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Triangular sysle :._.::__..E_E:.:_. role in matrix conypy,
methods are puilt on the icdea of _.E_:_._:n a problent to t), tation,
vstoms, including virtnally all direct m C soly

-q (12 Lme

s Lriangular systems are :N:cam for

. :<E.m
ally

or more triangular S}
linear systems: On serial compulte
| forward substitution algorithms,

* OT pary))

by the standard hack ane
" ntion there are soveral alternative methods, one of whicp,
We g
ysis for the substitution algorithms j Y
nown: the algorithms are 3.,?15 m_um_.nz:o
behaviour of the however, is intriguing, be Mely wﬁma_mws.ma
is often surprisingly small—much smaller than c...e s.nmz% the _.o. The
ise condition number &, or, sometimes, 3..3_. :o:_a E&mﬁnﬁ&
nher cond. The quotes from Stewart and ﬁ.:_ﬁ_.c nc_._ﬁoza:%as
smphasize the high accuracy that is fre :Emcm at the e
The analysis we give in this chapter provides :s _c_z._.__. or,_swcm“__mw"
acy of the substitution :ﬁoi:::.ﬁ?:,:s_ ox:_aa,:.___
nonobvious properties: o vm_.:oz_e.aa

s ply

E_:_:

§8.4.
_w__z._,.i;_,c. error anal
and the conclusion is well k
forward crror,

error

the normw

condition ntr

of this chapter ¢

practice.

for the observed accur

jmportant but !
v L

revenls three
computed solution from substitution de
pends gt
_.czm__
\f

o the accuracy ol the
e right-hand side:

on th
Jay be much more or less ill conditioned
::5. 7

its

o a triangular matrix m

transpose; and
oting in LU, QR. and Cholesky [actorizations can
& Breatly

o the use of piv
Iting triangular system.

improve the conditioning of a resu
As well as deriving backward and forward error bounds, we s}
compute upper and lower bounds for the inv BRI
: 1e inverse of a trian ylh::
gular matri
1

8.1. Backward Error Analysis

Recall that for an upper trian i
angular matrix U € R""" the sys

: ‘ . “ 1e system Uz =

he solved using the formula z, = (b = M..W..i u;;25)/tyi, Which Mlhﬂ.

components of z in order from last to first.

Algorithm 8.1 (back substituti
. -1 pstitution). Given a nonsingula iangular
matrix U € R™*" this algorithm solves the system QW_H _._H. R

H:H&a\ﬁ:;
fori=n—-1:-1:1
s=b
forj=i+L:in
e
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end
T = .m\.z_:

....:Q
Wwe will not state _.:n” ﬁu..m_omczm algorithm for solvi
em, forward substitution. All the results r_. _uor.:ﬁ a lower triangu-
s m_.:__on:mm for forward substitution .Hm. ow for back substitutio
atrix that can be upper or lower _.._.i hroughout this chapter um
the errors in substitution we need HM_MM_M: " .
owing lemma.

m..—.mn.
© obviot
tes am
lyse

Jar
|ha¥
deno
To ana

8.2. Lety=(c= 5 aib
. y=( 5 bi) /by be cvaluated in floating point
: oint arith-

i=1 @i

em
Ma:.n according to
s=¢
fori=1 k=1
ge=8— n_.b.
end
y= s/bk
Then the computed § satisfies
b1 k-1
kF(1+ k) = c = Mun.?.: +0:)
=1 i) Hx:

where |0l MT\_ = iu/(1 — iu). ,w
Proof. Analysis very similar to that leading to (3.2) sh ]
.2) shows that § :=

file— MU‘,T_ a;b;) satisfies

i=1
.m.llﬁ2+mw (1+94, Ir.lﬂ
1) (14 8k-1) M” ib, .
.l_n (A+e)(L+6)...(1+8-y),

where lei],[6i] < u. The final divisi :

Fu(1+60)), 16¢] < ivision yields, using (2.5), § = fU(#/b) =

S e | € u, so that, after dividing through hy :.I.:v ..‘.M_AH..\%“_ vl
) i

1 +¢

?..@;H L, rl
148;) ... (1 + k- ualm a;b
k1) — (14 8y).. (1 48i1)

