On the numerical solution of large scale algebraic linear systems

V. Simoncini

Dipartimento di Matematica, Università di Bologna
valeria.simoncini@unibo.it

Outline

- Algebraic linear systems - the problem
- Sparse matrices and sparse formats
- Symmetric vs nonsymmetric matrices
- State-of-the-art solvers. First steps

Lectures: see https://www.dm.unibo.it/~simoncin/corso.html

The Problem

$$
A x=b \quad \text { or } \quad A X=B, \quad B=\left[b_{1}, \ldots, b_{s}\right]
$$

$A \in \mathbb{C}^{n \times n}, B$ full column rank, $s \ll n$

- A large and sparse
- A large and structured: blocks, banded, ...
- A functional: $A=C S^{-1} D$, preconditioned, integral, \ldots

Sparse matrices. I

Matrices stemming from discretizations have special pattern:

Same matrix, different ordering of the unknowns
large dimensions, only low percentage of nonzero elements per row

Sparse matrices. Different applications

Nuclear reactor model / Chemical eng. plant model/ Hydroelectric Power System

Sparse matrices. II

Memory allocation of generic sparse matrices:

- Coordinate format
- Compressed sparse row format
- Compressed sparse column format

Sparse matrices. III

- Coordinate format (coo)
a(nnz), ia(nnz), ja(nnz), for $A(i, j), n n z \#$ nonzeros simple, flexible. Often used to store on disk.
- Compressed sparse row format (CSR) a(nnz), ia (n+1), ja(nnz), for $A(i, j)$, n matrix dimension (ia $(\mathrm{n}+1)$ contains the pointer to the first element of next row) very effective for matrix-vector multiplies
- Compressed sparse column format (CSC)

Same as CSR but for the columns

Sparse matrices. II

$$
y=A x
$$

Typical matrix-vector operation in Compressed sparse row format: $\mathrm{a}(\mathrm{nnz})$, $\mathrm{ia}(\mathrm{n}+1)$, $\mathrm{ja}(\mathrm{nnz})$, for $A(i, j)$, n matrix dimension do $100 \mathrm{i}=1, \mathrm{n}$
c
c compute the inner product of row i with vector x c

99

$$
\begin{aligned}
& t=0.0 d 0 \\
& \text { do } 99 \mathrm{k}=\mathrm{ia}(\mathrm{i}), \mathrm{ia}(\mathrm{i}+1)-1 \\
& \quad \mathrm{t}=\mathrm{t}+\mathrm{a}(\mathrm{k}) * \mathrm{x}(\mathrm{ja}(\mathrm{k})) \\
& \text { continue }
\end{aligned}
$$

c
c store result in y (i)
c

$$
y(i)=t
$$

100 continue

Sparse matrices. Reordering of the entries
Matrix market. matrix CAN_1072 (structure problem in aircraft design)

Original sparsity pattern

symamd reordering

Sparse matrices. An Example

Factor U in LU factorization $A=L U$:
A with original sparsity pattern

A with symamd reordering

Solution methods for large matrices
Discretization of 2D and 3D problems leads to large matrices A (size $\left.O\left(10^{k}\right), k=5-8\right)$
\Rightarrow (Optimized) LU decomposition too expensive

Alternatives do not rely on explicit factorizations !

- Iterative methods: Projection-type methods (*)
- Geometric multigrid methods
- Algebraic multigrid methods
- Problem-related optimized methods

Projection/Reduction methods for large scale linear systems
Outline

- Projection and polynomial -type methods
- Coefficient matrix role in tailoring the solution strategy
- Real symmetric or complex Hermitian
- Complex symmetric and H-symmetric
- Complex/Real non-Hermitian
- Stopping criteria and inexactness

The Problem

$$
A x=b \quad \text { or } \quad A X=B, \quad B=\left[b_{1}, \ldots, b_{s}\right]
$$

$A \in \mathbb{C}^{n \times n}, B$ full column rank, $s \ll n$

- A large and sparse
- A large and structured: blocks, banded, ...
- A functional: $A=C S^{-1} D$, preconditioned, integral, ...

The Problem

$$
A x=b \quad \text { or } \quad A X=B, \quad B=\left[b_{1}, \ldots, b_{s}\right]
$$

$A \in \mathbb{C}^{n \times n}, B$ full column rank, $s \ll n$

- A large and sparse
- A large and structured: blocks, banded, ...
- A functional: $A=C S^{-1} D$, preconditioned, integral, ...

