SOLVING ILL-POSED LINEAR SYSTEMS WITH GMRES AND A SINGULAR PRECONDITIONER

LARS ELDÉN and VALERIA SIMONCINI

Abstract. Almost singular linear systems arise in discrete ill-posed problems. Either because of the intrinsic structure of the problem or because of preconditioning, the spectrum of the coefficient matrix is often characterized by a sizable gap between a large group of numerically zero eigenvalues and the rest of the spectrum. Correspondingly, the right-hand side has leading eigencomponents associated with the eigenvalues away from zero. In this paper the effect of this setting in the convergence of the Generalized Minimal RESidual (GMRES) method is considered. It is shown that in the initial phase of the iterative algorithm, the residual components corresponding to the large eigenvalues are reduced in norm, and these can be monitored without extra computation. In particular ill-posed Cauchy problems for partial differential equations with variable coefficients are considered, where the preconditioner is a fast, low-rank solver for the corresponding problem with constant coefficients. The analysis is supported by numerical experiments. Our results, both theoretical and experimental, demonstrate that the preconditioned GMRES method converges within few iterations to the accuracy that is required for such ill-posed problems.

1. Introduction. Large, sparse non-symmetric and singular linear systems arise when certain partial differential equations (PDE) are discretized. In [6] conditions are given for the convergence without breakdown of the Generalized Minimum Residual algorithm (GMRES) [37] applied to singular problems. Since the appearance of [6] many papers have been devoted to the analysis and application of GMRES for exactly singular problems, see [24] for a rather extensive account of the relevant literature.

In this paper we are concerned with almost singular (or numerically singular) linear systems,

\[Ax = b, \]

where \(A \in \mathbb{C}^{n \times n} \). Such systems occur in connection with ill-posed problems, and for some problems GMRES works well, while for others it performs badly, see, e.g., [28, Examples 5.3 and 5.1, respectively]. Recently it has been demonstrated that GMRES gives a good approximate solution in few iterations for certain ill-posed problems for PDE’s, when a singular preconditioner is used [34, Part III]. However, so far a deeper analysis of the properties of GMRES applied to almost singular systems is lacking.

The purpose of the present paper is to analyze and explain the convergence behavior of GMRES for linear systems that are almost singular, the way they occur in ill-posed problems \(Ax = b \), where the matrix \(A \) is a discretization of a compact operator [13]. In this case, \(A \) is extremely ill-conditioned, typically with a gradual decay of singular values and a cluster of singular values at zero. Because of this peculiarity, previous attempts towards the understanding of GMRES convergence have often focused on information associated with the singular value decomposition of the matrix, see, e.g., [28, 18, 5]. Instead, in agreement with, e.g., [7, 8], we will rely on spectral information of the problem, with the Schur decomposition of the coefficient matrix as the core theoretical tool. In some cases, especially in connection with singular preconditioners, see below, the matrix has a cluster of eigenvalues of magnitude \(O(1) \) that is well separated from another cluster of eigenvalues of small magnitude. Correspondingly, the right-hand side has large and leading components onto the eigendirections.
associated with the cluster away from the origin. Assuming that the linear system (1.1) is a perturbation of an exactly singular system of rank \(m \), we will show that:

- in the first iterations GMRES mainly reduces the norm of the residual as if solving the unperturbed system;
- after at most \(m \) iterations, but often much earlier, the norm of the residual is of the order of magnitude of the perturbation, and if the GMRES procedure is then stopped, it gives a good approximation of the minimum norm solution of the exactly singular system.

Our theoretical findings generalize and are in agreement with the results discussed in [6], [24] for exactly singular systems. In particular, our analysis specifically explores the case when the condition for obtaining a minimum norm solution is not met, which is the setting usually encountered in ill-posed problems.

We will also consider the case when the eigenvalues are not clustered (when the numerical rank is ill-determined, which is often the case in ill-posed problems, see, e.g., the discussion in [2, 8]), and show theoretically and by examples that GMRES will give a good approximate solution if the iterations are stopped when the residual is of the order of the perturbation.

Numerically singular systems with clustered eigenvalues occur when singular preconditioners are applied to discrete ill-posed linear systems \(Ax = b \) [34, Part III]. For such a problem, arising from the discretization of a linear equation with a compact operator, the ill-posedness manifests itself in the blow-up of high frequency components in the numerical solution. In order for the problem to be approximately solvable the solution must be well represented in terms of the low frequency part of the operator. If the preconditioner \(M \) gives a good approximation of the low frequency part of the operator, but suppresses the high frequency part completely, then the preconditioned problem \(AM^\dagger y = b \) has the properties above\(^1\). Thus \(AM^\dagger \) is numerically singular, but with a well-conditioned low rank part. Computing the minimum norm solution of the preconditioned problem will yield a good approximation to the solution of the ill-posed problem.

It is well-known, see, e.g., [16, 30], that unpreconditioned iterative methods applied to ill-posed problem exhibit *semi-convergence*: initially the approximate solution converges towards the “true solution”, then it deteriorates and finally blows up. Such convergence behavior occurs also here, and we give a theoretical explanation. However, in the case of singular preconditioners semi-convergence does not apply to the final solution approximation, but only to an intermediate quantity. A stopping criterion based on the *discrepancy principle* will give a solution that is close to optimal.

The purpose of the paper is twofold:

- To give a theoretical foundation for the use of singular preconditioners for ill-posed problems.
- To demonstrate the effectiveness of singular preconditioners for GMRES applied to Cauchy problems for parabolic and elliptic partial differential equations with variable coefficients.

The outline of the paper is as follows. In Section 2 we introduce the GMRES algorithm and its properties for exactly singular systems. The concept of singular preconditioners is motivated in Section 3. The Schur decomposition of the matrix is used in Section 4 to analyze GMRES for nearly singular systems, and residual estimates are given. In Section 5 we derive error estimates, which explain the regularizing properties of the method and the influence of the fact that the iterative solver is not

\(^1\)The notation \(M^\dagger \) is explained in Section 3.
pursued to convergence. Finally, in Section 6 we give numerical examples in one to three dimensions.

1.1. Notation. We will use the following notation. The conjugate transpose of a matrix \(A \) is \(A^* \). The Euclidean vector norm is \(\| x \| = (x^* x)^{1/2} \), and the corresponding matrix (operator) norm is \(\| A \| = \max_{\| x \| = 1} \| Ax \| \). The Frobenius norm is \(\| A \|_F = \left(\sum_{i,j} |a_{ij}|^2 \right)^{1/2} \). The singular values of a matrix \(B \in \mathbb{C}^{p \times n} \), where \(p \leq n \), are denoted \(\sigma_i, i = 1, 2, \ldots, p \), and are ordered as \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0 \); if \(\sigma_p \neq 0 \), its condition number is \(\kappa_2(B) = \sigma_1/\sigma_p \). \(A^+ \) denotes the Moore-Penrose pseudoinverse of \(A \). For a singular preconditioner \(M \) of rank \(m \) we will use \(M^\dagger_m \) to denote a low-rank approximation of a matrix \(A^{-1} \). Even if \(M^\dagger_m \) may be a generalized inverse (not necessarily a Moore-Penrose pseudoinverse) of \(M \), we are not particularly interested in that relation in this paper.

2. The GMRES algorithm for exactly singular systems. In this section we recall some known facts about the iterative solver GMRES and its convergence properties for singular systems, that will be our background throughout the manuscript.

We start by defining the subspace under consideration: given a square matrix \(A \) and a vector \(r_0 \), a Krylov subspace of dimension \(k \) is defined as

\[K_k(A,r_0) = \text{span} \{ r_0, Ar_0, \ldots, A^{k-1}r_0 \}. \]

In the context of solving (1.1), given a starting guess \(x_0 \) and the associated residual \(r_0 = b - Ax_0 \), GMRES determines an approximate solution \(x_k \) to (1.1) as \(x_k \in x_0 + K_k(A,r_0) \) by requiring that the corresponding residual \(r_k = b - Ax_k \) have minimum norm, namely

\[x_k = \arg \min_{x \in x_0 + K_k(A,r_0)} \| b - Ax_k \|. \quad (2.1) \]

The algorithm is a popular implementation of a minimal residual method, that fully exploits the properties of the approximation space. Figure 2.1 provides a very basic idea of the algorithm, whereas the actual implementation is mathematically equivalent but computationally and numerically more sound. In this version of the algorithm \(x_0 = 0 \) is considered as starting approximation, and we ignore the possibility of breakdown, which corresponds to the case that \(\| \hat{z} \| = 0 \). For this and other crucial implementation issues of GMRES we refer to [36, Ch. 6.5].

Steps 1 to 6 in the algorithm of Figure 2.1 amount to one iteration of the Arnoldi procedure. After \(k \) iterations, this process can be conveniently summarized by the following Krylov (or more specifically Arnoldi) decomposition

\[AW_k = W_{k+1}H_k, \]

with \(W_k^*W_k = I_k \) and \(H_k \in \mathbb{C}^{(k+1) \times k} \) upper Hessenberg.

The problem of solving a singular linear system \(Ax = b \) using GMRES is treated in [6, 24], where the following result is proved.

