Structured Matrix Computations from Structured Tensors

Lecture 4. CP and KSVD Representations

Charles F. Van Loan

Cornell University

CIME-EMS Summer School
June 22-26, 2015
Cetraro, Italy

What is this Lecture About?

Two More "Tensor SVDs"

The CP Representation has "diagonal" aspect like the SVD but there is no orthogonality.

The Kronecker Product SVD can be used to write a given matrix as an "optimal" sum of Kronecker products. If the matrix is obtained via a tensor unfolding, then we obtain yet another SVD-like representation.

The CP Representation

The CP Representation

Definition

The CP representation for an $n_{1} \times n_{2} \times n_{3}$ tensor \mathcal{A} has the form

$$
\mathcal{A}=\sum_{k=1}^{r} \lambda_{k} F(:, k) \circ G(:, k) \circ H(:, k)
$$

where λ 's are real scalars and $F \in \mathbb{R}^{n_{1} \times r}, G \in \mathbb{R}^{n_{2} \times r}$, and $H \in \mathbb{R}^{n_{3} \times r}$

Equivalent

$$
\begin{aligned}
\mathcal{A}\left(i_{1}, i_{2}, i_{3}\right) & \left.=\sum_{j=1}^{r} \lambda_{j} \cdot F\left(i_{1}, j\right) \cdot G\left(i_{2}, j\right) \cdot H\left(i_{3}, j\right)\right) \\
\operatorname{vec}(\mathcal{A}) & =\sum_{j=1}^{r} \lambda_{j} \cdot H(:, j) \otimes G(:, j) \otimes F(:, j)
\end{aligned}
$$

Tucker Vs. CP

The Tucker Representation

$$
\mathcal{A}=\sum_{j_{1}=1}^{r_{1}} \sum_{j_{2}=1}^{r_{2}} \sum_{j_{3}=1}^{r_{3}} \mathcal{S}\left(j_{1}, j_{2}, j_{3}\right) \cdot U_{1}\left(:, j_{1}\right) \circ U_{2}\left(:, j_{2}\right) \circ U_{3}\left(:, j_{3}\right)
$$

The CP Representation

$$
\mathcal{A}=\sum_{j=1}^{r} \lambda_{j} \cdot F(:, j) \circ G(:, j) \circ H(:, j)
$$

In Tucker the U's have orthonormal columns. In CP, the matrices F, G, and H do not have orthonormal columns.

In CP the core tensor is diagonal while in Tucker it is not.

A Note on Terminology

The "CP" Decomposition

It also goes by the name of the CANDECOMP/PARAFAC Decomposition.

CANDECOMP $=$ Canonical Decomposition

PARAFAC $=$ Parallel Factors Decomposition

A Little More About Tensor Rank

The CP Representation and Rank

Definition

If

$$
\mathcal{A}=\sum_{j=1}^{r} \lambda_{j} \cdot F(:, j) \circ G(:, j) \circ H(:, j)
$$

is the shortset possible CP representation of \mathcal{A}, then

$$
\operatorname{rank}(\mathcal{A})=r
$$

Tensor Rank

Anomaly 1

The largest rank attainable for an n_{1}-by-...-nd tensor is called the maximum rank. It is not a simple formula that depends on the dimensions n_{1}, \ldots, n_{d}. Indeed, its precise value is only known for small examples.

Maximum rank does not equal $\min \left\{n_{1}, \ldots, n_{d}\right\}$ unless $d \leq 2$.

Anomaly 2

If the set of rank- k tensors in $\mathbb{R}^{n_{1} \times \cdots \times n_{d}}$ has positive Lebesgue measure, then k is a typical rank.

Size	Typical Ranks
$2 \times 2 \times 2$	2,3
$3 \times 3 \times 3$	4
$3 \times 3 \times 4$	4,5
$3 \times 3 \times 5$	5,6

For n_{1}-by- n_{2} matrices, typical rank and maximal rank are both equal to the smaller of n_{1} and n_{2}.

Tensor Rank

Anomaly 3

The rank of a particular tensor over the real field may be different than its rank over the complex field.

Anomaly 4

A tensor with a given rank may be approximated with arbitrary precision by a tensor of lower rank. Such a tensor is said to be degenerate.