The solution approach. Generate sequence of approximate solutions:

$$
\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}, \quad x_{k} \rightarrow_{k \rightarrow \infty} x
$$

Occurrence of the problem

Very broad range of applications in Engineering and Scientific Computing

Original application context:

- Discretization of 2D and 3D PDEs
(linear steady state, nonlinear, evolutive, etc.)
- Eigenvalue problems
- Approximation of matrix functions
- Workhorses of more advanced techniques

Relevant Bibliographic Pointers

Yousef SaAd

Iterative methods for sparse linear systems

SIAM, Society for Industrial and Applied Mathematics, 2003, 2nd edition.

Valeria Simoncini and Daniel B. Szyld

Recent developments in Krylov Subspace Methods for linear systems

Numerical Linear Algebra with Appl., v. 14, n. 1 (2007), pp.1-59.

> "Projection" methods (or, reduction methods)

- Approximation vector space K_{m}. At each iteration m

$$
\left\{\mathbf{x}_{m}\right\} \text { such that } \mathbf{x}_{m} \in K_{m}
$$

K_{m} : dimension ${ }^{\text {a }} m$, with the "expansion" property:

$$
K_{m} \subseteq K_{m+1}
$$

- Computation of iterate. Galerkin condition:

$$
\text { residual } \quad \mathbf{r}_{m}:=\mathbf{b}-\mathbf{A} \mathbf{x}_{m} \quad \perp \quad K_{m}
$$

\Rightarrow This condition uniquely defines $\mathbf{x}_{m} \in K_{m}$

[^0]
A well established code

Classical Conjugate Gradient:
Given x_{0}. Set $r_{0}=b-A x_{0}, p_{0}=r_{0}$
for $i=0,1, \ldots$

$$
\begin{aligned}
& \alpha_{i}=\frac{r_{i}^{*} r_{i}}{p_{i}^{*} A p_{i}} \\
& x_{i+1}=x_{i}+p_{i} \alpha_{i} \\
& r_{i+1}=r_{i}-A p_{i} \alpha_{i} \\
& \beta_{i+1}=\frac{r_{i+1}^{*} A p_{i}}{p_{i}^{*} A p_{i}} \\
& p_{i+1}=r_{i}+p_{i} \beta_{i+1}
\end{aligned}
$$

end

* At each iteration: 1 Mxv, 3 -axpys, 2 -dots
* Short-term recurrence \Rightarrow : computational cost is constant at each iteration
* Implicit space generation, no explicit computation of the orthonormal basis!

The Block Conjugate Gradient

$$
\begin{aligned}
& R_{0}=B-A X_{0}, P_{0}=R_{0} \in \mathbb{C}^{n \times s} \\
& \text { for } i=0,1, \ldots \\
& \qquad \begin{array}{l}
\boldsymbol{\alpha}_{i}=\left(P_{i}^{*} A P_{i}\right)^{-1}\left(R_{i}^{*} R_{i}\right) \in \mathbb{C}^{s \times s} \\
\qquad \begin{array}{l}
X_{i+1}=X_{i}+P_{i} \boldsymbol{\alpha}_{i} \\
R_{i+1}=R_{i}-A P_{i} \boldsymbol{\alpha}_{i} \\
\boldsymbol{\beta}_{i+1}=\left(P_{i}^{*} A P_{i}\right)^{-1}\left(R_{i+1}^{*} A P_{i}\right) \in \mathbb{C}^{s \times s} \\
P_{i+1}=R_{i}+P_{i} \boldsymbol{\beta}_{i+1}
\end{array} \\
\text { end }
\end{array}
\end{aligned}
$$

Optimality property of Galerkin projection method
A symmetric and positive definite. Let x^{\star} be the true solution. Galerkin property: Impose that

$$
\text { residual } \quad \mathbf{r}_{m}:=\mathbf{b}-\mathbf{A} \mathbf{x}_{m} \quad \perp \quad K_{m}
$$

is equivalent to: Find

$$
\mathbf{x}_{m} \text { solution to } \min _{\mathbf{x} \in K_{m}}\left\|\mathrm{x}^{\star}-\mathbf{x}\right\|_{\mathbf{A}}
$$

where $\|\cdot\|_{\mathbf{A}}$ is the energy norm, namely $\|\mathbf{x}\|_{\mathbf{A}}^{2}:=\langle\mathbf{x}, \mathbf{A} \mathbf{x}\rangle$