Proposition 2.1. \(\text{GMRES determines a least squares solution } x_* \text{ of a singular system } Ax = b, \text{ for all } b \text{ and starting approximations } x_0, \text{ without breakdown, if and only if } \mathcal{N}(A) = \mathcal{N}(A^*). \) Furthermore, if the system is consistent and \(x_0 \in \mathcal{R}(A) \), then \(x_* \) is a minimum norm solution.
Fig. 2.1. GMRES applied to the linear system $Ax = b$

$$\beta = \|b\|; \quad w_1 = b/\beta$$

$$W_1 = w_1; \quad H_0 = [] \quad \text{% Empty matrix}$$

for $i = 1, 2, \ldots$ do

1. $z = Aw_i$
2. $h_i = W_i^* z$
3. $\hat{z} = z - W_i h_i$
4. $h_{i+1,i} = \|\hat{z}\|; \quad w_{i+1} = \hat{z}/h_{i+1,i}$
5. $W_{i+1} = [W_i \ w_{i+1}]$
6. $H_i = \begin{bmatrix} H_{i-1} & h_i \\ 0 & h_{i+1,i} \end{bmatrix}$
7. $y_i = \beta H_i^+ e_1$

if $\|H_i y_i - \beta e_1\| \leq \text{tol}$ then

$x_i = W_i y_i$

break

end if

end for

Assume that the rank of A is equal to m. For the analysis it is no restriction to assume that the matrix of the linear system has the structure\(^2\)

$$\begin{bmatrix} A_{11} & A_{12} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x^{(1)} \\ x^{(2)} \end{bmatrix} = \begin{bmatrix} c^{(1)} \\ c^{(2)} \end{bmatrix}, \quad A_{11} \in \mathbb{C}^{m \times m}. \quad (2.2)$$

Throughout we will use the notational convention that $c^{(1)}$ is the upper part of the vector c, according to the splitting of the coefficient matrix, and analogously for other involved matrices. It is easy to see (cf. [24]) that the condition $\mathcal{N}(A) = \mathcal{N}(A^*)$ is equivalent to $A_{12} = 0$. Similarly, the consistency condition is equivalent to $c^{(2)} = 0$.

Obviously, applying GMRES to the linear system

$$\begin{bmatrix} A_{11} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x^{(1)} \\ x^{(2)} \end{bmatrix} = \begin{bmatrix} c^{(1)} \\ 0 \end{bmatrix}, \quad (2.3)$$

is mathematically equivalent to applying GMRES to $A_{11} x^{(1)} = c^{(1)}$. Due to the finite termination property of Krylov methods it will never take more than m steps to obtain the solution of this problem (in exact arithmetic).

Finally in this section, the properties of the Krylov subspace ensure that applying GMRES to

$$\begin{bmatrix} A_{11} & A_{12} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x^{(1)} \\ x^{(2)} \end{bmatrix} = \begin{bmatrix} c^{(1)} \\ 0 \end{bmatrix}, \quad (2.4)$$

with zero starting approximation, is also mathematically equivalent to applying GMRES to $A_{11} x^{(1)} = c^{(1)}$. A more common situation occurs when the (2,2) block of (2.2) is almost zero, i.e. it has small but nonzero entries, and in addition $c^{(2)} \neq 0$. In this case, the rank of A is of course larger than m, and the role of A_{12} becomes more relevant. We analyze such a setting in Section 4 for a general A, by first performing a Schur decomposition.

\(^2\)In [24] a transformation of the system is done by decomposing the space \mathbb{C}^n into $\mathcal{R}(A)$ and $\mathcal{R}(A^*)^\perp$.\]
3. Singular Preconditioners for Ill-posed Problems. In this section we motivate the use of singular preconditioners, having in mind large and sparse ill-posed linear systems that occur, e. g., when inverse problems for partial differential equations are discretized.

Preconditioners are used routinely for solving linear systems $Ax = b$ using Krylov methods. For the discussion we first assume that the matrix A corresponds to a well-posed problem, by which we mean that its condition number is of moderate magnitude. We will be concerned with right preconditioners. Usually one derives and computes a non-singular approximation M of A and then solves the equivalent linear system

$$AM^{-1}y = b, \quad x = M^{-1}y,$$

using a Krylov subspace method. The reason why we use a right preconditioner is that we will apply the discrepancy principle [13, p. 83],[21, p. 179], which means that we are not interested in solving the linear system $Ax = b$ exactly, but only determine an approximation \hat{x} with residual $\|A\hat{x} - b\| \approx \delta$, where δ is prespecified\(^3\), and is a measure of the noise level of the data. In particular, the monotonicity of the residual norm provides the proper setting for which the discrepancy principle is most meaningful. Moreover, as opposed to left preconditioning, with a right preconditioner we can read off the magnitude of the original system residual directly in the GMRES iterations, actually without computing \hat{x} explicitly.

Assume, for instance, that A represents a differential operator with variable coefficients. Then M may be a discretization of the corresponding operator with constant coefficients, for which it is cheap to solve a system $Mz = v$ (provided that the geometry of the problem allows for a fast solver). In other cases, when A has Toeplitz structure, a circulant preconditioner M may be used, for which the system $Mz = v$ can be solved cheaply using the Fast Fourier Transform.

Consider now a linear system of equations $Ax = b$, which represents a discrete, ill-posed problem. There are several papers [18, 17, 19, 30, 31, 23] that propose the use of preconditioners for large-scale discrete ill-posed problems. The problem with such a preconditioner is that if M is a good approximation of A, then also M is ill-conditioned, with M^{-1} very large in norm. Assume for instance that M is a circulant matrix [18], written as

$$M = F\Lambda F^*, \quad (3.1)$$

where F is the Fourier matrix, and Λ is a diagonal matrix of eigenvalues. In order to “regularize” the preconditioner, the small eigenvalues, corresponding to high frequencies, are replaced by ones, i.e. the preconditioner is chosen as

$$M_I = F\begin{bmatrix} \Lambda_1 & 0 \\ 0 & I \end{bmatrix}F^*, \quad (3.2)$$

which has an inverse with a norm that is not too large. In this paper, motivated by the application to Cauchy problems for elliptic and parabolic PDE’s in two space dimensions, see [34, Part III] and Sections 6.3 and 6.4, we instead choose to use another type of regularized, *singular preconditioner*, defined using a low-rank approximation

\(^3\)It is no restriction to assume that it is known, as it can be estimated from the data, see [26].
of the solution operator. If we were to use the analogue of this idea in the case of a circulant preconditioner we would take

$$M_m^\dagger = F \begin{bmatrix} \Lambda_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} F^*.$$ \tag{3.3}

Thus we solve the singular linear system

$$\left(AM_m^\dagger\right)y = b,$$ \tag{3.4}

with the GMRES method, and then compute $x = M_m^\dagger y$. A somehow related approach was proposed in [2], where however the singular preconditioner was generated by means of a projection argument, instead of a generalized inverse strategy.

We show in Section 4 that the distribution of eigenvalues of AM_m^\dagger determines the rate of convergence and the quality of the GMRES solution. In fact, the regularized singular preconditioner also induces regularization on the solution, see Section 5.

4. The GMRES algorithm for nearly singular systems. Consider a preconditioned least squares problem

$$\min_y \| (AM_m^\dagger)y - b \|,$$ \tag{4.1}

where, in exact arithmetic, $\text{rank}(M_m^\dagger) = m$. For the purpose of analysis we will use the Schur decomposition $AM_m^\dagger = UBU^*$ [14, p. 313], where B is upper triangular with diagonal elements ordered by decreasing magnitude. By a change of variables we get the linear least squares problem $\min_d \| Bd - c \|$, with $c = U^*b$, which is equivalent to the original one, and which we partition as

$$\min_d \begin{bmatrix} L_1 & G \\ 0 & L_2 \end{bmatrix} \begin{bmatrix} d^{(1)} \\ d^{(2)} \end{bmatrix} - \begin{bmatrix} c^{(1)} \\ c^{(2)} \end{bmatrix},$$ \tag{4.2}

where $L_1 \in \mathbb{C}^{m \times m}$ is non-singular. We emphasize that the use of the Schur decomposition in this context is only due to numerical convenience and to consistency with later computational experiments. Any decomposition that provides a 2×2 block upper triangular form by unitary transformation with the same spectral properties, would yield the same setting. In particular, we shall not use the fact that both L_1, L_2 are upper triangular.

Since in many cases neither A nor M_m^\dagger will be explicitly available, but only as operators acting on vectors, we cannot assume that $L_2 = 0$. Instead we assume

$$|\lambda_{\text{min}}(L_1)| \gg |\lambda_{\text{max}}(L_2)|, \quad ||c^{(1)}|| \gg ||c^{(2)}|| = \delta.$$ \tag{4.3}

By $\lambda_{\text{min}}(L_1)$ we mean the eigenvalue of smallest modulus. We also assume that L_1 is well conditioned, i.e. $||L_1^{-1}||$ is not large. The eigenvalue condition in (4.3) is related to the assumption that B is almost singular. Thus L_2 can be considered as a perturbation of zero, either corresponding to floating point round-off or some other type of “noise”, and the same applies to the lower part $c^{(2)}$ of the right hand side. We shall also assume that $||G||$ has a small or moderate value, so that we exclude the

\[\text{The meaning of the “much larger than” symbol will depend on the context: in the case of singular preconditioners it can be several orders of magnitude, while in the case when GMRES is applied directly to an ill-posed problem, it may be only two orders of magnitude, see the numerical examples.}\]
occurrence of non-normality influencing the two diagonal blocks. The assumptions in (4.3) also exclude the case, for instance, where the given problem is a perturbation of a non-symmetric matrix with all zero eigenvalues and a single eigenvector; cf., e.g., [28, Example of Section 5.1]. Note that the eigenvalues of such a perturbed matrix will tend to distribute in a small disk around the origin. This last assumption is not restrictive, since it is already known that GMRES will perform very badly in this setting; see, e.g., [29, Example R, p. 787].

Now, since (4.2) can be seen as a perturbation of
\[
\min_d \left\| \begin{bmatrix} L_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} d^{(1)} \\ d^{(2)} \end{bmatrix} - \begin{bmatrix} c^{(1)} \\ c^{(2)} \end{bmatrix} \right\|,
\]
we may ask whether it is possible to “solve” (4.2) as efficiently as we would do with (4.4) (cf. the discussion around (2.3)). We will show in Section 4.1 that in the first (fewer than \(m\)) steps of GMRES, a sufficiently small residual will be obtained, whose size depends on \(\|L_2\|, \|G\|, \|c^{(2)}\|\), as expected. Other quantities also enter the picture. In Section 4.2 we will use the approximation properties of Krylov subspaces to derive more accurate bounds for the norm of the residual. All our results show that in addition to the size of the matrices involved, also the spectral distance between \(L_1\) and \(L_2\) has a role in bounding the residual.

