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Abstract. The IDR method of Sonneveld and van Gijzen [SIAM J. Sci. Comput., 31:1035–1062,
2008] is shown to be a Petrov-Galerkin (projection) method with a particular choice of left Krylov
subspaces; these left subspaces are rational Krylov spaces. Consequently, other methods, such as
BiCGStab and ML(s)BiCGStab, which are mathematically equivalent to some versions of IDR, can
also be interpreted as Petrov-Galerkin methods. The connection with rational Krylov spaces inspired
a new version of IDR, called Ritz-IDR, where the poles of the rational function are chosen as certain
Ritz values. Experiments are presented illustrating the effectiveness of this new version.

1. Introduction. Recently, Sonneveld and van Gijzen [23] brought renewed in-
terest in the Induced Reduction Method (IDR) first mentioned in [28] thirty years ago.
In [23], and in the subsequent publications [21], [22], and [27], the authors discuss the
IDR method as a completely new family of Krylov subspace methods with short re-
currences; see also [7]. In this contribution, we describe the IDR class of methods as a
classical Krylov subspace method satisfying a Petrov-Galerkin condition using an ap-
propriately chosen left subspace. These left subspaces are rational Krylov spaces. The
connection with rational Krylov spaces inspired us to look a new possible values for
the poles of the defining rational functions. We present a new version of IDR, where
the poles of the rational function are chosen as certain Ritz values. We call this new
version Ritz-IDR, and we present several experiments illustrating its effectiveness.

The IDR method as presented in [21], [23] appears to be very competitive in a
host of problems. This is due in part to the way the IDR method is implemented. In
the interpretation given in this article, we do not deal with implementation issues; we
merely discuss some theory behind this class of methods.

In the next section, we briefly describe the classical Petrov-Galerkin condition in
the context of Krylov subspace methods; see further, e.g., [14], [16]. In Section 3 we
present and analyze a set of nested subspaces, which we use as the left spaces for our
interpretation of IDR(s) as a Petrov-Galerkin method. We relate these sets to the
results on IDR in [21], [22], [23], and [27], in Section 4 and we show how some of the
results in these references follow from the interpretation of IDR as a Petrov-Galerkin
method. In section 5, we extend our analysis to the more general class of IDR(s, ℓ)
methods.

Since both BiCGStab [25] and ML(s)BiCGStab [29] are mathematically equiv-
alent to certain versions of IDR(s)( see [7], [21], [23]) our interpretation of the IDR
class of methods as Petrov-Galerkin methods allows as to conclude that BiCGStab
and ML(s)BiCGStab are also Petrov-Galerkin methods.

In Section 6 we describe the new version Ritz-IDR, and in Section 7 we present
our numerical experiments illustrating the effectiveness of the proposed new version.

2. Petrov-Galerkin methods. The goal of the IDR method studied in this
article is to solve n × n large sparse nonsymmetric linear systems of equations of the
form

Ax = b.(2.1)
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Given an initial vector x0, and the corresponding initial residual r0 = b − Ax0,
Krylov subspace methods are defined by choosing at the mth iteration an approxi-
mation xm such that xm − x0 lies in the Krylov subspace (of dimension m) defined
by

Km = Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0}.(2.2)

Thus, the residual rm = b−Axm = r0 + A(xm − x0) lies in the next Krylov subspace
space Km+1. Note that these spaces are nested, i.e., Km ⊂ Km+1. Unless there is a
polynomial p of degree less than n such that p(A)r0 = 0, this sequence of subspaces
keeps growing until Kn = Cn.

Given a set {Lm} of nested subspaces, the Petrov-Galerkin condition consists of
imposing that the residual rm be orthogonal to the subspace Lm, that is finding the
only element x ∈ x0 + Km such that

b − Ax ⊥ Lm.(2.3)

Different choices of the subspaces Lm give rise to different iterative methods. For
example, when Lm = Km, one obtains the Full Orthogonalization Method (FOM),
which reduces to the Conjugate Gradient method (CG) when A is symmetric and
positive definite. Similarly, when Lm = AKm, one has a minimal residual method,
such as GMRES. When Lm = Km(A∗, r̃0), for some initial (left) residual r̃0, one has
BiCG. See, e.g., [14], [16], for descriptions of these methods, and references of the
original papers presenting them.