Convergence and spectral properties

- In exact arithmetic (i.e., in theory), finite termination property
- A-priori bound for energy norm of the error: If $K_{m}=\operatorname{span}\left\{\mathbf{b}, \mathbf{A} \mathbf{b}, \ldots, \mathbf{A}^{m-1} \mathbf{b}\right\}$, then

$$
\left\|\mathbf{x}^{\star}-\mathbf{x}_{m}\right\|_{\mathbf{A}} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{m}\left\|\mathbf{x}^{\star}-\mathbf{x}_{0}\right\|_{\mathbf{A}}
$$

where $\kappa=\frac{\lambda_{\max }(\mathbf{A})}{\lambda_{\text {min }}(\mathbf{A})}$
(Conjugate Gradients, Hestenes \& Stiefel, '52)

Convergence and spectral properties

- In exact arithmetic (i.e., in theory), finite termination property
- A-priori bound for energy norm of the error: If $K_{m}=\operatorname{span}\left\{\mathbf{b}, \mathbf{A} \mathbf{b}, \ldots, \mathbf{A}^{m-1} \mathbf{b}\right\}$, then

$$
\left\|\mathbf{x}^{\star}-\mathbf{x}_{m}\right\|_{\mathbf{A}} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{m}\left\|\mathbf{x}^{\star}-\mathbf{x}_{0}\right\|_{\mathbf{A}}
$$

where $\kappa=\frac{\lambda_{\max }(\mathbf{A})}{\lambda_{\text {min }}(\mathbf{A})}$
(Conjugate Gradients, Hestenes \& Stiefel, '52)

Consequences:

- Convergence: The closer κ to 1 the faster
- Convergence depends on spectral properties, not directly on problem size!

PDE discretization and linear system solves

$$
-\Delta u=f,\left.\quad u\right|_{\partial \Omega}=u_{0}
$$

A 2D Poisson operator $\Rightarrow A$ symmetric and positive definite CG: Number of iterations k depends on $\operatorname{cond}(A):=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$

number of nodes n per dimension		$\#$ its tol $=10^{-10}$
2^{3}	32.16	10
2^{4}	116.46	31
2^{5}	440.69	66
2^{6}	1711.17	132

Stopping criterion: $r_{k}:=b-A x_{k}$ small enough in some norm

Discretization and linear system solves

For fine discretizations, convergence is slow !

A more general picture. Nonsymmetric problems

- A normal, $A A^{*}=A^{*} A$
- A (highly) non-normal, $\left\|A A^{*}-A^{*} A\right\| \gg 0$
- A "Hermitian" in disguise:

A more general picture. Nonsymmetric problems

- A normal, $A A^{*}=A^{*} A$
- A (highly) non-normal, $\left\|A A^{*}-A^{*} A\right\| \gg 0$
- A "Hermitian" in disguise:
$\star A=M+\sigma I, \sigma \in \mathbb{C}, M \in \mathbb{R}^{n \times n}$ symmetric

A more general picture. Nonsymmetric problems

- A normal, $A A^{*}=A^{*} A$
- A (highly) non-normal, $\left\|A A^{*}-A^{*} A\right\| \gg 0$
- A "Hermitian" in disguise:
$\star A=M+\sigma I, \sigma \in \mathbb{C}, M \in \mathbb{R}^{n \times n}$ symmetric
$\star A=M+\sigma H, \sigma \in \mathbb{C}, M, H \in \mathbb{R}^{n \times n}$ symmetric

A more general picture. Nonsymmetric problems

- A normal, $A A^{*}=A^{*} A$
- A (highly) non-normal, $\left\|A A^{*}-A^{*} A\right\| \gg 0$
- A "Hermitian" in disguise:
$\star A=M+\sigma I, \sigma \in \mathbb{C}, M \in \mathbb{R}^{n \times n}$ symmetric
* $A=M+\sigma H, \sigma \in \mathbb{C}, M, H \in \mathbb{R}^{n \times n}$ symmetric
\star There exists nonsing. Herm. $H \in \mathbb{C}^{n \times n}$ such that $H A=A^{*} H$, e.g. M, C Hermitian

$$
A=\left[\begin{array}{cc}
M & B \\
-B^{*} & C
\end{array}\right], \quad H=\left[\begin{array}{cc}
I & \\
& -I
\end{array}\right]
$$