We also remark that the model derived by splitting the spectral domain in a “good” part and in a “bad” part has been used both in eigenvalue computation and in the numerical solution of ill-posed linear systems, see, e.g., [3] and [2], respectively. In both cited cases, however, the aim is to computationally exploit an approximate decomposition so as to accelerate the convergence of the employed method. In this paper the exact splitting is a theoretical device, that allows us to explain the practical behavior of GMRES in certain circumstances.

Example 4.1. In Section 6.2 we consider an ill-posed “model problem”: the Cauchy problem for a parabolic equation in one space dimension, which is solved iteratively using right-preconditioned GMRES. The preconditioner is singular, which leads to an almost singular linear system, whose Schur decomposition has the structure (4.2)-(4.3). The relevant quantities are
\[
|\lambda_{\min}(L_1)| = 0.6768, \quad |\lambda_{\max}(L_2)| = 2.4 \cdot 10^{-16},
\]
\[
\|G\| = 0.0962, \quad \|c^{(1)}\| = 0.6753, \quad \|c^{(2)}\| = 0.006573.
\]
Clearly, the assumptions of Proposition 2.1 are not satisfied, and the problem does not have the structure in (2.4). Figure 4.1 demonstrates that GMRES quickly reduces the relative residual to \(10^{-2}\) and then stagnates. We will see later that the approximate solution after 4 steps is acceptable, taken into account that the problem is ill-posed. In Sections 4.1 and 4.2 we will show that in the first few steps of the Arnoldi recursion the \(L_1\) block dominates, and, essentially, the well-conditioned system \(L_1d^{(1)} = c^{(1)}\) is solved, before the small \(L_2\) block comes into play.

To proceed we need to introduce some notation and definitions. Under the eigenvalue assumption in (4.3) we can write
\[
B = \begin{bmatrix} L_1 & G \\ 0 & L_2 \end{bmatrix} = XB_0X^{-1} = \begin{bmatrix} L_1 & 0 \\ 0 & L_2 \end{bmatrix} \begin{bmatrix} Y_1^* \\ Y_2^* \end{bmatrix},
\]
where \([Y_1, Y_2]^* = [X_1, X_2]^{-1}\), and
\[
[X_1, X_2] = \begin{bmatrix} I & P \\ 0 & I \end{bmatrix}, \quad [Y_1, Y_2] = \begin{bmatrix} I & 0 \\ -P^* & I \end{bmatrix}.
\]
and P is the unique solution of the Sylvester equation $L_1 P - P L_2 = -G$. Note that
\[
\|X_2\| \leq 1 + \|P\|, \quad \|Y_1\| \leq 1 + \|P\|, \quad \text{where} \quad \|P\| \leq \frac{\|G\|}{\text{sep}(L_1, L_2)},
\]
and $\text{sep}(L_1, L_2)$ is the separation function\(^5\). It is known, cf., e.g., [38, Th.V.2.3], that $\text{sep}(L_1, L_2) \leq \min_{i,j} |\lambda_i(L_1) - \lambda_j(L_2)|$ where $\lambda_i(X)$ denotes the i'th eigenvalue of X.

It is also easy to show, using the definition of the matrix norm, that $\|X\| \leq 1 + \|P\|$.

Definition 4.2. [41, p. 36] The grade of a matrix L with respect to a vector v is the degree of the lowest degree monic polynomial p such that $p(L)v = 0$.

The polynomial giving the grade is unique and it is called in the literature the minimum polynomial; see [15], [27] and references therein. In this paper we shall adopt the term grade polynomial, to avoid confusion with the minimum residual GMRES polynomial.

4.1. Estimating the Residual

We start by establishing a relation between Arnoldi recursions for the block-triangular system $Bd = c$ and the block-diagonal system $B_0 d_0 = u$, where $u = X^{-1}c$. Assume that for any $k \geq 1$ (with of course $k < n$) we have generated a Krylov decomposition of B
\[
BW_k = W_{k+1} H_k, \quad w_1 = \frac{\hat{w}}{\|\hat{w}\|}, \quad \hat{w} = \begin{bmatrix} c^{(1)} \\ c^{(2)} \end{bmatrix},
\]
with $H_k \in \mathbb{C}^{(k+1) \times k}$ upper Hessenberg. Using the relation $B = XB_0 X^{-1}$ we get $XB_0 X^{-1} W_k = W_{k+1} H_k$. Using the thin QR decomposition of $X^{-1} W_k$, namely
\[
X^{-1} W_i = V_i S_i, \quad i = k, k + 1,
\]
\(^5\)The sep function is defined as $\text{sep}(L_1, L_2) = \inf_{\|P\| = 1} \|T(P)\|$ where $T : P \mapsto L_1 P - P L_2$ (cf., e.g., [38, sec.V.2.1])
we obtain the Krylov decomposition of B_0

$$B_0V_k = V_{k+1} \left(S_k H_k S_k^{-1}\right), \quad v_1 = \frac{u}{\|u\|}, \quad u = \begin{bmatrix} u^{(1)} \\ u^{(2)} \end{bmatrix} = \begin{bmatrix} c^{(1)} - P c^{(2)} \\ c^{(2)} \end{bmatrix}, \quad (4.10)$$

where $S_k H_k S_k^{-1}$ is upper Hessenberg. Thus, the Arnoldi method applied to B with starting vector c uniquely defines another sequence of vectors, which can be generated by the Arnoldi method applied to B_0 with starting vector v_1 defined by (4.10).

We will now analyze GMRES for $Bd = c$ in terms of the equivalent recursion for $B_0d_0 = u$. Denote the grade of L_1 with respect to $u^{(1)}$ by m_*. We will first show that the upper block of V_{m_*}, denoted $V_{m_*}^{(1)} \in \mathbb{C}^{m \times m_*}$, has full column rank. Due to the structure of B_0, the Arnoldi method applied to the linear system $B_0d = u$ generates a basis for the Krylov subspace

$$K_{m_*}(B_0, u) = \text{span} \left\{ \begin{bmatrix} u^{(1)} \\ u^{(2)} \end{bmatrix}, \begin{bmatrix} L_1 u^{(1)} \\ L_2 u^{(2)} \end{bmatrix}, \ldots, \begin{bmatrix} L_1^{m_*-1} u^{(1)} \\ L_2^{m_*-1} u^{(2)} \end{bmatrix} \right\}, \quad (4.11)$$

Lemma 4.3. Assume that the grade m_* of L_1 with respect to $u^{(1)}$ is smaller than or equal to m, and that the columns of the matrix

$$V_{m_*} = \begin{bmatrix} V_{m_*}^{(1)} \\ V_{m_*}^{(2)} \end{bmatrix} \in \mathbb{C}^{n \times m_*}$$

constitute an orthonormal basis of the Krylov subspace (4.11). Then the upper $m \times m_*$ block $V_{m_*}^{(1)}$ has full column rank. In addition, the overdetermined linear system $L_1 V_{m_*}^{(1)} z = u^{(1)}$ is consistent.

Proof. Let $K^{(i)} = [u^{(i)}, L_i u^{(i)}, \ldots, L_i^{m_*-1} u^{(i)}], i = 1, 2,$ and

$$K = \begin{bmatrix} K^{(1)} \\ K^{(2)} \end{bmatrix}.$$

The columns of $K^{(1)}$ are linearly independent, otherwise the zero linear combination would imply the existence of a polynomial p of degree strictly less than m_* such that $p(L^{(1)}) u^{(1)} = 0$, which is a contradiction to the definition of grade. Therefore, the matrix $K^* K = (K^{(1)})^* K^{(1)} + (K^{(2)})^* K^{(2)}$ is non-singular, and the columns of $Q_{m_*} = K(K^* K)^{-\frac{1}{2}}$ are orthonormal with first block $Q_{m_*}^{(1)}$ having full column rank. Any other orthonormal basis differs from Q_{m_*} in a right multiplication by a unitary matrix, leaving the full rank property of the first block unchanged. The consistency follows from the definition of grade. \qed

The lemma shows that, since $V_k^{(1)}$ has full rank for $k \leq m_*$, GMRES “works on reducing the significant part” of the residual of the linear system until m_* steps have been performed.

Theorem 4.4. Assume that m_* is the grade of L_1 with respect to $u^{(1)} = c^{(1)} - P c^{(2)}$. If the projection matrix W_{m_*} is constructed using the Arnoldi method applied to the system $Bd = c$, with starting vector $w_1 = c$, then

$$\|r_{m_*}\| = \min_f \|BW_{m_*} f - c\| \leq (1 + \|P\|) \left(\|L_2 V_{m_*}^{(2)}\| \|L_1 V_{m_*}^{(1)}\| \|c^{(1)}\| + \|c^{(2)}\|\right), \quad (4.12)$$
where \(W_{m_*} \) and \(V_{m_*} \) are related by (4.9), and \(P \) is defined in (4.6).