3. Analysis of the left spaces. We begin with some notation and definitions.
Let σ(A), N (A), and R(A) denote the spectrum, the null space, and the range of A,
respectively. Let A∗ denote the conjugate transpose of A. Let P = [p1, p2, . . . , ps] ∈
Cn×s. For every j = 1, 2, . . ., define the block Krylov subspace

Kj(A
∗, P ) = R([P, A∗P, . . . , (A∗)j−1P ]) =

s∑

i=1

Kj(A
∗, pi).(3.1)

Consider the polynomial

Ωj(t) = (1 − ωjt) · · · (1 − ω1t), ωi 6= 0, i = 1, . . . , j,(3.2)

of degree j, and let Ω0(t) = 1. If 1/ωi /∈ σ(A), i = 1, . . . , j, then the matrix Ωj(A)∗ is
invertible, and for j ≥ 1, (Ωj(A)∗)−1 = (Ωj−1(A)∗)−1((I − ωjA)∗)−1. We construct
now the sequence of subspaces

Wj = (Ωj(A)∗)−1Kj(A
∗, P ),(3.3)

where the scalars ωi are appropriately chosen.
We claim that the Wj spaces are the left spaces of IDR when seen as a Petrov-

Galerkin method, and this is shown in Section 4. The following lemma summarizes
some facts about these spaces.

Lemma 3.1. Assume that Ωj(A)∗ is nonsingular. Then
(i) Wj = Kj(A

∗, (Ωj(A)∗)−1P );
(ii) dj := dimWj = dimKj(A

∗, P ); analogously, from rankP = s, it follows that
rank(Ωj(A)∗)−1P = s.

(iii) Wj+1 = (Ωj+1(A)∗)−1Kj(A
∗, P ) + R(((I − ωj+1A)∗)−1P ).
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(iv) Wj = R([(Ωj(A)∗)−1P, (Ωj−1(A)∗)−1P, . . . , ((I − ω1A)∗)−1P ]).
Proof. The relation in (i) follows from the fact that A∗ commutes with any ratio-

nal function in A∗. The relation in (ii) follows by considering a basis of Kj(A
∗, P ), and

noticing that for Ωj(A)∗ nonsingular, the matrix (Ωj(A)∗)−1 maps linearly indepen-
dent vectors onto linearly independent vectors - a basis of Wj . The same argument
can be used to see that rank(Ωj(A)∗)−1P = s.

To show (iii) we conveniently write the space Kj(A
∗, P ) as

Kj(A
∗, P ) = R([P, (I − ω1A)∗P, (I − ω1A)∗(I − ω2A)∗P, . . . ,

j−1∏

k=1

(I − ωkA)∗P ]),

so that

(Ωj+1(A)∗)−1Kj+1(A
∗, P ) =

R([(Ωj+1(A)∗)−1P,

j+1∏

k=2

((I − ωkA)∗)−1P, . . . , ((I − ωj+1A)∗)−1P ]).

In addition

(Ωj+1(A)∗)−1Kj(A
∗, P ) =

R([(Ωj+1(A)∗)−1P,

j+1∏

k=2

((I − ωkA)∗)−1P, . . . , ((I − ωjA)∗)−1((I − ωj+1A)∗)−1P ]).

Comparing the last two displayed formulas the result follows.
Similarly, for (iv), we can write K1(A

∗, P ) = R(P ) and for j ≥ 2

Kj(A
∗, P ) = R([P, (I − ωjA)∗P, (I − ωjA)∗(I − ωj−1A)∗P, . . . ,

j∏

k=2

(I − ωkA)∗P ]),

and computing (Ωj(A)∗)−1Kj(A
∗, P ) the expression in (iv) follows directly.