A more general picture. Nonsymmetric problems

- A normal, $A A^{*}=A^{*} A$
- A (highly) non-normal, $\left\|A A^{*}-A^{*} A\right\| \gg 0$
- A "Hermitian" in disguise:
$\star A=M+\sigma I, \sigma \in \mathbb{C}, M \in \mathbb{R}^{n \times n}$ symmetric
* $A=M+\sigma H, \sigma \in \mathbb{C}, M, H \in \mathbb{R}^{n \times n}$ symmetric
\star There exists nonsing. Herm. $H \in \mathbb{C}^{n \times n}$ such that $H A=A^{*} H$, e.g. M, C Hermitian

$$
A=\left[\begin{array}{cc}
M & B \\
-B^{*} & C
\end{array}\right], \quad H=\left[\begin{array}{cc}
I & \\
& -I
\end{array}\right]
$$

$\star A x=b \quad \Leftrightarrow \quad A^{*} A x=A^{*} b$ (not recommended in general...)

Outline

- What is the added difficulty with A non-Hermitian ?
- How to handle "Symmetry in disguise"
- Non-normal (non-Hermitian) case
* Long-term recurrences and their problems
\star Coping with them \Rightarrow Restarted, truncated, flexible
\star Making it without \Rightarrow short-term recurrences
- Tricks for all trades

What goes "wrong" with A non-Hermitian. I
$\left\{x_{k}\right\}, \quad$ with $\quad x_{k} \in x_{0}+K_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right\}$
Let $V_{k}=\left[v_{1}, \ldots, v_{k}\right]$ be a (orthogonal) basis of $K_{k}\left(A, r_{0}\right)$. Then

$$
x_{k}=x_{0}+V_{k} y_{k}, \quad y_{k} \in \mathbb{C}^{k}
$$

A condition is required to specify y_{k}.

What goes "wrong" with A non-Hermitian. I
$\left\{x_{k}\right\}, \quad$ with $\quad x_{k} \in x_{0}+K_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right\}$
Let $V_{k}=\left[v_{1}, \ldots, v_{k}\right]$ be a (orthogonal) basis of $K_{k}\left(A, r_{0}\right)$. Then

$$
x_{k}=x_{0}+V_{k} y_{k}, \quad y_{k} \in \mathbb{C}^{k}
$$

A condition is required to specify y_{k}. For instance:

$$
r_{k}:=b-A x_{k}=r_{0}-A V_{k} y_{k} \quad \perp \quad K_{k}\left(A, r_{0}\right) \quad V_{k}^{*} r_{k}=0
$$

(Galerkin condition, again!) so that

$$
0=V_{k}^{*} r_{k}=V_{k}^{*} r_{0}-V_{k}^{*} A V_{k} y_{k} \quad \Leftrightarrow \quad y_{k} \text { s.t. }\left(V_{k}^{*} A V_{k}\right) y_{k}=V_{k}^{*} r_{0}
$$

What goes "wrong" with A non-Hermitian. I
$\left\{x_{k}\right\}, \quad$ with $\quad x_{k} \in x_{0}+K_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right\}$
Let $V_{k}=\left[v_{1}, \ldots, v_{k}\right]$ be a (orthogonal) basis of $K_{k}\left(A, r_{0}\right)$. Then

$$
x_{k}=x_{0}+V_{k} y_{k}, \quad y_{k} \in \mathbb{C}^{k}
$$

A condition is required to specify y_{k}. For instance:

$$
r_{k}:=b-A x_{k}=r_{0}-A V_{k} y_{k} \quad \perp \quad K_{k}\left(A, r_{0}\right) \quad V_{k}^{*} r_{k}=0
$$

(Galerkin condition, again!) so that

$$
0=V_{k}^{*} r_{k}=V_{k}^{*} r_{0}-V_{k}^{*} A V_{k} y_{k} \quad \Leftrightarrow \quad y_{k} \text { s.t. }\left(V_{k}^{*} A V_{k}\right) y_{k}=V_{k}^{*} r_{0}
$$