Tl i
he result is obtained on invoking Lemma 3.1 8]

. Two remarks are i i

in which ¢ is not vwn_”_.ma_mw“ Fiegt, worolont e R AlCulariem ¢ L
Uz = b in which b is not ed, in order to obtain a backward error result | 5
terms 1+ 6; in the proof, perturbed. Second, we carefully kept :E._M of :cm
application of the ] of, so as to obtain the best possible constant .. Di ’
emma to Algorithm 8.1 yields a backward ..?:. q".....E:_ i
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T 3.3, The eomputad s0 worith g | |
Theorem 8. -
€s
D i FUNPOES | TP IO
(4 ANE=1b |Auiy| € Y LTPPR TR 5

J_.J__:c_. __.wmu.. 0

Theorem 8.3 holds only for the particular ordering of arit
W in Algorithm 8.1 A result that holds for any orderipg ; Dergy;
s Adg
of the next lenia.

Lemma 8.4, fy=1c— M”__ aby)/bx is cvaluated

n floating , .
metic, then, no matter what the onder of evaluation, 9 point

arigh,
k-1
b+ ) =0 = 3 a1+ 07,

when EH_; < A for all i If b = 1. so that there is

no &u..s..wﬂ.o#
1o for all i. + then

[

Proof. The result is not hard to see after a little thought, by a fo
proof is tedious to write down. Note that the ordering used in Lemms m:m_&
the one for which this lemma is least obvious! The last part et

. . . OH ﬂ—um HQEH—.S
is useful when analysing unit lower triangular systems, and in Various other
contexts. 0

Theorem 8.5. Let the irfangular system Tx = b, where T € R"* L,

..:.:uin??.A..,c?:mg2___.._.:.:_:.5_.. H_‘__.:Fau_ealalam.ﬁﬁggm computed
solution T safisfies

(T+AT)g=b, |AT|<,|T|. O

I technical terms, this result says that T has a tiny componentwise relative

backward error. In other words, the backward error is about as small as we
could possibly hope.

In most of the remaining error analyses in this book, we will derive re;
sults that, like the one in Theorem 8.5, do not depend on the ordering of
the arithmetic operations. Results of this type are more general, usually 0o
less informative, and easier to derive, than ones that depend on the order-
ing. However, it is important to realise that the actual error does depend on

the ordering, possibly strongly so for certain data. This point is clear from
Chapter 4 on summation.

& ARD —, tROR ANALYSIS
a2 _.G:’rc I
R.- _um

9 Forward Error Analysis
8.5

Theoreins 8.5 and 7.4 there follows the forward error bound

llz = Elloe . _cond(T,x)y,

lzlle = 1—cond(T),’

From

whert
[ P

llso

cond(T\ ) = » cond(T) = || |T7|T| || oo

This pound can, of course, be mlww:mq:w smaller than the corresponding

d involving Koo(T) = [ITlloolIT~"[loo, for the reasons explained in Chap-
o2 For further insight, note that, in terms of the traditional condition
ter __M.ﬁ k(T), ill conditioning of a triangular matrix stems from two pos-
_.Jm_m__“ SOUTCES: variation in the size of the diagonal elements and rows with
w:..&mmo:a q_o.sn_:m.i:nr are M.E,m,.w nm_m.zé to the diagonal elements. Sig-
pificantly, because of its row scaling invariance, cond(T, z) is susceptible only
(o the second source.

Despite its pleasing properties, cond(T', z) can be arbitrarily large. This
is illustrated by the upper triangular matrix

C.HQv”AﬂGV. .Eﬁ.u = H. d"u.

e, i<j, (8.2)
for which , o
=1 — ) 1=

AQAD.V u.,u L D: + Qvu.lmlw. i> ..h..,. ﬁwwv

We have cond(U(a),e) = cond(U(e)) ~ 2a""! as & — 0. Therefore we
cannot assert that all triangular systems are solved to high accuracy. Never-
theless, for any T there is always at least one system for which high accuracy
is obtained: the system T'z = e; if T is upper triangular, or Tz = e, if T
is lower triangular. In both cases cond(T,z) = 1, and the solution comprises
the computation of just a single scalar reciprocal.