We are ready to prove that the sets Wj are nested.
Theorem 3.2. Let A ∈ Rn×n be nonsingular. Let Ωj(t) be a polynomial of degree

j of the form (3.2), with 1/ωi /∈ σ(A), i = 1, . . . , j. Let P = [p1, p2, . . . , ps] ∈ Rn×s be
of rank s, such that

Kj(A
∗, P ) ( Kj+1(A

∗, P ),(3.4)

unless Kj(A
∗, P ) = Rn. Consider the sets Wj defined in (3.3). Then, for each j ≥ 1,

we have that Wj ⊂ Wj+1, and this inclusion is strict unless Wj = Cn. Furthermore,

dj+1 − dj ≤ dj − dj−1 ≤ s.(3.5)

Proof. Using Lemma 3.1(iv) for j and j + 1 it follows that Wj ⊂ Wj+1. The
fact that this inclusion is strict (unless Wj = Cn) follows from the first equality
of Lemma 3.1(ii) and the hypothesis (3.4), which implies dj < dj+1, except when
Kj(A

∗, P ) = Cn, in which case Wj = (Ωj(A)∗)−1Kj(A
∗, P ) = Cn.

To complete the proof, we use the formulation given by Lemma 3.1(iv) and the
fact that dimR([(Ωj+1(A)∗)−1P ]) = s. Therefore we have that

dim[(Ωj+1(A)∗)−1Kj+1(A
∗, P )] ≤ dim[(Ωj(A)∗)−1Kj(A

∗, P )] + s,



4 V. Simoncini and D. B. Szyld

from which the second inequality in (3.5) follows. The first inequality in (3.5) stems
from the fact that once some vectors are collinear in Wj , they continue to be collinear
in Wj+1.

The hypothesis (3.4) ensures that P is chosen so that the columns of (A∗)jP do
not become linearly dependent with respect to powers of A∗ less or equal to j, so
that the block Krylov subspaces (3.1) keep growing with j. In block Krylov subspace
methods, one needs to monitor the space for the possible emergence of this collinearity;
see, e.g., [6], [15] and references therein. Of course, any condition that implies (3.4)
can be used as hypothesis. For example, it would suffice to require that none of the
vectors pi, i = 1, . . . , s, lie in any proper invariant subspace of A∗, cf. the remark after
Theorem 2.1 in [23]. We mention that there are practical ways to deal with this issue
of collinearity if it occurs, and this is taken into account in the description of IDR,
e.g., in [23].

Our characterization given in Lemma 3.1(iv) emphasizes that the left subspace Wj

(sometimes referred to as the space of “shadow residuals”) is in fact a rational Krylov
subspace. These subspaces have been successfully used in the solution of eigenvalue
problems and other related problems; see, e.g., [1] and references therein. We will use
this fact in our motivation of the new version of IDR in Section 6.

4. IDR viewed as Petrov-Galerkin. The original description of the IDR
method [28], and its recent resurgence IDR(s) [23] is given in terms of shrinking
subspaces Gj , j = 0, 1, . . . The residuals rm are chosen in Km+1(A, r0) (see, e.g., (3.1)
in [23]), and in addition, such that

rm ∈ Gj , with j = ⌊m/(s + 1)⌋.(4.1)

Note that every (s+1) iterations the space where these residuals reside changes. The
first space G0 is large, and it is suggested in [23] and elsewhere to be chosen as a
maximal Krylov subspace G0 = Kn(A, r0). A full rank n × s matrix P is given, and
the subsequent spaces defined as

Gj = (I − ωjA)(Gj−1 ∩N (P ∗)).

These spaces are shown to be nested, and their dimension is decreasing, and this
dimension reduction gives the name of the method: Induced Reduction Method.

We show now that the requirement that (4.1) holds is equivalent to the following
Petrov-Galerkin condition

rm ⊥ Wj , where j = ⌊m/(s + 1)⌋.(4.2)

To that end, we first note that one can derive an alternative definition of the spaces
Gj , as done, e.g., in [21, Theorem 4.2], where it is shown that

Gj = {Ωj(A)v | v ⊥ Kj(A
∗, P )},(4.3)

or, what is the same

Gj = Ωj(A)[Kj(A
∗, P )]⊥;(4.4)

see also [7].
Theorem 4.1. It holds that G⊥

j = Wj, that is, r ⊥ Wj if and only if r ∈ Gj.
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Proof. Let B = Ωj(A) and S = Kj(A
∗, P )⊥. Since BS = {Bv | v ∈ S}, we can

write

G⊥
j

(4.4)
= (BS)⊥ = {w | w∗Bv = 0, v ∈ S}

= {w | (B∗w)∗v = 0, v ∈ S}

= {B−∗y | y∗v = 0, v ∈ S}

= B−∗{y | y∗v = 0, v ∈ S} = B−∗S⊥ (3.3)
= Wj .