Proof. Using \(B = X B_0 X^{-1} \) and (4.9) we have, for any \(y \),

\[
\| B W_{m_*} f - c \|^2 = \| X B_0 X^{-1} W_{m_*} f - c \|^2 \leq \| X \|^2 \| B_0 V_{m_*} S_{m_*} f - u \|^2 = \| X \|^2 \left(\| L_1 V_{m_*}^{(1)} z - u^{(1)} \|^2 + \| L_2 V_{m_*}^{(2)} z - u^{(2)} \|^2 \right),
\]

(4.13)

where \(z = S_{m_*} f \) and \(u^{(2)} = c^{(2)} \). Since, by Lemma 4.3 the equation \(L_1 V_{m_*}^{(1)} z = u^{(1)} \) is consistent, we can make the first term in (4.13) equal to zero by choosing \(z = (L_1 V_{m_*}^{(1)} + u^{(1)} \). Thus, we have

\[
\| r_{m_*} \| \leq \| X \| \| L_2 V_{m_*}^{(2)} z - c^{(2)} \|.
\]

The result now follows by using the triangle inequality, \(\| X \| \leq 1 + \| P \|, \) and \(\| u^{(1)} \| \leq (1 + \| P \|) \| c^{(1)} \| \). □

It is now apparent why in the first few steps of GMRES mainly the residual of the “significant part” of the linear system is reduced in norm. For \(k \leq m_* \), assume that \(L_1 V_k^{(1)} \) is well-conditioned, and let \(\hat{z} = (L_1 V_k^{(1)})^* u^{(1)} \). Then, as in the above proof,

\[
\| r_k \|^2 = \min_y \| B W_k y - c \|^2 \\
\leq \| X \|^2 \left(\| L_1 V_k^{(1)} \hat{z} - u^{(1)} \|^2 + \| L_2 V_k^{(2)} \hat{z} - c^{(2)} \|^2 \right) \\
\approx \| X \|^2 \left(\| L_1 V_k^{(1)} \hat{z} - u^{(1)} \|^2 + \| c^{(2)} \|^2 \right),
\]

(4.14)

due to the assumption (4.3). Thus, since almost nothing can be done in reducing the second term, GMRES will give a solution that almost optimizes the first term, i.e. it will give a solution \(\hat{y} \approx S_k^{-1} \hat{z} \). Furthermore, since the Arnoldi recursion for \(B_0 \) can be seen as a perturbation of that for

\[
\begin{bmatrix}
L_1 & 0 \\
0 & 0
\end{bmatrix},
\]

in the first steps of the recursion the matrix \(V_k^{(1)} \) is close to orthogonal, and therefore the assumption that \(L_1 V_k^{(1)} \) is well-conditioned is justified for small values of \(k \).

We expect that for general problems the grade \(m_* \) will be close to \(m \). However, in the case of preconditioning of ill-posed equations, \(L_1 \) may have extremely close or even multiple eigenvalues (depending on the quality of the preconditioner), so that the method will reduce \(\| X \| \| L_1 V_k^{(1)} \hat{z} - u^{(1)} \| \) to a level below \(\| c^{(2)} \| \) after only a few steps. This is illustrated in the following example.

Example 4.5. The example presented in Section 6.2 has numerical rank 20 \((m = 20)\), and we solve it using GMRES. For this example \(\| X \| \approx 1.08, \| L_1^{-1} \| \approx 1.58, \| L_2 \| \approx 5.8 \cdot 10^{-16} \). The convergence history is illustrated in the plots of Figure 4.2. We see that \(\| X \| \| L_1 V_k^{(1)} \hat{z} - u^{(1)} \| \) is reduced under the level \(\| c^{(2)} \| \) already after three steps. Furthermore, numerically the grade \(m_* \) is equal to 20 since the residual \(\| L_1 V_k^{(1)} \hat{z} - u^{(1)} \| \) is zero after 20 steps. □

We see that the residual estimate from Theorem 4.4 is realistic in Example 4.5, but in many cases it may be a gross overestimate of the actual convergence. Indeed, the result only exploits the Krylov decomposition (4.8), and therefore any approximation
space whose basis satisfies this type of equation for $k = m_*$ could be used to obtain the bound in Theorem 4.4. A fundamental property of Krylov subspaces, that has not been employed so far, is that there is an underlying polynomial approximation taking place. In the next section we will show that more accurate and insightful results may be obtained by fully exploiting spectral information of the coefficient matrix, within a polynomial approximation setting.

4.2. An improved residual estimate

In this section we show how much one can gain by exploiting the approximation properties of Krylov subspaces, in the context of minimal residual methods. For any polynomial p_m of degree not greater than m we can write

$$ p_m(B)c = [X_1, X_2] \begin{bmatrix} p_m(L_1)Y_1^*c \\ p_m(L_2)Y_2^*c \end{bmatrix} = X_1p_m(L_1)Y_1^*c + X_2p_m(L_2)Y_2^*c, $$

where $[Y_1, Y_2]^* = [X_1, X_2]^{-1}$ (cf. (4.6)). Therefore, using $X_1^*X_1 = I$, and $Y_2^*c = c^{(2)}$,

$$ ||p_m(B)c|| \leq ||p_m(L_1)Y_1^*c|| + ||X_2p_m(L_2)c^{(2)}||. \tag{4.15} $$

We denote by \mathbb{P}_k the set of polynomials p of degree not greater than k and such that $p(0) = 1$. We also recall that k iterations of GMRES generate an approximate solution d_k for $Bd = c$ with $d_k \in K_k(B, c)$ (for a zero initial guess) by minimizing the residual $r_k = c - Bd_k$ [36]. In terms of polynomials, this implies that $r_k = p_k(B)c$ where $p_k = \arg \min_{p \in \mathbb{P}_k} ||p(B)c||$; p_k is called the GMRES residual polynomial.

The following theorem provides a bound of the GMRES residual when the spectra of L_1 and L_2 are well separated, and the magnitude of $c^{(2)}$ is small compared with that of the whole vector c, as is the case in our setting. The proof is in the spirit of that in [9].

Theorem 4.6. Let m_* be the grade of L_1 with respect to Y_1^*c. Assume k iterations of GMRES have been performed on $Bd = c$, and let r_k be the corresponding residual. Let Δ_2 be a circle centered at the origin and having radius ρ, enclosing all eigenvalues of L_2.

i) If $k < m_*$, let $s_k^{(1)} = \phi_k(L_1)Y_1^*c$ be the GMRES residual associated with $L_1z = Y_1^*c$, where $\phi_k \in \mathbb{P}_k$. Then

$$ ||r_k|| \leq ||s_k^{(1)}|| + ||X_2||\gamma_k\tau, \quad \tau = \rho \max_{z \in \Delta_2} ||(zI - L_2)^{-1}c^{(2)}||, \tag{4.16} $$

![Fig. 4.2. Example 4.5, residuals. First 7 steps (left), 25 steps (right). $||X|| ||L_1V_1^{(1)}z - u^{(1)}||$ (solid), (4.14) (dashed), true residual (dashed with +), and the estimate (4.12) (solid straight line).](image)
where \(\gamma_k = \max_{z \in \Delta_2} \prod_{i=1}^k |\theta_i - z|/|\theta_i| \) and \(\theta_i \) are the roots of \(\phi_k \).

ii) If \(k = m_* + j, \ j \geq 0 \), let \(s_j^{(2)} = \varphi_j(L_2)c^{(2)} \) be the GMRES residual associated with \(L_2z = c^{(2)} \) after \(j \) iterations, where \(\varphi_j \in \mathbb{P}_j \), so that \(||s_j^{(2)}|| \leq ||c^{(2)}|| \). Then

\[
||r_k|| \leq \rho \gamma_k ||s_j^{(2)}|| ||X_2|| \max_{z \in \Delta_2} ||(zI - L_2)^{-1}||, \tag{4.17}
\]

where \(\gamma_{m_*} = \max_{z \in \Delta_2} \prod_{i=1}^{m_*} |\theta_i - z|/|\theta_i| \) and \(\theta_i \) are the roots of the grade polynomial of \(L_1 \).

Proof. Let us write \(r_k = p_k(B)c \), where \(p_k \) is the GMRES residual polynomial.

i) For \(k < m_* \), we have \(||r_k|| = \min_{p \in \mathbb{P}_k} ||p(B)c|| \leq ||\phi_k(B)c|| \), where \(\phi_k \) is the GMRES residual polynomial associated with \(L_1 \) and \(Y_1^*c \). Using (4.15), we have

\[
||\phi_k(B)c|| \leq ||\phi_k(L_1)Y_1^*c|| + ||X_2\phi_k(L_2)c^{(2)}|| \leq ||s_k^{(1)}|| + ||X_2|| ||\phi_k(L_2)c^{(2)}||.
\]

To evaluate the last term we use the Cauchy integral representation. From \(\phi_k(L_2)c^{(2)} = \frac{1}{2\pi i} \int_{\Delta_2} \phi_k(z)(zI - L_2)^{-1}c^{(2)}dz \), we obtain

\[
||\phi_k(L_2)c^{(2)}|| \leq \rho \max_{z \in \Delta_2} |\phi_k(z)| \max_{z \in \Delta_2} ||(zI - L_2)^{-1}c^{(2)}||.
\]

Using \(\phi_k(z) = \prod_{i=1}^k (1 - \frac{z}{\theta_i}) \), the first result follows.

For \(k \geq m_* \), we select the polynomial \(p_k(z) = q_{m_*}(z)\varphi_j(z) \), where \(q_{m_*} \) is the grade polynomial, namely it satisfies \(q_{m_*}(L_1)Y_1^*c = 0 \), so that \(p_k(L_1)Y_1^*c = 0 \); moreover, \(\varphi_j(z) \) is the GMRES residual polynomial after \(j \) iterations on \(L_2z = c^{(2)} \). Then

\[
||r_k|| \leq ||p_k(B)c|| \leq ||p_k(L_1)Y_1^*c|| + ||X_2p_k(L_2)c^{(2)}|| \\
\leq ||X_2|| ||p_k(L_2)c^{(2)}|| \leq ||X_2|| ||q_{m_*}(L_2)|| ||\varphi_j(L_2)c^{(2)}||.
\]

Once again, using the Cauchy integral representation,

\[
||q_{m_*}(L_2)|| \leq \rho \max_{z \in \Delta_2} |q_{m_*}(z)| \max_{z \in \Delta_2} ||(zI - L_2)^{-1}||.
\]

Since \(q_{m_*}(z) = \prod_{i=1}^{m_*} (1 - \frac{z}{\theta_i}) \), the result follows. \(\square \)

A few comments are in order before we proceed with some examples. Assuming that \(m_* \ll n \), Theorem 4.6 shows that the behavior of the first few iterations of GMRES is driven by the convergence of the reduced system \(L_1d^{(1)} = Y_1^*c \). During these iterations, the noise-related part of the problem may affect the bound on the overall residual if \(B \) is non-normal, otherwise the first term \(||s_k^{(1)}|| \) dominates. Such non-normality reveals itself in two different ways: a) The quantity \(\tau \) may be large if the second diagonal block \(L_2 \) is very non-normal, so that its resolvent norm may be large even for \(z \) not too close to the spectrum; b) Due to (4.7), \(||P|| \) and thus \(||X_2|| \) may be large if \(L_1 \) and \(L_2 \) are not well separated, in terms of sep function, while the norm of the “coupling” matrix \(G \) is sizable.