The Nearest CP Problem

The CP Approximation Problem

Definition

Given: $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ and r
Determine: $\lambda \in \mathbb{R}^{r}$ and $F \in \mathbb{R}^{n_{1} \times r}, G \in \mathbb{R}^{n_{2} \times r}$, and $H \in \mathbb{R}^{n_{3} \times r}$ (with unit 2-norm columns) so that if

$$
\mathcal{X}=\sum_{j=1}^{r} \lambda_{j} \cdot F(:, j) \circ G(:, j) \circ H(:, j)
$$

then

$$
\|\mathcal{A}-\mathcal{X}\|_{F}^{2}
$$

is minimized.

A multilinear optimization problem.

The CP Approximation Problem

Equivalent Formulations

$$
\begin{gathered}
\left\|\mathcal{A}-\sum_{j=1}^{r} \lambda_{j} \cdot F(:, j) \circ G(:, j) \circ H(:, j)\right\|_{F} \\
= \\
\left\|\mathcal{A}_{(1)}-\sum_{j=1}^{r} \lambda_{j} \cdot F(:, j) \otimes(H(:, j) \otimes G(:, j))^{T}\right\|_{F} \\
= \\
\left\|\mathcal{A}_{(2)}-\sum_{j=1}^{r} \lambda_{j} \cdot G(:, j) \otimes(H(:, j) \otimes F(:, j))^{T}\right\|_{F} \\
\left\|\mathcal{A}_{(3)}-\sum_{j=1}^{r} \lambda_{j} \cdot H(:, j) \otimes(G(:, j) \otimes F(:, j))^{T}\right\|_{F}
\end{gathered}
$$

Introducing the Khatri-Rao Product

Definition

If

$$
\begin{aligned}
& B=\left[b_{1}|\cdots| b_{r}\right] \in \mathbb{R}^{n_{1} \times r} \\
& C=\left[c_{1}|\cdots| c_{r}\right] \in \mathbb{R}^{n_{2} \times r}
\end{aligned}
$$

then the Khatri-Rao product of B and C is given by

$$
B \odot C=\left[b_{1} \otimes c_{1}|\cdots| b_{r} \otimes c_{r}\right] .
$$

"Column-wise KPs". Note that $B \odot C \in \mathbb{R}^{n_{1} n_{2} \times r}$.

The CP Approximation Problem

Equivalent Formulations

$$
\begin{gathered}
\left\|\mathcal{A}-\sum_{j=1}^{r} \lambda_{j} \cdot F(:, j) \circ G(:, j) \circ H(:, j)\right\|_{F} \\
= \\
\left\|\mathcal{A}_{(1)}-F \cdot \operatorname{diag}\left(\lambda_{j}\right) \cdot(H \odot G)^{T}\right\|_{F} \\
= \\
\left\|\mathcal{A}_{(2)}-G \cdot \operatorname{diag}\left(\lambda_{j}\right) \cdot(H \odot F)^{T}\right\|_{F} \\
= \\
\left\|\mathcal{A}_{(3)}-H \cdot \operatorname{diag}\left(\lambda_{j}\right) \cdot(G \odot F)^{T}\right\|_{F}
\end{gathered}
$$

The CP Approximation Problem

The Alternating LS Solution Framework...

$$
\begin{array}{cl}
\|\mathcal{A}-\mathcal{X}\|_{F} & = \\
=\begin{array}{ll}
\left\|\mathcal{A}_{(1)}-F \cdot \operatorname{diag}\left(\lambda_{j}\right) \cdot(H \odot G)^{T}\right\|_{F} & \Leftarrow \\
=\begin{array}{l}
\text { 1. Fix } G \text { and } H \text { and } \\
\text { improve } \lambda \text { and } F .
\end{array} \\
\left\|\mathcal{A}_{(2)}-G \cdot \operatorname{diag}\left(\lambda_{j}\right) \cdot(H \odot F)^{T}\right\|_{F} & \Leftarrow \begin{array}{l}
\text { 2. Fix } F \text { and } H \text { and } \\
\text { improve } \lambda \text { and } G .
\end{array} \\
= & \Leftarrow \mathcal{A}_{(3)}-H \cdot \operatorname{diag}\left(\lambda_{j}\right) \cdot(G \odot F)^{T} \|_{F}
\end{array} & \Leftarrow \begin{array}{l}
\text { 3. Fix } F \text { and } G \text { and } \\
\text { improve } \lambda \text { and } H .
\end{array}
\end{array}
$$

The CP Approximation Problem

The Alternating LS Solution Framework

Repeat:

1. Let \tilde{F} minimize $\left\|\mathcal{A}_{(1)}-\tilde{F} \cdot(H \odot G)^{T}\right\|_{F}$ and for $j=1: r$ set

$$
\lambda_{j}=\|\tilde{F}(:, j)\|_{2} \quad \text { and } \quad F(:, j)=\tilde{F}(:, j) / \lambda_{j}
$$

2. Let \tilde{G} minimize $\left\|\mathcal{A}_{(2)}-\tilde{G} \cdot(H \odot F)^{T}\right\|_{F}$ and for $j=1: r$ set

$$
\lambda_{j}=\|\tilde{G}(:, j)\|_{2} \quad \text { and } \quad G(:, j)=\tilde{G}(:, j) / \lambda_{j} .
$$

3. Let \tilde{H} minimize $\left\|\mathcal{A}_{(3)}-\tilde{H} \cdot(G \odot F)^{T}\right\|_{F}$ and for $j=1: r$ set

$$
\lambda_{j}=\|\tilde{H}(:, j)\|_{2} \quad \text { and } \quad H(:, j)=\tilde{H}(:, j) / \lambda_{j} .
$$

These are linear least squares problems. The columns of F, G, and H are normalized.

The CP Approximation Problem

Solving the LS Problems

The solution to

$$
\min _{\tilde{F}}\left\|\mathcal{A}_{(1)}-\tilde{F} \cdot(H \odot G)^{T}\right\|_{F}=\min _{\tilde{F}}\left\|\mathcal{A}_{(1)}^{T}-(H \odot G) \tilde{F}^{T}\right\|_{F}
$$

can be obtained by solving the normal equation system

$$
(H \odot G)^{T}(H \odot G) \tilde{F}^{T}=(H \odot G)^{T} \mathcal{A}_{(1)}^{T}
$$

Can be solved efficiently by exploiting two properties of the Khatri-Rao product.

The Khatri-Rao Product

"Fast" Property 1.

If $B \in \mathbb{R}^{n_{1} \times r}$ and $C \in \mathbb{R}^{n_{2} \times r}$, then

$$
(B \odot C)^{T}(B \odot C)=\left(B^{T} B\right) \cdot *\left(C^{T} C\right)
$$

where ".*" denotes pointwise multiplication.

"Fast" Property 2.

If

$$
\begin{aligned}
& B=\left[b_{1}|\cdots| b_{r}\right] \in \mathbb{R}^{n_{1} \times r} \\
& C=\left[c_{1}|\cdots| c_{r}\right] \in \mathbb{R}^{n_{2} \times r}
\end{aligned}
$$

$z \in \mathbb{R}^{n_{1} n_{2}}$, and $y=(B \odot C)^{T} z$, then

$$
y=\left[\begin{array}{c}
c_{1}^{T} Z b_{1} \\
\vdots \\
c_{r}^{T} Z b_{r}
\end{array}\right] \quad Z=\operatorname{reshape}\left(z, n_{2}, n_{1}\right)
$$

Overall: The Khatri-Rao LS Problem

Structure

Given $B \in \mathbb{R}^{n_{1} \times r}, C \in \mathbb{R}^{n_{2} \times r}$, and $b \in \mathbb{R}^{n_{1} n_{2}}$, minimize

$$
\| B \odot C) x-z \|_{2}
$$

Data Sparse: An $n_{1} n_{2}$-by- r LS problem defined by $O\left(\left(n_{1}+n_{2}\right) r\right)$ data.

Solution Procedure

1. Form $M=\left(B^{T} B\right) . *\left(C^{T} C\right)$. $O\left(\left(n_{1}+n_{2}\right) r^{2}\right)$.
2. Cholesky: $M=L L^{T}$. $O\left(r^{3}\right)$.
3. Form $y=(B \odot C)^{T}$ using Property $2 . \quad O\left(n_{1} n_{2} r\right)$.
4. Solve $M x=y . \quad O\left(r^{2}\right)$.

$$
O\left(n_{1} n_{2} r\right) \text { vs } O\left(\left(n_{1} n_{2} r^{2}\right)\right.
$$