Theorem 4.1 provides a proof that the IDR(s) method of Sonneveld and van
Gijzen is indeed a Petrov-Galerkin method. Some of the results we have shown in
Section 3 have counterparts in the IDR literature. Our Theorem 3.2 corresponds
to the “IDR Theorem” given, e.g., in [23, Theorem 3.1] or [21, Theorem 2.2]. Our
observation in Lemma 3.1(ii) corresponds to [21, Corollary 4.5].

In this context, the IDR(s) method consists of finding at the mth iteration, an
approximation xm ∈ x0 + Km(A, r0) such that for m > s the residual rm = b − Axm

satisfies (4.2). To complete the formulation of the IDR(s) method, one needs to
provide a choice of the first s iterates, and a choice of the scalars ωj, j = 1, . . .. For
the first s iterates it suffices to compute {x1, . . . , xs} by any iterative method: for
example, s steps of GCR are suggested in [21], whereas s Chebyshev iterations are
used in [27].

The condition (4.2) suggests that a new scalar ωj+1 should be computed every
s + 1 iterations, so as to complete a new polynomial Ωj+1. Following [25], in [23] this
choice is given by

ωj+1 = argminω∈R
‖rm − ωArm‖, with m = j(s + 1) + s.(4.5)

Once this ωj+1 is computed, a new space Wj+1 = (Ωj+1(A)∗)−1Kj+1(A
∗, P ) can be

used so that

r(j+1)(s+1)+k ⊥ Wj+1, for k = 0, . . . , s.(4.6)

Since rm ∈ Km+1(A, r0), it follows that w := rm − ωj+1Arm ∈ Km+2(A, r0). Un-
less additional hypotheses are imposed, w does not necessarily satisfy the optimality
condition (4.6). To comply with this requirement, the original IDR method in [23]
builds the next residual as w := v − ωj+1Av, where v is obtained by making the
residual rm orthogonal to P , in the direction of Gj . The s subsequent residuals do
satisfy (4.6).

On the other hand, the implementation proposed in [27] requires that at each
cycle j the residual vectors satisfy the additional hypothesis

rj(s+1)+k ⊥ pi, i = 1, . . . , k, k = 0, . . . , s;

see [27, (13)]. For k = 0 the residual rj(s+1) is not enforced to be orthogonal to
any of the vectors pi, whereas for k = s it holds that rj(s+1)+s ⊥ R(P ). This latter
condition is sufficient to fully satisfy orthogonality with respect to Wj+1. We formalize
this result in the following proposition.

Proposition 4.2. For m = j(s + 1) + s, j ≥ 0, assume that rm ⊥ R(P ). Then
for any ωj+1 such that I − ωj+1A is nonsingular, rm+1 = rm − ωj+1Arm satisfies
rm+1 ⊥ Wj+1.
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Proof. For j = 0 and using rs ⊥ R(P ) and rs+1 = (I − ω1A)rs, we obtain 0 =
r∗sP = r∗s+1((I−ω1A)∗)−1P , that is, rs+1 ⊥ W1. For j ≥ 1 we can use rj(s+1)+s ⊥ Wj

and write

0 = r∗j(s+1)+sWj = r∗j(s+1)+s+1((I − ωj+1A)∗)−1Wj ,

that is, rj(s+1)+s+1 ⊥ (Ωj+1(A)∗)−1Kj . Recall that

0 = r∗j(s+1)+sP = r∗j(s+1)+s+1((I − ωj+1A)∗)−1P,

so that rj(s+1)+s+1 ⊥ R(((I − ωj+1A)∗)−1P ). Using Lemma 3.1(iii) we have that
(Ωj+1(A)∗)−1Kj + R(((I − ωj+1A)∗)−1P ) = Wj+1 so that rj(s+1)+s+1 ⊥ Wj+1.