If \(G = 0 \), then \(X_2 \) has orthonormal columns and only the non-normality of \(L_2 \) plays a role in the balance between the two terms in (4.16).
For k sufficiently large, we then expect that $\|s_k^{(1)}\|$ will become smaller than the second term in (4.16), so that the second term $\|X_2\|\gamma_k\tau$ will start to dominate. For $k > m^*$, the first term is zero, so that a bound based on the system in L_2 may be obtained, as in (4.17).

We also need to comment on the expected size of τ and γ_k. The quantity τ collects information on the non-normality of L_2, and on the size of the data perturbation. We already mentioned the role of the transfer function norm, which appears as $\|(zI - L_2)^{-1}c^{(2)}\| \leq \|(zI - L_2)^{-1}\| \|c^{(2)}\|$. Therefore, the size of the noise-related data, $\|c^{(2)}\|$, may be amplified significantly on a non-normal problem. On the other hand, the radius ρ also plays a role. We recall that $\|(zI - L_2)^{-1}\| \leq \text{dist}(z,F(L_2))^{-1}$ where $F(L_2)$ is the field of values\(^6\) of L_2. Therefore, the circle Δ_2 may be set to be sufficiently far from $F(L_2)$ (see Figure 4.3), so that $\|(zI - L_2)^{-1}\|$ be of moderate size, while maintaining ρ not too large, so as not to influence γ_k (see below). In that case, $\rho\|(zI - L_2)^{-1}\| \ll 1$, implying $\tau \approx \|c^{(2)}\|$. Similar considerations hold for the bound (4.17). The quantity γ_k is the maximum value of the GMRES residual polynomial on the circle Δ_2. If the circle tightly surrounds zero, then γ_k is usually very close to one since the residual polynomial ϕ_k satisfies $\phi_k(0) = 1$. Circles of larger radius may cause γ_k to assume significantly larger values, depending on the location of the polynomial roots θ’s. We found that values of the radius ρ within $\|L_1\|$ provided good bounds; in general however we tried to selected values of ρ significantly smaller; see the examples below.

\(^6\)The field of values of an $n \times n$ matrix L is defined as $F(L) = \{z^*Lz : z \in \mathbb{C}^n, \|z\| = 1\}$.

Theorem 4.4 gives good estimates only when $\|L_2\|$ is very small and L_1 is very well-conditioned, which is the case when a good, singular preconditioner is used for an ill-posed problem. On the other hand, the improved result in Theorem 4.6 can be applied to estimate the behavior of GMRES applied directly (i.e. without preconditioner) to an ill-posed problem.

Example 4.7. We consider the wing example from the Matlab Regularization
Toolbox [20, 22]. We generate the data with dimension $n = 100$, and the largest few eigenvalues of A in absolute value are

- 3.7471×10^{-1}
- -2.5553×10^{-2}
- 7.6533×10^{-4}
- -1.4851×10^{-5}
- 2.1395×10^{-7}
- -2.4529×10^{-9}
- 2.3352×10^{-11}
- -1.8998×10^{-13}
- 1.3260×10^{-15}

We perturb the exact right-hand side b_e as $b = b_e + \varepsilon p$, with p having normally distributed random entries and $\|p\| = 1$. With the explicit Schur decomposition of the matrix, we take as L_1 the portion of B corresponding to the largest six eigenvalues in absolute value (that is $m_* = 6$), down to $\lambda_6 = -2.4529 \times 10^{-9}$; for this choice we have $\|G\| = 2.29 \times 10^{-5}$ and $\|P\| = 10.02$. This choice of L_1 was used to ensure that there is a sufficiently large gap between L_1 and L_2, while still being able to assume that $\|L_2\|$ is mainly noise. Note that since all relevant eigenvalues are simple, $m_* = m$ for this example. We then take a circle of radius $\rho = 2 \cdot 10^{-9} < \text{dist} (\text{spec} (L_1), 0)$. We compute the invariant subspace basis $[X_1, X_2]$ as in (4.6), where P was obtained by solving the associated Sylvester equation.

We note that for $\varepsilon = 10^{-7}$ we have $\|Y_1^* c\| = 1$ and $\|Y_2^* c\| = 6.7 \times 10^{-7}$, while for $\varepsilon = 10^{-5}$ we obtain $\|Y_2^* c\| = 6.49 \times 10^{-5}$; all these are consistent with the used perturbation ε.

Table 4.1 reports some key quantities in the bound of Theorem 4.6 for a few values of ε at different stages of the GMRES convergence. For $k < m_* = 6$ we see that the two addends of the bound in (4.16) perform as expected: $\|s_k^{(1)}\|$ dominates for the first few iterations, after which the second term leads the bound, providing a quite good estimate of the true residual norm, $\|r_k\|$. A larger perturbation ε makes this dominance effect more visible at an earlier stage.

Table 4.1

<table>
<thead>
<tr>
<th>ε</th>
<th>k</th>
<th>$|s_k^{(1)}|$</th>
<th>$|X_2| \gamma_k \tau$</th>
<th>Bound (4.16) or (4.17)</th>
<th>$|r_k|$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-7}</td>
<td>2</td>
<td>$1.640e-03$</td>
<td>$6.770e-06$</td>
<td>$1.647e-03$</td>
<td>$1.640e-03$</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$3.594e-05$</td>
<td>$6.770e-06$</td>
<td>$4.271e-05$</td>
<td>$3.573e-05$</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>$6.712e-06$</td>
<td>$6.311e-07$</td>
<td></td>
</tr>
<tr>
<td>10^{-5}</td>
<td>2</td>
<td>$1.621e-03$</td>
<td>$6.770e-04$</td>
<td>$2.298e-03$</td>
<td>$1.640e-03$</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>$6.442e-04$</td>
<td>$6.308e-05$</td>
<td></td>
</tr>
</tbody>
</table>

Example 4.7. Wing data. Key quantities of Theorem 4.6. L_1 of size 6×6 ($m_* = 6$), so that $\|G\| = 2.29 \times 10^{-5}$ and $\|P\| = 10.02$. Circle of radius $\rho = 2 \cdot 10^{-9}$.

Example 4.8. We consider the `baart` example from the same toolbox as in the previous example. This example will be considered again in later sections. The leading eigenvalues for the 100×100 matrix are

- $2.5490e+00$
- $-7.2651e-01$
- $6.9414e-02$

L_1 of size 7×7 ($m_\ast = 7$), so that $\|G\| = 6.4357 \cdot 10^{-3}$ and $\|P\| = 1.48$. Circle of radius $\rho = 2 \cdot 10^{-7}$.

<table>
<thead>
<tr>
<th>ε</th>
<th>k</th>
<th>$|s_k^{(1)}|$</th>
<th>$|X_2|\gamma_k\tau$</th>
<th>Bound</th>
<th>$|r_k|$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-7}</td>
<td>2</td>
<td>1.590e-02</td>
<td>5.851e-08</td>
<td>1.590e-02</td>
<td>1.590e-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.105e-06</td>
<td>5.851e-08</td>
<td>5.165e-06</td>
<td>5.105e-06</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>1.062e-07</td>
<td>3.188e-08</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>2</td>
<td>1.590e-02</td>
<td>5.851e-06</td>
<td>1.590e-02</td>
<td>1.590e-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.404e-06</td>
<td>5.851e-06</td>
<td>1.125e-05</td>
<td>6.110e-06</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>1.062e-05</td>
<td>3.188e-06</td>
</tr>
</tbody>
</table>

We consider $m_\ast = 7$, giving $\|G\| = 6.4357 \cdot 10^{-3}$ and $\|P\| = 1.48$, and we chose $\rho = 2 \cdot 10^{-7}$. Also in this case, $m_\ast = m$ as all involved eigenvalues are simple. For $\varepsilon = 10^{-7}$ we have $\|Y^\ast c\| = 1$ and $\|Y^\ast_2 c\| = 3.26 \cdot 10^{-8}$, while for $\varepsilon = 10^{-5}$ we obtain $\|Y^\ast_2 c\| = 3.26 \cdot 10^{-6}$.

Table 4.2 reports some key quantities in the bound of Theorem 4.6 for a few values of ε at different stages of the GMRES convergence.

The digits in the table fully confirm what we found in the previous example, although here the addend carrying the perturbation is less dominant in the early phase of the convergence history.

Since $\|L_1^{-1}\| \|L_2\| \approx 0.061$, we see that Theorem 4.4 would give a much worse residual estimate for this example, where the eigenvalues are not so well separated as in Example 4.5.

5. Estimating the error. In this section we derive two error estimates. The first one is a standard type estimate for ill-posed problems that is used in the literature to demonstrate continuous dependence on the data for a regularization method (especially when the problem is formulated in function spaces). In the second one we estimate the error due to the approximate solution of the least squares problem (4.1).

