄₂	a ₄₃	a ₄₄	
	a ₅₁	a 52		<i>a</i> 54	
	_ <i>a</i> 61	<i>a</i> ₆₂	<i>a</i> 63	<i>a</i> ₆₄ _	

$$\left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{array}\right]$$

=

implies

$$\tilde{A} = \begin{bmatrix} \frac{a_{11}}{a_{21}} & a_{12} & a_{22} \\ \frac{a_{31}}{a_{31}} & a_{41} & a_{32} & a_{42} \\ \hline a_{51} & a_{61} & a_{52} & a_{62} \\ \hline a_{13} & a_{23} & a_{14} & a_{24} \\ \hline a_{33} & a_{43} & a_{34} & a_{44} \\ \hline a_{53} & a_{63} & a_{54} & a_{64} \end{bmatrix} = \begin{bmatrix} \operatorname{vec}(A_{11})^T \\ \operatorname{vec}(A_{21})^T \\ \operatorname{vec}(A_{21})^T \\ \operatorname{vec}(A_{22})^T \\ \operatorname{vec}(A_{32})^T \end{bmatrix}$$

Structured Matrix Computations from Structured Tensors

The Kronecker Product SVD (KPSVD)

Theorem

lf

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1,c_2} \\ \vdots & \ddots & \vdots \\ A_{r_2,1} & \cdots & A_{r_2,c_2} \end{bmatrix} \qquad A_{i_2,j_2} \in \mathbb{R}^{r_1 \times c_1}$$

then there exist $U_1, \ldots, U_{r_{KP}} \in \mathbb{R}^{r_2 \times c_2}$, $V_1, \ldots, V_{r_{KP}} \in \mathbb{R}^{r_1 \times c_1}$, and scalars $\sigma_1 \geq \cdots \geq \sigma_{r_{KP}} > 0$ such that

$$A = \sum_{k=1}^{r_{KP}} \sigma_k U_k \otimes V_k.$$

The sets $\{vec(U_k)\}\ and\ \{vec(V_k)\}\ are orthonormal and\ r_{KP}\ is the Kronecker rank of A with respect to the chosen blocking.$

The Kronecker Product SVD (KPSVD)

Constructive Proof

Compute the SVD of \tilde{A} :

$$\tilde{A} = U\Sigma V^{T} = \sum_{k=1}^{r_{KP}} \sigma_{k} u_{k} v_{k}^{T}$$

and define the U_k and V_k by

$$\operatorname{vec}(U_k) = u_k$$

 $\operatorname{vec}(V_k) = v_k$

for $k = 1:r_{KP}$.

$$U_k = \texttt{reshape}(u_k, r_2, c_2), \ V_k = \texttt{reshape}(v_k, r_1, c_1)$$

The Kronecker Product SVD (KPSVD)

Nearest rank-r

If $r \leq r_{KP}$, then

$$A_r = \sum_{k=1}^r \sigma_k U_k \otimes V_k$$

is the nearest matrix to A (in the Frobenius norm) that has Kronecker rank r.

$\min_{B,C} || A - B \otimes C ||_F$ Problems

If A is symmetric and positive definite, then so are B and C.

If A is a block Toeplitz with Toeplitz blocks, then B and C are Toeplitz.

If A is a block band matrix with banded blocks, the B and C are banded.

Can use Lanczos SVD if A is large and sparse.

A Tensor Approximation Idea

Motivation

Unfold $\mathcal{A} \in {\rm I\!R}^{n imes n imes n imes n}$ into an n^2 -by- n^2 matrix \mathcal{A} .

Express A as a sum of Kronecker products:

$$A = \sum_{k=1}^{r} \sigma_k B_k \otimes C_k \qquad B_k, C_k \in \mathbb{R}^{n \times n}$$

Back to tensor:

$$\mathcal{A} = \sum_{k=1}^{r} \sigma_k \mathcal{C}_k \circ \mathcal{B}_k$$

i.e.,

$$\mathcal{A}(i_1, i_2, j_1, j_2) = \sum_{k=1}^r \sigma_k C_k(i_1, i_2) B_k(j_1, j_2)$$

Sums of tensor products of matrices instead of vectors.

Structured Matrix Computations from Structured Tensors

Harder

$$\begin{split} \phi_{A}(B,C,D) &= \\ &= \\ &\|A - B \otimes C \otimes D\|_{F} \\ &= \\ &\int \sum_{i_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{2}=1}^{c_{2}} \sum_{i_{3}=1}^{r_{3}} \sum_{j_{3}=1}^{c_{2}} \mathcal{A}(i_{1},j_{1},i_{2},j_{2},i_{3},j_{3}) - \mathcal{B}(i_{3},j_{3})\mathcal{C}(i_{2},j_{2})D(i_{1},j_{1}) \end{split}$$

Trying to approximate an order-6 tensor with a triplet of order-2 tensors. Would have to apply componentwise optimization.

Structured Matrix Computations from Structured Tensors

Concluding Remarks

Structured Matrix Computations from Structured Tensors

Optional "Fun" Problems

Problem E4. Suppose

$$A = \begin{bmatrix} B_{11} \otimes C_{11} & B_{12} \otimes C_{12} \\ B_{21} \otimes C_{21} & B_{22} \otimes C_{22} \end{bmatrix}$$

and that the B_{ij} and C_{ij} are each *m*-by-*m*. (a) Assuming that structure is fully exploited, how many flops are required to compute y = Ax where $x \in \mathbb{R}^{2m^2}$? (b) How many flops are required to explicitly form *A*? (c) How many flops are required to compute y = Ax assuming that *A* has been explicitly formed?

Problem A4. Suppose A is n^2 -by- n^2 . How would you compute $X \in \mathbb{R}^{n \times n}$ so that $||A - X \otimes X||_F$ is minimized?