Under the condition rm ⊥ R(P ), the result of Proposition 4.2 together with (4.6)
imply that all generated residuals rj(s+1)+k, k = 0, . . . , s are orthogonal to the shadow
spaces Wj , completing the requirement of a standard Petrov-Galerkin procedure.
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Fig. 4.1. Sparsity pattern of the matrix [P,Wj ]∗[r0, r1, . . .] for s = 4.

A summary of the orthogonality properties of the computed vectors under the
hypotheses of Proposition 4.2 is sketched in Figure 4.1, where the sparsity pattern of
the matrix [P,Wj ]

∗[r0, r1, . . .] for s = 4 is reported; the plot was obtained with the
IDR code available in the IDR website associated with [27].

In [7], [23] it is shown that both BiCGStab [25] and ML(s)BiCGStab [29] are
mathematically equivalent to some versions of IDR. More precisely, the iterands
from BiCGStab and ML(1)BiCGStab coincide with those of IDR(1) every other
step. Therefore, the equivalence given in Theorem 4.1 implies that BiCGStab and
ML(s)BiCGStab are also Petrov-Galerkin methods, with the rational Krylov sub-
spaces Wj as left subspaces.
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5. Discussion on IDR(s, ℓ). It was noted with the BiCGStab method, that the
use of polynomials of the form (3.2) works well for matrices with real spectra. Indeed,
let rm = pm(A)r0, where pm(t) = Ωj(t)q(t) is the residual polynomial. If the roots of
Ωj approximate some eigenvalues of A, the residual polynomial in A applied to r0 gives
a vector with small components in the direction of the corresponding eigenvectors.
But if the matrix has complex spectrum, it is very unlikely that a polynomial with real
roots in A can accomplish this; see, e.g., [5], [17]. Thus, in these two last references,
it was suggested to use a polynomial Ω(t) with complex roots. In BiCGStab(ℓ) [17],
the residual polynomial is pm(t) = Ωj,ℓ(t)q(t) with

Ωj,ℓ(t) = φj(t)φj−1(t) . . . φ1(t),(5.1)

and each φk(t) is a polynomial of degree ℓ with φk(0) = 1, k = 1, . . . , j; cf. (3.2),
with ℓ = 1. The polynomial φj(t) is chosen so that the next residual has minimum
norm; cf. (4.5) for ℓ = 1. Let µi be the roots of Ωj,ℓ, i = 1, . . . , jℓ. In the following
we assume that µi /∈ σ(A), i = 1, . . . , jℓ, so that the matrix Ωj,ℓ(A) is nonsingular.

Taking these properties of BiCGStab(ℓ) into account, one can similarly extend
the IDR(s) method to a Petrov-Galerkin method with the left block subspaces being

Wj,ℓ := (Ωj,ℓ(A)∗)−1Kjℓ(A
∗, P ).(5.2)

It would then be natural to call this, the IDR(s, ℓ) method. This method is the
Petrov-Galerkin description of the IDRStab method presented by Sleijpen and van
Gijzen in [22], where the sets G⊥

j given there are in fact identical to W⊥
j,ℓ; this follows

from Theorem 4.1. See also the related GBi-CGSTAB(s, L) method presented by
Tanio and Sugihara in [24].

We do not pursue further this IDR(s, ℓ) method, except to present some properties
of the sets (5.2). Let dj,ℓ := dimWj,ℓ. Using the same argument as in Lemma 3.1 (ii)
it follows that dj,ℓ = dimKjℓ(A

∗, P ). The next result is an “IDR Theorem” for
the sets (5.2), i.e., for the IDR(s, ℓ) method, and it follows in the same manner as
Theorem 3.2 using the following identity

Kjℓ(A
∗, P ) = R([P, φj(A)∗P, φj(A)∗φj−1(A)∗P, . . . , φj(A)∗ · · ·φ2(A)∗P ]).

Theorem 5.1. Let A ∈ Rn×n be nonsingular. Let Ωj,ℓ(t) be a polynomial of
degree jℓ of the form (5.1), with roots µi such that in µi /∈ σ(A), i = 1, . . . , jℓ. Let
P = [p1, p2, . . . , ps] ∈ Rn×s be full rank, such that Kk(A∗, P ) ( Kk+1(A

∗, P ),unless
Kk(A∗, P ) = Rn, k = 1, . . .. Consider the sets Wj,ℓ defined in (5.2). Then, for each
j ≥ 1, we have that Wj,ℓ ⊂ Wj+1,ℓ, and this inclusion is strict unless Wj,ℓ = Cn.
Furthermore, dj+1,ℓ − dj,ℓ ≤ dj,ℓ − dj−1,ℓ ≤ s + ℓ.