5.1. Error Estimate for the Singularly Preconditioned Problem. Assume that $A \in \mathbb{C}^{n \times n}$ is a matrix corresponding to a compact operator, i.e. an ill-conditioned matrix obtained by discretizing an ill-posed problem. Consider the linear system of equations $Ax = b$, where $b = b_e + \eta$, where b_e is an exact right hand side, and η is a noise vector, which is assumed to be small in norm. For simplicity we assume that the smallest singular value of A is non-zero, but maybe very small. The exact linear system

$$ Ax = b_e, $$(5.1)
has the solution $x_e = A^{-1}b_e$. Let $M_m^\dagger \in \mathbb{C}^{n \times n}$ be a rank-m approximation\footnote{Note that in the context of ill-posed problem the inverse A^{-1} makes sense only in connection with exact data, cf. \cite[Chapter 3]{13}.} of A^{-1}. Then, in the preconditioned context, we have a rank-deficient least squares problem

$$\min_y \| (AM_m^\dagger) y - b \|,$$

with least norm solution $y_m = (AM_m^\dagger)^+ b$. The corresponding approximate solution of $Ax = b$ is $x_m = M_m^\dagger (AM_m^\dagger)^+ b$. We now want to estimate $\|x_e - x_m\|$. To this end, we use the generalized SVD (GSVD) \cite{40, 32} of A^{-1} and M_m^\dagger,

$$A^{-1} = Z \Omega^{-1} P^*, \quad M_m^\dagger = Z \Lambda^+ Q^*, \quad \Omega = \text{diag}(\omega_1, \ldots, \omega_n) \quad \text{and} \quad \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n),$$

with non-singular $\Lambda_m \in \mathbb{R}^{m \times m}$. The matrices P and Q are unitary, while Z is only non-singular.

Proposition 5.1. With the notation defined above, we can estimate

$$\|x_e - x_m\| \leq \|S x_e\| + \|M_m^\dagger (AM_m^\dagger)^+ (b_e - b)\|,$$

where

$$S = Z \begin{bmatrix} 0 & 0 \\ 0 & I \end{bmatrix} Z^{-1}. \quad (5.4)$$

In addition, if \hat{y} denotes any least squares solution of (5.2), and $\hat{x} = M_m^\dagger \hat{y}$, then $\hat{x} = x_m$.

Proof. It is straightforward to show that

$$AM_m^\dagger = P \begin{bmatrix} \Omega_m \Lambda_m^{-1} & 0 \\ 0 & 0 \end{bmatrix} Q^*, \quad M_m^\dagger (AM_m^\dagger)^+ = Z \begin{bmatrix} \Omega_m^{-1} & 0 \\ 0 & 0 \end{bmatrix} P^*, \quad (5.5)$$

where $\Omega_m = \text{diag}(\omega_1, \omega_2, \ldots, \omega_m)$. It follows immediately that

$$M_m^\dagger (AM_m^\dagger)^+ A = Z \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} Z^{-1}. \quad (5.6)$$

We can now estimate

$$\|x_e - x_m\| = \|x_e - M_m^\dagger (AM_m^\dagger)^+ b\| \leq \|x_e - M_m^\dagger (AM_m^\dagger)^+ b_e\| + \|M_m^\dagger (AM_m^\dagger)^+ (b_e - b)\|.$$

For the first term we use $b_e = Ax_e$ and (5.6) and get

$$\|x_e - x_m\| \leq \|S x_e\| + \|M_m^\dagger (AM_m^\dagger)^+ (b_e - b)\|,$$

where S is defined by (5.4).

For the second part of the proposition, partition $Q = (Q_1 \ Q_2)$, where $Q_1 \in \mathbb{C}^{n \times m}$. Then from (5.5) we see that the columns of Q_2 form a unitary basis for the nullspace

\footnote{Recall from Section 3 that M_m^\dagger approximates the low-frequency part of A^{-1}.}
of AM_m^\dagger. Then assume that our solver does not give the exact minimum norm least squares solution of (5.2) but also has a component in the null-space, i.e. we have $\hat{y} = (AM_m^\dagger)^\dagger b + Q_2 w$, for some w. Since the null-spaces of M_m^\dagger and AM_m^\dagger coincide, multiplication by M_m^\dagger annihilates $Q_2 w$, and $\hat{x} = M_m^\dagger \hat{y} = x_m$. \hfill \Box

For the discussion, let the SVD of A be $A = USV^*$. The ideal rank-m pre-conditioner M is the best rank-m approximation (in Frobenius or operator norm) of A, $M = U_m \Sigma_m V_m^*$, with the obvious meaning of the factors. Then $M_m^\dagger = M^\dagger = V_m \Sigma_m^{-1} U_m^*$. In the non-ideal case, the better the rank-m pre-conditioner $M = QAZ^{-1}$ approximates A in some sense, the closer the decomposition of A corresponding to (5.3) is to the SVD, and the closer Z is to the matrix V in the SVD of A. Therefore, for a good pre-conditioner the matrix S in (5.4) is a projection onto the low frequency part of the solution. Thus the estimate (5.7), and its worst case version,

$$\|x_e - x_m\| \leq \|Sx_e\| + \|M_m^\dagger (AM_m^\dagger)^\dagger\| \|b_e - b\|,$$

are analogous to those in the proofs of Proposition 3.7 and Theorem 3.26 in [13], where with an assumption about the smoothness of the exact solution x and with a suitable regularization parameter choice rule (e.g. the discrepancy principle), continuous dependence on the data ($\|b - b_e\|$) is proved.

5.2. The GMRES approximation error. The GMRES algorithm delivers a monotonically non-increasing residual norm $\|r\| = \|b - Ax_m\| = \|c - Bd\|$, and we have shown that under certain spectral hypotheses on B, this norm can be sufficiently small. We will now consider (4.1) and discuss the error in the solution approximation that arises due to the fact that we do not solve that least squares problem exactly. We will assume that rank(AM_m^\dagger) = m, which implies that the Schur decomposition is

$$U^*(AM_m^\dagger)U = \begin{bmatrix} L_1 & G \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} B_1 \\ 0 \end{bmatrix} = B.$$

(5.8)

The least squares problem (4.2) can then be written

$$\min_d \{\|B_1 d - c^{(1)}\|^2 + \|c^{(2)}\|^2\}, \quad c = U^* b = \begin{bmatrix} c^{(1)} \\ c^{(2)} \end{bmatrix},$$

(5.9)

which, due to the nonsingularity of L_1, is equivalent to the underdetermined system

$$B_1 d = c^{(1)}.$$

(5.10)

THEOREM 5.2. Assume that rank(AM_m^\dagger) = m with Schur decomposition (5.8), and let $x_m = M_m^\dagger y_m$, where $y_m = (AM_m^\dagger)^\dagger b$ is the minimum norm least squares solution of (4.1). Further, let $\hat{x}_m = M_m^\dagger \hat{y}_m$, where \hat{y}_m is an approximate solution of (4.1). Then

$$\|x_m - \hat{x}_m\| \leq 2\kappa(AM_m^\dagger) \|M_m^\dagger\| \frac{\|r^{(1)}\|}{\|AM_m^\dagger\| \|\hat{y}\| + \|c^{(1)}\|} + O(\|r^{(1)}\|^2),$$

where $\|r^{(1)}\| = \|B_1 \hat{d} - c^{(1)}\|$, $\hat{d} = U^* \hat{y}_m$, and $c^{(1)}$ is defined by (5.9).

Proof. From the second part of Proposition 5.1 we see that we do not need to take into account any component of \hat{y} (or, equivalently, \hat{d}) in the nullspace of AM_m^\dagger, since that part will be annihilated in the multiplication by M_m^\dagger. Therefore, the sensitivity to perturbations of the underdetermined problem (5.10) is equivalent to that of a
corresponding square problem. Using standard results for linear systems [25, Section 7.1], we get
\[\| x_m - \hat{x}_m \| \leq 2\kappa (AM_m^T \| M_m^+ \| \| r^{(1)} \|) \| B_1 \| \| d \| + \| c^{(1)} \| + O(\| r^{(1)} \|^2), \]
from which the result follows. \[\square\]

In our numerical experiments we have observed that GMRES applied to (4.2) can produce approximate solutions \(y \) such that \(\| r^{(1)} \| = \| B_1 y - c^{(1)} \| \ll \| B y - c \| = \| r \| \). In actual large-scale computations we do not have access to the Schur decomposition so we cannot obtain \(r^{(1)} \). However, consider the quantity
\[B^* r = B^* \left[\begin{array}{c} r^{(1)} \\ r^{(2)} \end{array} \right] = \begin{bmatrix} L^+_1 r^{(1)} \\ G^* r^{(1)} + L^+_2 r^{(2)} \end{bmatrix} \cdot \]
Since we have assumed that \(\| L_2 \| \ll \| L_1 \| \), we see that the occurrence that \(\| B^* r \| \ll \| r \| \) gives an indication that \(\| r^{(1)} \| \) is considerably smaller than \(\| r \| \). Indeed, for \(\sigma_{\min}(L_1) \gg 0 \), the condition \(\| B^* r \| \ll \| r \| \) corresponds to \(\| L^+_1 r^{(1)} \|^2 + \| G^* r^{(1)} + L^+_2 r^{(2)} \|^2 \ll \| r \|^2 \), with \(\| L^+_1 r^{(1)} \| \geq \sigma_{\min}(L_1) \| r^{(1)} \| \), from which the assertion follows.

The same is true if \(\| A^* s \| \ll \| s \| \), where \(s = b - Ax \), since \(\| A^* s \| = \| B^* r \| \). Residuals and this estimate are illustrated in Figure 6.9. In light of these considerations, (and in cases when the computation of \(A^* s \) is not prohibitively expensive) we would like to encourage monitoring \(\| A^* s \| \) during the GMRES iterations as a companion of a stopping criterion based on the discrepancy principle.