The Kronecker Product SVD

The Nearest Kronecker Product Problem

Find B and C so that $\|A-B \otimes C\|_{F}=\min$

$$
\begin{gathered}
{\left[\begin{array}{ll|ll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
\hline a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44} \\
\hline a_{51} & a_{52} & a_{53} & a_{54} \\
a_{61} & a_{62} & a_{63} & a_{64}
\end{array}\right]-\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right] \otimes\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right] \|_{F}} \\
= \\
\left\|\left[\begin{array}{llll}
a_{11} & a_{21} & a_{12} & a_{22} \\
\hline a_{31} & a_{41} & a_{32} & a_{42} \\
\hline a_{51} & a_{61} & a_{52} & a_{62} \\
\hline a_{13} & a_{23} & a_{14} & a_{24} \\
\hline a_{33} & a_{43} & a_{34} & a_{44} \\
\hline a_{53} & a_{63} & a_{54} & a_{64}
\end{array}\right]-\left[\begin{array}{l}
b_{11} \\
b_{21} \\
b_{31} \\
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right] \quad\left[\begin{array}{llll}
c_{11} & c_{21} & c_{12} & c_{22}
\end{array}\right]\right\|_{F}
\end{gathered}
$$

Find B and C so that $\|A-B \otimes C\|_{F}=\min$

It is a nearest rank-1 problem,

$$
\begin{aligned}
\phi_{A}(B, C) & =\left\|\left[\begin{array}{llll}
a_{11} & a_{21} & a_{12} & a_{22} \\
a_{31} & a_{41} & a_{32} & a_{42} \\
\hline a_{51} & a_{61} & a_{52} & a_{62} \\
\hline a_{13} & a_{23} & a_{14} & a_{24} \\
\hline a_{33} & a_{43} & a_{34} & a_{44} \\
\hline a_{53} & a_{63} & a_{54} & a_{64}
\end{array}\right]-\left[\begin{array}{l}
b_{11} \\
b_{21} \\
b_{31} \\
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right]\left[\begin{array}{llll}
c_{11} & c_{21} & c_{12} & c_{22}
\end{array}\right]\right\|_{F} \\
& =\left\|\tilde{A}-\operatorname{vec}(B) \operatorname{vec}(C)^{T}\right\|_{F}
\end{aligned}
$$

with SVD solution:

$$
\begin{aligned}
& \tilde{A}=U \Sigma V^{T} \\
& \operatorname{vec}(B)=\sqrt{\sigma_{1}} U(:, 1) \\
& \operatorname{vec}(C)=\sqrt{\sigma_{1}} V(:, 1)
\end{aligned}
$$

The "Tilde Matrix"

$$
A=\left[\begin{array}{ll|ll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
\hline a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44} \\
\hline a_{51} & a_{52} & a_{53} & a_{54} \\
a_{61} & a_{62} & a_{63} & a_{64}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right]
$$

implies

$$
\tilde{A}=\left[\begin{array}{llll}
a_{11} & a_{21} & a_{12} & a_{22} \\
\hline a_{31} & a_{41} & a_{32} & a_{42} \\
\hline a_{51} & a_{61} & a_{52} & a_{62} \\
\hline a_{13} & a_{23} & a_{14} & a_{24} \\
\hline a_{33} & a_{43} & a_{34} & a_{44} \\
\hline a_{53} & a_{63} & a_{54} & a_{64}
\end{array}\right]=\left[\begin{array}{c}
\operatorname{vec}\left(A_{11}\right)^{T} \\
\operatorname{vec}\left(A_{21}\right)^{T} \\
\operatorname{vec}\left(A_{31}\right)^{T} \\
\operatorname{vec}\left(A_{12}\right)^{T} \\
\operatorname{vec}\left(A_{22}\right)^{T} \\
\operatorname{vec}\left(A_{32}\right)^{T}
\end{array}\right] .
$$

The Kronecker Product SVD (KPSVD)

Theorem

If

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1, c_{2}} \\
\vdots & \ddots & \vdots \\
A_{r_{2}, 1} & \cdots & A_{r_{2}, c_{2}}
\end{array}\right] \quad A_{i_{2}, j_{2}} \in \mathbb{R}^{r_{1} \times c_{1}}
$$

then there exist $U_{1}, \ldots, U_{r_{K P}} \in \mathbb{R}^{r_{2} \times c_{2}}, V_{1}, \ldots, V_{r_{K P}} \in \mathbb{R}^{r_{1} \times c_{1}}$, and scalars $\sigma_{1} \geq \cdots \geq \sigma_{r_{K P}}>0$ such that

$$
A=\sum_{k=1}^{r_{K P}} \sigma_{k} U_{k} \otimes V_{k}
$$

The sets $\left\{\operatorname{vec}\left(U_{k}\right)\right\}$ and $\left\{\operatorname{vec}\left(V_{k}\right)\right\}$ are orthonormal and $r_{K P}$ is the Kronecker rank of A with respect to the chosen blocking.