6. Ritz-IDR: a new version. The introduction of the rational Krylov subspace
Wj suggests that the poles, the reciprocals of the parameters ωj could be chosen
following more general strategies than the local minimization employed in (4.5). First
introduced for approximating interior eigenpairs [12], [13], rational Krylov spaces have
significantly increased their popularity in the past decades, showing their effectiveness
in a variety of applications far beyond eigenvalue approximation; see, e.g., [2], [3], [4].
The a-priori selection of poles, however, remains a critical step in the performance
of projection-type methods based on rational Krylov subspaces. In addition, the
approximation problem usually guides such a choice. In our setting, the space

Wj = R([((I − ω1A)∗)−1P, . . . , (Ωj(A)∗)−1P, (Ωj−1(A)∗)−1P ])
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is the test space, and not the approximation space; nonetheless, the choice of the
parameters ωj may be related to the spectral properties of A. Indeed, intuitively
speaking, if the poles are close to some of the eigenvalues of A∗, and P is sufficiently
general, then Wj will be rich in the corresponding eigencomponents. Making the
residual orthogonal to such a space will eventually dampen eigenvector (or invariant
subspace) components. The IDR method can thus benefit from an explicit inclusion
of spectral information in the test space, whenever this is not naturally obtained with
the computed ω’s. Indeed, for some real vector v, the parameters in (4.5) are obtained
as

ωj =
v∗Av

(Av)∗(Av)
=

(A−1w)∗w

w∗w
, w = Av

and thus, the ωj ∈ R belong to the field of values W (A−∗) of A−∗, which is the
same as W (A−1) for real A. In general, however, W (A) 6= (W (A−1))−1, and in
fact the two convex sets may differ substantially, therefore it may be possible that the
reciprocals 1/ωj do not even belong to W (A); we refer to [9] and references therein for
a characterization of W (A−1). Therefore, for problems where W (A−1)−1 significantly
differs from W (A), more effective ωj may be chosen. We mention that strategies to
switch to some values of ωj other than (4.5) are given in [18], [19] for BiCGStab-related
methods, and that the switching idea is implemented in the IDR version reported in
[23], but this implementation is not publicly available.

Here we propose to substitute the parameters ωj with the Ritz values obtained
by a preliminary generation of a small Krylov subspace of fixed dimension m0. The
Ritz values are then applied cyclically as the IDR iteration proceeds. Our numerical
experience suggested not to take all Ritz values, but only a significant portion of
them, corresponding to the largest (in magnitude) 75%. For indefinite problems,
better results were observed with Leja (as opposed to decreasing) ordering; see, e.g.,
[11] for a description of the Leja ordering. We call the resulting method Ritz-IDR.
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Fig. 6.1. Convergence history for the operator L(u) = −∆u + β(ux + uy) for various methods
and β = 50 (left) and β = 1000 (right).

The following two examples visually describe the discussed phenomenon. We
consider the 400×400 matrix stemming from the finite difference discretization of the
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operator L(u) = −∆u + β(ux + uy) on the unit square. The right-hand size is the
vector of all ones. The two plots of Figure 6.1 show the convergence performance of
GMRES, standard IDR(4) and Ritz-IDR for β = 50 (left) and β = 1000 (right) using
the largest 15 Ritz values (in magnitude) of the 20 computed; s = 4 is used in Ritz-
IDR. The IDR performance highly deteriorates for large β. It is also remarkable that
for β = 50, the convergence curves of IDR and Ritz-IDR are almost indistinguishable.