By combining the estimates in Proposition 5.1 and Theorem 5.2 we get an estimate for the total error \(\| x_e - \hat{x}_m \| \). Under the assumption that \(M \) is a good low-rank approximation of \(A \), the pseudoinverse of the preconditioned matrix, \((AM_m^T)^+ \), is small in norm. Furthermore, since \(M_m^+ \) is an approximate solution operator for the ill-posed problem, \(\| M_m^+ \| \) is only as large as is needed for obtaining a reasonable regularized solution. Normally when an iterative solver is used for an ill-posed problem, it is the number of iterations that acts as regularization parameter. However, here the error estimates show that the regularization is mainly due to the preconditioner.

6. Numerical Examples. In this section we solve numerically four ill-posed problems. In order to illustrate the sensitivity of the solution to noise (cf. Proposition 5.1), we added perturbations to the data. The perturbations are also intended to simulate measurement errors that occur in real applications. The first two examples are small, and are chosen to illustrate different aspects of the theory. The last two are problems where the use of singular preconditioners is particularly useful: to our knowledge there are no papers in the literature describing the solution of ill-posed problems with variable coefficient PDE’s in two or three space dimensions.

6.1. An Ill-Posed Problem. Our first example is a discretization \(K f = g \) of an integral equation of the first kind [1] (test problem \texttt{baart} in [20, 22]),
\[\int_0^\pi \exp(s \cos t) f(t) dt = 2 \sinh(s)/s, \quad 0 \leq s \leq \pi/2, \]

\[\text{Either because it is too expensive to compute, or because the matrix } A \text{ is not available explicitly, see Sections 3 and 6.4.}\]
with solution \(f(t) = \sin t \). The results are typical for unpreconditioned GMRES applied to an ill-posed problem, and clearly show the phenomenon of semi-convergence.

The singular values and the eigenvalues of the matrix \(K \) of dimension \(n = 200 \) are illustrated in Figure 6.1.

Fig. 6.1. Singular values and eigenvalues of the matrix \(K \) for the baart problem. Note that all eigenvalues except the three of largest magnitude belong to a cluster at the origin.

Clearly \(K \) is numerically singular. However, it is not easy to decide about its numerical rank. No matter what value, between 2 and 11, of the dimension of \(L_1 \) in the ordered Schur decomposition we choose, the smallest singular value of \(L_1 \) is much smaller than the norm of \(G \).

We added a normally distributed perturbation of norm \(10^{-4} \) to the right-hand side, and performed 10 GMRES steps. In Figures 6.3 and 6.4 we illustrate the approximate solution at iterations 2-5. For comparison we also show the solution using Tikhonov regularization, \[\min_f \{ \|Kf - g_{pert}\|^2 + \mu^2 \|Lf\|^2 \}, \]
where \(L \) was a discrete first derivative. The value of the regularization parameter was chosen according to the discrepancy principle: it was successively halved until the least squares residual was smaller than a tolerance, see below.

In Figure 6.2 we give the relative residual and the relative error for the GMRES iterations. Clearly the residual stagnates after 3 steps, and the solution starts to diverge after 4. This is also seen in Figures 6.3-6.4.

The discrepancy principle is used as stopping criterion. The data error is \(\|g - g_{pert}\| \approx 10^{-4} \). If we choose \(m = 4 \), then \(\|c^{(2)}\| \approx 10^{-4} \). The iterations are stopped when the norm of the residual is smaller than \(2 \cdot 10^{-4} \). In Figure 6.2 we mark when the stopping criterion was satisfied. The results agree with those in [28, Example 5.3], and are explained by our theoretical analysis in Section 4.2.

6.2. A Preconditioned Ill-Posed Problem. In this example we solve numerically a Cauchy problem for a parabolic PDE in the unit square (we will refer to it as
Fig. 6.2. Baart example: Relative residual (left) and relative error (right) as functions of the GMRES step number. The circle marks when the stopping criterion was first satisfied.

Fig. 6.3. Baart example: Exact solution (solid), GMRES solution (dashed), and Tikhonov solution for $\mu = 0.03125$ (dashed-dotted). Left: after 2 GMRES iterations, right: after 3.

Fig. 6.4. Baart example: Exact solution (solid), GMRES solution (dashed), and Tikhonov solution (dashed-dotted). Left: after 4 GMRES iterations, right: after 5.
Cauchy-1D). The purpose is not to propose a method for solving an ill-posed problem in one space dimension (because there are other, simpler methods for that), but to analyze numerically and illustrate why the preconditioned GMRES method works for the corresponding problem in two space dimensions. We also report comparisons with the circulant preconditioners mentioned in Section 3.

The Cauchy problem is

\[
(\alpha(x)u_x)_x = u_t, \quad 0 \leq x \leq 1, \quad 0 \leq t \leq 1, \quad (6.1)
\]

\[
u(x, 0) = 0, \quad 0 \leq x \leq 1, \quad (6.2)
\]

\[
u_x(1, t) = 0, \quad 0 \leq t \leq 1, \quad (6.3)
\]

\[
u(1, t) = g(t), \quad 0 \leq t \leq 1, \quad (6.4)
\]

where the parabolic equation has a variable coefficient

\[
\alpha(x) = \begin{cases}
1, & 0 \leq x \leq 0.5, \\
2, & 0.5 \leq x \leq 1.
\end{cases}
\]

The solution \(f(t) = u(0, t) \) is sought. This problem, which we call the \textit{sideways heat equation}, is severely ill-posed, see, e.g., [4, 10, 11]. It can be written as a Volterra integral equation of the first kind,

\[
\int_0^t k(t - \tau)f(\tau)d\tau = g(t), \quad 0 \leq t \leq 1. \quad (6.5)
\]

The kernel \(k(t) \) is not known explicitly in the case of a variable coefficient \(\alpha(x) \). We compute it by solving (using Matlab’s stiff solver \texttt{ode23s}) a well-posed problem \((6.1)-(6.3)\) and as boundary values at \(x = 0 \) an approximate Dirac delta function at \(t = 0 \).

The integral equation \((6.5)\) is then discretized giving a linear system of equations

\[
Kf = g, \quad (6.6)
\]

of dimension \(n = 200 \), where \(K \) is a lower triangular Toeplitz matrix, illustrated in Figure 6.5. To construct the data we selected a solution \(f \), solved \((6.1)-(6.3)\) with boundary values \(u(0, t) = f(t) \) using Matlab’s \texttt{ode23s}. The data vector \(g \) was then obtained by evaluating the solution at \(x = 1 \). To simulate measurement errors we added a normally distributed perturbation such that \(||g_{\text{pert}} - g||/||g|| = 10^{-2} \).

As the diagonal of \(K \) is equal to zero, this is an eigenvalue of multiplicity 200, and the assumptions of Section 4 are not satisfied. Therefore it is not surprising that the linear system \((6.6)\) cannot be solved by GMRES, see [28, Example 5.1] and [8, Example 4.1], where a closely related sideways heat equation is studied.

On the other hand, for this problem the initial decay rate of the singular values is relatively slow, see Figure 6.5, and therefore it should be possible to solve approximately a regularized version of \((6.6)\). To this end we precondition the linear system by a problem with a constant coefficient \(\alpha_0 = 1.5 \). The kernel functions are given in Figure 6.6.

For the discretized problem with constant coefficient with matrix \(K_0 \) we compute the SVD, \(K_0 = U\Sigma V^T \), and define the preconditioner as a truncation to rank \(m = 20 \) of the pseudoinverse,

\[
M_m^\dagger = V_m\Sigma_m^{-1}U_m^T.
\]
The eigenvalues of the preconditioned matrix KM_m^\dagger are illustrated in Figure 6.6. Clearly, the numerical rank of KM_m^\dagger is equal to m. We also computed the ordered Schur decomposition (4.2) of KM_m^\dagger. The matrix L_1 had condition number $\kappa_2(L_1) = \sigma_1(L_1)/\sigma_m(L_1) = 1.43$, $\|G\| = 0.0962$, and $\|c^{(2)}\| \approx 0.0066$. Thus in this example the data perturbation is larger than $\|c^{(2)}\|$.

We applied 15 GMRES iterations to the preconditioned system. The relative error is given in Figure 6.7 (for the relative residual, cf. Figure 4.2). The numerical solution after 4 steps is illustrated in Figure 6.8, where, for comparison, we also show the solution using Tikhonov regularization, implemented as in the previous example. It is seen that the two approximate solutions have comparable accuracy.

The stopping criterion (with a fudge factor of 1.1) was satisfied after 4 GMRES steps. From Figure 6.7 we see that the solution accuracy does not deteriorate as the iterations proceed, cf. the last paragraph of Section 5.2.

In Figure 6.9 we demonstrate that $\|r^{(1)}\|$ is well approximated by $\|B^*r\|$, and that this part of residual is much smaller than the overall residual $\|r\|$. Here we illustrate 25 GMRES steps to show that after 20 steps the residual for the first part of the
Fig. 6.7. Cauchy-1D example. Relative error as a function of iteration index. The circle marks when the stopping criterion was first satisfied.

Fig. 6.8. Cauchy-1D example. Exact solution (solid), approximate solution after 4 iterations of preconditioned GMRES (dashed), and Tikhonov solution with $\mu = 0.015625$. The lower solid curve is the right hand side.
system is of the order of the machine precision.

Due to the shift-invariance of the kernel in the integral equation (6.5), the matrix K in (6.6) has Toeplitz structure, and can be preconditioned by a circulant matrix. Therefore, in addition to the preconditioner described in this section, we also made some experiments with the Strang preconditioner [39], as in the discussion in Section 3. We computed the eigenvalue decomposition (3.1) of the circulant matrix (by FFT), and retained only the 20 largest eigenvalues, thereby obtaining a singular preconditioner of rank 20 (cf. (3.3)). As a comparison we also used the non-singular preconditioner (3.2). After 5 GMRES steps the results for both preconditioners were virtually indistinguishable from those reported earlier in this section.