The Kronecker Product SVD (KPSVD)

Constructive Proof

Compute the SVD of \tilde{A} :

$$
\tilde{A}=U \Sigma V^{T}=\sum_{k=1}^{r_{K P}} \sigma_{k} u_{k} v_{k}^{T}
$$

and define the U_{k} and V_{k} by

$$
\begin{aligned}
\operatorname{vec}\left(U_{k}\right) & =u_{k} \\
\operatorname{vec}\left(V_{k}\right) & =v_{k}
\end{aligned}
$$

for $k=1: r_{K P}$.

$$
U_{k}=\operatorname{reshape}\left(u_{k}, r_{2}, c_{2}\right), V_{k}=\operatorname{reshape}\left(v_{k}, r_{1}, c_{1}\right)
$$

The Kronecker Product SVD (KPSVD)

Nearest rank- r

If $r \leq r_{K P}$, then

$$
A_{r}=\sum_{k=1}^{r} \sigma_{k} U_{k} \otimes V_{k}
$$

is the nearest matrix to A (in the Frobenius norm) that has Kronecker rank r.

Structured Kronecker Product Approximation

$\min _{B, C}\|A-B \otimes C\|_{F}$ Problems

If A is symmetric and positive definite, then so are B and C.
If A is a block Toeplitz with Toeplitz blocks, then B and C are Toeplitz.

If A is a block band matrix with banded blocks, the B and C are banded.

$$
\text { Can use Lanczos SVD if } A \text { is large and sparse. }
$$

A Tensor Approximation Idea

Motivation

Unfold $\mathcal{A} \in \mathbb{R}^{n \times n \times n \times n}$ into an n^{2}-by- n^{2} matrix A.
Express A as a sum of Kronecker products:

$$
A=\sum_{k=1}^{r} \sigma_{k} B_{k} \otimes C_{k} \quad B_{k}, C_{k} \in \mathbb{R}^{n \times n}
$$

Back to tensor:

$$
\mathcal{A}=\sum_{k=1}^{r} \sigma_{k} \mathcal{C}_{k} \circ \mathcal{B}_{k}
$$

i.e.,

$$
\mathcal{A}\left(i_{1}, i_{2}, j_{1}, j_{2}\right)=\sum_{k=1}^{r} \sigma_{k} C_{k}\left(i_{1}, i_{2}\right) B_{k}\left(j_{1}, j_{2}\right)
$$

Sums of tensor products of matrices instead of vectors.

Harder

$$
\begin{gathered}
\phi_{A}(B, C, D) \\
= \\
\|A-B \otimes C \otimes D\|_{F} \\
=
\end{gathered}
$$

$\sqrt{\sum_{i_{1}=1}^{r_{1}} \sum_{j_{1}=1}^{c_{1}} \sum_{i_{2}=1}^{r_{2}} \sum_{j_{2}=1}^{c_{2}} \sum_{i_{3}=1}^{r_{3}} \sum_{j_{3}=1}^{c_{2}} \mathcal{A}\left(i_{1}, j_{1}, i_{2}, j_{2}, i_{3}, j_{3}\right)-\mathcal{B}\left(i_{3}, j_{3}\right) \mathcal{C}\left(i_{2}, j_{2}\right) D\left(i_{1}, j_{1}\right)}$

Trying to approximate an order-6 tensor with a triplet of order-2 tensors. Would have to apply componentwise optimization.

Concluding Remarks

Optional "Fun" Problems

Problem E4. Suppose

$$
A=\left[\begin{array}{ll}
B_{11} \otimes C_{11} & B_{12} \otimes C_{12} \\
B_{21} \otimes C_{21} & B_{22} \otimes C_{22}
\end{array}\right]
$$

and that the $B_{i j}$ and $C_{i j}$ are each m-by- m. (a) Assuming that structure is fully exploited, how many flops are required to compute $y=A x$ where $x \in \mathbb{R}^{2 m^{2}}$? (b) How many flops are required to explicitly form A ? (c) How many flops are required to compute $y=A x$ assuming that A has been explicitly formed?

Problem A4. Suppose A is n^{2}-by- n^{2}. How would you compute $X \in \mathbb{R}^{n \times n}$ so that $\|A-X \otimes X\|_{F}$ is minimized?