The next plots display the different spectral settings associated with the two
considered values of β. Figure 6.2 shows the field of values1 of A and A−1 for β = 50
(left) and β = 1000 (right), together with the Ritz values obtained with a Krylov
subspace of dimension m0 = 20 (circles) and used in Ritz-IDR, and the values ω−1

j

(asterisks) computed by the IDR method in the runs shown in Figure 6.1. The crosses
are the eigenvalues of A. While for moderate β the values of ω−1

j are contained in
W (A), for β = 1000 they fall far away from W (A), providing no benefit to the method.
The similar location of the Ritz and IDR values for β = 50 also appears to justify
the very close convergence behavior of Ritz-IDR and IDR in this case. We mention
in passing that the fact that W (A) is larger than the convex hull of the eigenvalues
in Figure 6.2 stems from the fact that the matrices are non-normal.
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Fig. 6.2. Spectral information for operator L(u) = −∆u + β(ux + uy) with β = 50 (left) and
β = 1000 (right).

In terms of storage, the new Ritz-IDR version needs m0 long vectors of storage. In
our experiments with m0 = 20, this is not much more than the 16 vectors needed for
IDR(s) for s = 4. On the other hand, our implementation of Ritz-IDR uses complex
arithmetic, which implies that memory allocations are doubled.

7. Numerical experiments. In this section we report on our numerical expe-
rience with IDR(s) and its variant Ritz-IDR presented in the previous section. Our
implementation is based on the code available on the IDR site [26]. To evaluate the
optimality of the short-term recurrence, we also include results with full GMRES,
which is otherwise too expensive, both in terms of CPU time and memory require-
ments, in the examples shown. In some cases, the performance of restarted GMRES

1All fields of values were approximated numerically with the function fv.m of the Test Matrix
Toolbox for Matlab [8].
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is also discussed, as the current method of choice in many application problems. This
experimental setting significantly differs from those reported in the IDR literature,
where the major competitor is BiCGStab(ℓ). We mention that no comparisons are
presented with IDRStab [22] or other IDR versions since those implementations are
not publicly available.

Unless otherwise stated, the new variant uses s = 4, which is therefore no longer
a parameter to be set. Except for Example 7.5, the parameters ω’s in Ritz-IDR were
obtained as ωj = θ−1

j , where θj were taken to be the 15 largest (in absolute values)
eigenvalues of the matrix V ∗

m0
AVm0

, where the columns of Vm0
stored the orthonormal

basis after m0 = 20 Arnoldi iterations. We remark that our implementation of the
new variant is in general more expensive, in terms of CPU time per iteration, than
the original IDR method. This is due to the fact that complex ω’s may be used,
enforcing complex arithmetic computation throughout. A more sophisticated real
implementation that combines complex conjugate ω’s may be considered.

In all examples, the right-hand side was b = 1, normalized to have unit norm.
Example 7.1. We consider the benchmark parameterized example available in

the IDR website [26], whose matrix is given as

A = A0 − γI + (Pe)B

where A0 is the symmetric and positive definite discretization of the Poisson operator
in a square, and B is the bidiagonal matrix with −1 and 1 on the lower and upper
diagonals, respectively. We first consider the data for the example suggested in [26],
namely Pe = 0.1, γ = 1 and matrix size n = 400. The behavior of IDR(4) is similar
to that reported in the literature. The resulting convergence is shown in the left plot
of Figure 7.1, together with that of full GMRES.
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Fig. 7.1. Example 7.1. Convergence history for various methods and two parameter settings.

The right plot displays the convergence history for the same problem, with
Pe = 1, γ = 0.5 and size n = 1600. All other parameters and variables were kept the
same. We readily notice that the new version of IDR converges whereas the original
method continues to oscillate for many more iterations. It eventually converges to a
comparable residual norm after more than 1400 iterations. We also report that while
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full GMRES required 43.89 seconds to converge, with large memory requirements,
the new variant of IDR only took 0.36 seconds. It is also important to notice that
restarted GMRES with m = 20 fully stagnates.

Example 7.2. We consider the centered finite difference discretization of the
operator L(u) = −∆u+β(ux +uy +uz) in the unit cube with homogeneous Dirichlet
boundary conditions, giving rise to a matrix of size n = 8000. Figure 7.2 shows the
convergence history of all methods for β = 100 (left) and β = 500 (right). These plots
confirm that high nonsymmetry of the problem, in this case corresponding to larger
convection, is problematic for the IDR method.
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Fig. 7.2. Example 7.2. Convergence history for various methods and two parameter settings:
β = 100 (left), β = 500 (right).