To gain further insight we consider special classes of triangular matrices,
beginning with one produced by certain standard factorizations with pivoting.
In EM the results below, the triangular matrices are assumed to be n x n and
nonsingular, and % is the computed solution from substitution.

Lemma 8.6. Suppose the upper triangular matriz U € R™™" satisfies
luis| > |ui;|  for all j > 1. (8.4)

MWMSM_.S unit upper triangular matriz W = |U~1||U| satisfies w;; < 27— for
] >
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p_:.?_w
o S i W = V-1vy ....,.__:.H.: V=D"10 uyq A

r¢ : ix 1 is unit upper triamgular with v, | < 1, and iy jq .
A”,.._ _ﬁm“u.:_ | < gr=1=1 for j > i Thus, for j >, Y o g)
thi -

b

b
o= S el €14 S 2y g

s 0
Vel k=141

6:33.:@.4. _\__:‘:.:E..e::_ﬂ.:.c:mc._.hn:::nm.c_:S 83?:&;2
to Uz = b obtained by substitution satisfics Ution 3

e - €27, _u.ww_m.;_ i=1lin

Proof. From Theorem 8.5 we have

e - & = U AUR| < 1,|U~"||U|[3).

Using Lemma 8.0 we obtain

n

n
" ~ = J=1 & gn—it] L
F-H_,m);Ms___Em,;_w_wﬁé_hMum S 2y maxfz,) g
1= =1 =

Lemma 8.6 shows that for matrices satisfying (8.4), cond(T) is boundeq
for fixed n, no matter how large #(T'). The bounds for |z, - Z;| in Theorem 8.7,
although large if n is large and i is small, decay exponentially with increasing
i—thus, later components of z are always computed to high accuracy relative
10 the elements already computed.

Analogues of Lemma 8.6 and Theorem 8.7 hold for lower triangular L
satisfying

L] > |li;| for all j <. (8.5)

Note, however, that if the upper triangular matrix T' satisfies (8.4) then 17

does not necessarily satisfy (8.5). In fact, cond(TT') can be arbitrarily large,

as shown by the example d

1
T

10

0 € ¢

0 01
= 2
cond(T) =5, cond(TT)=1+ =

An important conclusion is that a triangular system T'z = b can be much

—_— more or less ill conditioned than the system Ty = ¢, even if T satisfies (84).

Theorem 8.7, or its lower triangular analogue, is applicable to

p ERROR ANALYSIS
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the lower triangular matrices from Gaussian elimination with partial
[}

pivoting of complete pivoting;
o the upper triangular matrices from Gaussian elimination with complete
ﬁ?.n_n ing,

o the upper triangular matrices from the Cholesky and QR factorizations
with complete pivoting and column pivoting, respectively.

Next, We consider triangular T' satisfying

i >0, ;<0 foralli#j.
[t is casy to Se¢ that such a matrix has an inverse with nonnegative elements,

and hence is an M-matrix (for definitions of an M-matrix see Appendix B).

\ssociated with any square matrix A is the comparison matriz:
Ass

MA) = (my), mg = fl0h 25 (8.6)
ij [y .

For any nonsingular triangular T, M/(T) is an M-matrix. Furthermore, it is
easy to show that IT=!| < M(T)~" (see Theorem 8.11).

The following result shows that among all matrices R such that |R| = [T},
R =M(T) is the one that maximizes cond(R, z).

Lemma 8.8. For any triengular T,
cond(T z) < cond(M(T),) = || (2M(T)"" ding([tl) ~ 1)zl I /-

Proof. The inequality follows from |T=!| < M(T)~!, together with |T| =
|M(T)|. Since A(T)~! > 0, we have
[M(T)~H|M(T)] = M(T)~ (2diag(|t.]) - M(T))
=2M(T)~" diag(|tu]) - 1,
which yields the equality. ]
IfT = M(T) has unit diagonal then, using Lemma 8.8,
cond(T) = cond(T,e) = ||2T7" = || = MH_%.

Mr_w Emmzm.. for example, that the system U(1)r = b (see (8.2)), where z = e,
nou out as il no.sa_zoaﬁ_ with respect to componentwise relative perturba-
msin U(1) as it is with respect to normwise perturbations in U(1).

Tt
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