6.3. A Preconditioned 2D Ill-Posed Elliptic Problem. It is in the numerical solution of Cauchy problems for partial differential equations with variable coefficients in two or more space dimensions that the application of a singular preconditioner is particularly interesting. The following elliptic Cauchy problem is severely ill-posed.

\[
(\beta(y)u_y)_y + (\alpha(x)u_x)_x + \gamma u_x = 0, \quad 0 < x < 1, \quad 0 < y < 1,
\]
\[
u(y, 0) = u(y, 1) = 0, \quad 0 \leq y \leq 1,
\]
\[
u(x, 0) = g(x), \quad 0 \leq x \leq 1,
\]
\[
u_y(x, 0) = 0, \quad 0 \leq x \leq 1,
\]

where $u(x, 1) = f(x)$ is sought from the Cauchy data at the boundary $y = 0$. The coefficients are $\alpha(x) = 1, \gamma = 2$, and

\[
\beta(y) = \begin{cases}
50, & 0 \leq y \leq 0.5, \\
8, & 0.5 < y \leq 1.
\end{cases}
\]
We generated a solution $f(x)$, see Figure 6.11, and computed that data function $g(x)$ by solving the well-posed elliptic equation with boundary data $u(x, 1) = f(x)$ and $u_y(x, 0) = 0$. Due to the relatively sharp gradients at the ends of the interval and the constant behavior at the middle, the Cauchy problem becomes difficult in the sense that the solution cannot be well represented by a low-rank approximation.

We added zero-mean normally distributed noise such that the data perturbation was $\|g - g_{\text{pert}}\|/\|g\| \approx 1.8 \cdot 10^{-3}$. We discretized the problem using finite differences, with 100 unknowns in each dimension.

If the coefficient $\beta(y)$ had been constant, then we could have solved the Cauchy problem (6.7) approximately using an obvious extension of the Krylov-based method in [12]. In that method applied to the Cauchy problem with $\beta(y) = \beta_0$ a low-rank approximation is computed using a basis of a Krylov space for the operator L^{-1}, where $L = (\alpha(x)u_x)_x + \gamma u_x$, and approximate evaluation of the solution as $f_0 = \cosh(1/\beta_0 L_m)g$, with β_0 equal to the mean value of $\beta(y)$ over the interval, and where \(\cosh(1/\beta_0 L_m) \) denotes a rank-m approximation of $\cosh(1/\beta_0 L)$. We here used that approximate method as preconditioner, where the rank was determined as large as possible without obtaining an unstable solution (i.e. a solution with large oscillations). The rank was chosen equal to nine. Note that to compute the action of the preconditioning operator to a vector, it is only required to solve a number of well-posed non-selfadjoint 1D elliptic problems (in this case 15). For a more detailed description of the preconditioner, see [12].

The preconditioned problem that we solved by GMRES was

$$\min_y \| (AM_m^\dagger) y - g \|, \quad M_m^\dagger = \cosh(1/\beta_0 L_m),$$

where the action of A to a vector v is equivalent to solving the well-posed problem (6.7) of dimension 10000, with $u(1, x) = v(x)$ replacing $u(x, 0) = g(x)$. We performed a small number of iterations (our theory in the preceding section indicates that at most nine iterations are needed). As stopping criterion we used the discrepancy principle. In Figure 6.10 we plot the relative residual. The stopping criterion with a fudge factor of 1.2 was first satisfied after three iterations.
The approximate solution after three steps is illustrated in Figure 6.11. The “visual quality” of the solution was almost the same with three to six steps. In Figure 6.11 we also give the approximate solution produced using only the preconditioner of rank nine as solution operator.

For this problem unpreconditioned GMRES exhibited the typical semi-convergence behavior of an iterative method applied to an ill-posed problem. The smallest error was obtained after five steps; the corresponding approximate solution is illustrated in Figure 6.12.

For this problem, where the linear operator is only implicitly given, it is not straightforward to give a measure of the non-selfadjointness. On the other hand the non-selfadjointness is reflected in the Hessenberg matrix H_k occurring in GMRES.
Thus for the unpreconditioned iteration, we define \tilde{H}_{10} as the 10×10 leading submatrix of H_k, for $k \geq 10$. Then we had $\|H_{10} - H^{T}_{10}\|/\|H_{10}\| \approx 0.42$.

Finally, we notice that the approach of this example can be employed for more general operators. Indeed, assuming that L is a 2D elliptic operator (selfadjoint or non-selfadjoint), our methodology can be used to solve 3D elliptic Cauchy problems for equations of the type

$$(d(z)u_z)_z + Lu = 0,$$

with variable coefficient $d(z)$ and cylindrical geometry with respect to z.

6.4. A Preconditioned 2D Ill-Posed Parabolic Problem. Here we consider the problem

$$u_t = (\alpha(x)u_x)_x + (\beta(y)u_y)_y, \quad 0 < x < 1, \ 0 < y < 1, \ 0 \leq t \leq 1,$$

$$u(x, y, 0) = 0, \quad 0 \leq x \leq 1, \ 0 \leq y \leq 1,$$

$$u(x, 0, t) = u(x, 1, t) = 0, \quad 0 \leq x \leq 1, \ 0 \leq t \leq 1,$$

$$u(1, y, t) = g(y, t), \quad 0 \leq y \leq 1, \ 0 \leq t \leq 1,$$

$$u_x(1, y, t) = 0, \quad 0 \leq y \leq 1, \ 0 \leq t \leq 1,$$

where $u(0, y, t) = f(y, t)$ is sought from the Cauchy data at the boundary $x = 1$. The coefficients are

$$\alpha(x) = \begin{cases} 2.5, & 0 \leq x \leq 0.5, \\ 1.5, & 0.5 < x \leq 1 \end{cases}, \quad \beta(y) = \begin{cases} 0.75, & 0 \leq y \leq 0.5, \\ 1.25, & 0.5 < y \leq 1. \end{cases}$$

The solution is taken to be

$$f(y, t) = \exp \left(4 - \frac{1}{y(1-y)} \right) \exp \left(4 - \frac{1}{t(1-t)} \right).$$

An approximate data function g was computed by replacing the condition $u(1, y, t) = g(y, t)$ in (6.8) by $u(0, y, t) = f(y, t)$, which gives a well-posed problem. After finite difference discretization with respect to x and y and 50 unknowns in each dimension, this problem can be considered as a stiff system of ordinary differential equations of dimension 2500, and is solved using Matlab’s $\texttt{ode23s}$. The Cauchy data are then obtained by evaluating the solution at $x = 1$.

One might think that, due to the uni-modal nature of the exact solution, cf. Figure 6.14, the problem is easy to solve. However, the fact that the solution is close to zero in a relatively large region along the border of the unit square, makes it difficult to expand it using a small number of sine functions (as are used in the preconditioner). A discretization of the problem would give a linear system $Kf = g$. Since we discretize with $n = 50$ equidistant points in both the y and t directions that matrix would have dimension 2500. However, due to the variable coefficients, we cannot compute the matrix; instead, when in GMRES we multiply a vector by K we solve a parabolic equation in a similar way as we computed the data g, but here we used the Crank-Nicholson method with step size $1/50$.

The preconditioner is based on the approximation of the differential operator by a corresponding one with constant coefficients (average values). Then, since the geometry is rectangular, separation of variables can be applied, and a semi-analytic solution formula can be applied (see [35]) involving an expansion in Fourier (sine)
series. It is the truncation of this series that leads to a singular preconditioner M^\dagger_m, whose rank is equal to nq, where q is the number of terms in the series. Each term in the series involves, in addition, the solution of a 1D ill-posed Cauchy problem, using Tikhonov regularization. The preconditioner is discussed in detail in [33]. In our numerical experiment the data perturbation was $\|g - g_{\text{pert}}\|/\|g\| = 3.6 \cdot 10^{-3}$, the preconditioner regularization parameter was 0.06, and $q = 6$.

![Fig. 6.13. Parabolic-2D example. Relative residual and error as function of the number of iterations. The stopping criterion was satisfied after 9 steps.](image)

In Figure 6.13 we plot the relative residual and the relative error. Note that, as in the previous examples, the solution accuracy is not sensitive to the exact choice of the stopping criterion. The approximate solution after the 9th iteration, when the relative residual was first smaller than $3.6 \cdot 10^{-3}$, is shown in Figure 6.14.

![Fig. 6.14. Parabolic-2D example. The solution after 9 iterations (left). To the right the exact solution (solid), the approximate solution (dashed), and the solution with preconditioner only (dashed-dotted) at $t = 0.5$.](image)

7. Conclusions. The main contributions of the present paper are the following. We give an eigenvalue-based analysis of the use of GMRES for almost singular linear systems of equations, where the eigenvalues are well separated and clustered. This gives a theoretical and algorithmic basis for the use of singular preconditioners for non-selfadjoint ill-posed problems. The GMRES method is used here and in [33] to solve Cauchy problems for parabolic and elliptic equations with variable coefficients, with a singular (low-rank) preconditioner based on a corresponding problem with constant coefficients.
The case of “ill-determined numerical rank” (where there is no distinct eigenvalue gap) is also treated. It is shown that in both cases a stopping criterion based on the discrepancy principle will give a numerical solution that is as good an approximation as is admissible, given the problem properties and the noise level.

The fact that GMRES with a singular preconditioner can be efficiently applied opens up new possibilities in the numerical solution of ill-posed problems in two and three space dimensions, selfadjoint or non-selfadjoint, linear or non-linear. As soon as a nearby linear ill-posed problem has a fast solver that can be regularized by cutting off high frequencies, that solver can be used as preconditioner. Thus, in each step a well-posed problem with variable coefficients is solved, and a fast, regularized solver is applied. With a good preconditioner only a small number of Krylov steps will have to be performed.

8. Acknowledgement. This work was started when the first author was a visiting fellow at the Institute of Advanced Study, University of Bologna.

REFERENCES

10This is true, e.g., for an FFT-based fast Poisson solver for elliptic equations.