We also report that for the more difficult problem, β = 500, GMRES employed
27.26 seconds to converge, whereas the new IDR version took only 0.79 seconds. For
completeness we also report the numerical results for other methods not displayed in
the plots: Restarted GMRES with m = 20 required 2.85 seconds to achieve the same
residual norm, after 20 restarts, for a total of matrix-vector multiplies similar to that
of the new variant of IDR. The following table summarizes the performance of the
original method IDR(s) for larger values of s, keeping in mind that IDR(s) requires
the allocation of 3s+4 long vectors:

s iter CPU time
8 812 1.23
12 591 1.18
20 417 1.37

The table shows that a larger block in the left space may cause higher CPU times,
in spite of a lower number of iterations. We conclude this example by noticing that
the convergence curve for s = 20 is similar to that of the new variant, although the
approximation procedure is rather different.

Example 7.3. We consider the centered finite difference discretization of the
operator L(u) = −∆u+1000uz in the unit cube with homogeneous Dirichlet boundary
conditions, giving rise to a matrix of size n = 8000. Figure 7.3 shows the behavior of
IDR(4) and of Ritz-IDR, compared to GMRES. The results are completely analogous
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to those for the less asymmetric operator.
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Fig. 7.3. Example 7.3. Convergence history for various methods and operator L(u) = −∆u +
1000uz in the unit cube with homogeneous Dirichlet boundary conditions.

Example 7.4. We consider the Benchmark matrix sherman5 from the Matrix
Market [10]. This is a highly indefinite, 3312 × 3312 matrix. For both IDR methods
s = 4 was used. The Ritz-IDR method does not work well on this example, as shown
in the left plot of Figure 7.4. No improvements were obtained by allowing more
Ritz values in a larger space. Similar negative results were obtained for other highly
indefinite problems.
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Fig. 7.4. Example 7.4. Convergence history for various methods and matrix sherman5. Left:
original problem. Right: ILU(10−2) preconditioning.

The right plot shows the performance of all methods when preconditioning is
applied. Here the preconditioner is obtained by an incomplete LU decomposition with
threshold tolerance 10−2 on the shifted matrix A + I. All methods behave roughly
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the same, in terms of number of iterations, although the original IDR is bound to be
cheaper if CPU time is considered.

Example 7.5. We conclude with another example from the Matrix Market, the
2395 × 2395 matrix add20 [10]. This matrix has only two nonreal eigenvalues, and
the real spectral interval is given by [5.9 10−5, 0.73], with many eigenvalues clustered
in the lower part of the interval. We believe that this is the reason why we found
more effective to take all m0 = 20 Ritz values in this case, using Leja ordering. The
convergence history of the methods for s = 4 is reported in Figure 7.5, to achieve
a final residual norm less than 10−8, as used in [21]. The performance of the two
IDR-type methods is similar. The peaks in the Ritz-IDR residuals are related to the
presence of the small Ritz values.

Due to the special spectrum, we also considered varying m0, and the number of
iterations for Ritz-IDR to converge is reported in the following table, where all m0

Ritz values are used during the iterations:

m0 iter
20 509
30 389
40 380

Apparently, 30 Ritz values are sufficient to significantly improve convergence,
while a higher number only marginally improves the computational costs.
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Fig. 7.5. Example 7.5. Convergence history for various methods and matrix add20.

8. Conclusions. We have shown that the recently explored family of IDR meth-
ods may be viewed as Petrov-Galerkin methods with respect to a (left) block rational
Krylov subspace, whose block size corresponds to the method parameter s. The left
space is not explicitly generated, therefore no matrix solves need to be performed.
Nonetheless, the IDR methods can fully exploit the implicitly imposed orthogonality.

We have also suggested a different way of computing the poles of this left space,
which may overcome the difficulties encountered when using a small block size (that is,
a small value of s) for building the left block subspace. The new variant seems to work
well on convection-diffusion problems with definite spectrum. Further investigation,
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possibly in the selection of the poles, is required to improve its performance when
dealing with highly indefinite problems; cf. [20, §4.2.2] for some considerations on
similar issues.
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