Hence

$$
x_{k}=x_{0}+V_{k}\left(V_{k}^{*} A V_{k}\right)^{-1} V_{k}^{*} r_{0} \quad \text { with } \quad V_{k}^{*} r_{0}=e_{1}\left\|r_{0}\right\|
$$

And: $V_{k}^{*} A V_{k}$ upper Hessenberg (Gram-Schmidt procedure to build V_{k})

What goes "wrong" with A non-Hermitian. II

If A were $\mathrm{Hpd} \quad \Rightarrow \quad V_{k}^{*} A V_{k}$ also $\mathrm{Hpd} \quad \Rightarrow \quad$ tridiagonal

$$
\begin{aligned}
& V_{k}^{*} A V_{k}=L_{k} L_{k}^{*} \quad L_{k} \text { bidiagonal } \\
x_{k} & =x_{0}+V_{k} L_{k}^{-*} L_{k}^{-1} e_{1}\left\|r_{0}\right\| \\
& =x_{0}+V_{k-1} L_{k-1}^{-*} L_{k-1}^{-1} e_{1}\left\|r_{0}\right\|+p_{k} \alpha_{k} \\
& =x_{k-1}+p_{k} \alpha_{k}
\end{aligned}
$$

with $p_{k} \in \operatorname{span}\left\{v_{k-1}, v_{k}\right\}$
(development underlying Conjugate Gradient)

What goes "wrong" with A non-Hermitian. II
If A were $\mathrm{Hpd} \quad \Rightarrow \quad V_{k}^{*} A V_{k}$ also $\mathrm{Hpd} \quad \Rightarrow \quad$ tridiagonal

$$
\begin{aligned}
& V_{k}^{*} A V_{k}=L_{k} L_{k}^{*} \quad L_{k} \text { bidiagonal } \\
x_{k} & =x_{0}+V_{k} L_{k}^{-*} L_{k}^{-1} e_{1}\left\|r_{0}\right\| \\
& =x_{0}+V_{k-1} L_{k-1}^{-*} L_{k-1}^{-1} e_{1}\left\|r_{0}\right\|+p_{k} \alpha_{k} \\
& =x_{k-1}+p_{k} \alpha_{k}
\end{aligned}
$$

with $p_{k} \in \operatorname{span}\left\{v_{k-1}, v_{k}\right\}$
(development underlying Conjugate Gradient)
A non-Hermitian $\Rightarrow V_{k}^{*} A V_{k}$ only upper Hessenberg

$$
p_{k} \in \operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}
$$

What goes "wrong" with A non-Hermitian. III
$p_{k} \in \operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$, with $\left\{v_{1}, \ldots, v_{k}\right\}$ orthogonal basis

Alternatives

- Give up orthogonal basis, $V_{k}^{*} V_{k}=I_{k}$
- Give up optimality condition, e.g. $r_{k} \perp K_{k}\left(A, r_{0}\right)$
- Resume symmetry

Symmetry in disguise. Complex symmetric shifted systems. 1.
Case 1: $\quad A=M+\sigma I, \quad M \in \mathbb{R}^{n \times n}, \sigma \in \mathbb{C}$
E.g.: Helmholtz equation (wave problems such as vibrating strings and membranes)

Trick: replace $*$ (conj. transp.) with \top (transp.)

$$
A=A^{\top} \quad \text { complex symmetric }
$$

Apply CG with T
Given x_{0}. Set $r_{0}=b-A x_{0}, p_{0}=r_{0}$
for $i=0,1, \ldots$

$$
\begin{aligned}
& \alpha_{i}=\frac{r_{i}^{\top} r_{i}}{p_{i}^{\top} A p_{i}} \\
& x_{i+1}=x_{i}+p_{i} \alpha_{i} \\
& r_{i+1}=r_{i}-A p_{i} \alpha_{i} \\
& \beta_{i+1}=\frac{r_{i+1}^{\top} A p_{i}}{p_{i}^{\top} A p_{i}} \\
& p_{i+1}=r_{i}+p_{i} \beta_{i+1}
\end{aligned}
$$

end

Symmetry in disguise. Complex symmetric shifted systems. 2.
$A=M+\sigma I: \quad$ Apply CG with T

Properties:

- V_{k} real: $\quad K_{k}\left(A, r_{0}\right)=K_{k}\left(A+\sigma I, r_{0}\right)$
- T does not define an inner product!
- $V_{k}^{\top} A V_{k}=V_{k}^{\top} M V_{k}+\sigma I$

If $\Im(\sigma) \neq 0$ then $V_{k}^{\top} A V_{k}$ is nonsingular \Rightarrow No breakdown
The same code applies in case of any A complex symmetric ($A=A^{\top}$)

H-symmetry

A is H-Hermitian if there exists $H \in \mathbb{C}^{n \times n}$ Hermitian, nonsingular s.t.

$$
H A=A^{*} H
$$

(H-symmetric if $H A=A^{\top} H$ with H is symmetric)

H-symmetry

A is H-Hermitian if there exists $H \in \mathbb{C}^{n \times n}$ Hermitian, nonsingular s.t.

$$
H A=A^{*} H
$$

(H-symmetric if $H A=A^{\top} H$ with H is symmetric)
If H is Hpd (and $H A$ is also Hpd), use CG in the H-inner product:
Given x_{0}. Set $r_{0}=b-A x_{0}, p_{0}=r_{0}$
for $i=0,1, \ldots$

$$
\begin{aligned}
& \alpha_{i}=\frac{r_{i}^{*} H r_{i}}{p_{i}^{*} H A p_{i}} \\
& x_{i+1}=x_{i}+p_{i} \alpha_{i} \\
& r_{i+1}=r_{i}-A p_{i} \alpha_{i} \\
& \beta_{i+1}=\frac{r_{i+1}^{*} H A p_{i}}{p_{i}^{*} H A p_{i}} \\
& p_{i+1}=r_{i}+p_{i} \beta_{i+1}
\end{aligned}
$$

end
(H not $\mathrm{Hpd} \Rightarrow$ see later)

First Summary

Symmetry in disguise:

- Shifted matrices, $A=M+\sigma I, M$ real symmetric
- Complex symmetric matrices
- H-symmetric or H-Hermitian matrices

Long-term recurrences

$$
K_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right\}, \quad V_{k} \text { orth. basis }
$$

1. Arnoldi process : $v_{k+1} \leftarrow A v_{k}-\sum_{j=1}^{k} v_{j} h_{j, k}$, that is

$$
A V_{k}=V_{k} H_{k}+h_{k+1, k} v_{k+1} e_{k}^{*}=V_{k+1} \underline{H}_{k} \quad\left(H_{k}=V_{k}^{*} A V_{k}\right)
$$

2. $x_{k}=x_{0}+V_{k} y_{k}$

Long-term recurrences

$$
K_{k}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right\}, \quad V_{k} \text { orth. basis }
$$

1. Arnoldi process : $v_{k+1} \leftarrow A v_{k}-\sum_{j=1}^{k} v_{j} h_{j, k}$, that is

$$
A V_{k}=V_{k} H_{k}+h_{k+1, k} v_{k+1} e_{k}^{*}=V_{k+1} \underline{H}_{k} \quad\left(H_{k}=V_{k}^{*} A V_{k}\right)
$$

2. $x_{k}=x_{0}+V_{k} y_{k}$

- GMRES. Particular Petrov-Galerkin condition:

$$
r_{k} \perp A K_{k} \Rightarrow \quad y_{k} \text { s.t. } \min _{y}\left\|r_{0}-A V_{k} y\right\|
$$

- FOM. Galerkin condition: (H_{k} nonsingular)

$$
r_{k} \perp K_{k} \Rightarrow \quad y_{k} \text { s.t. } H_{k} y=e_{1}\left\|r_{0}\right\|
$$

GMRES

$$
A V_{k}=V_{k+1} \underline{H}_{k}, \quad r_{0}=V_{k+1} e_{1} \beta_{0}
$$

Crucial property:

$$
\begin{aligned}
\min _{y}\left\|r_{0}-A V_{k} y\right\| & = \\
& =\min _{y}\left\|V_{k+1}\left(e_{1} \beta_{0}-\underline{H}_{k} y\right)\right\| \\
& =\min _{y}\left\|e_{1} \beta_{0}-\underline{H}_{k} y\right\|
\end{aligned}
$$

Least squares problem expands at each iteration.
QR decomposition of \underline{H}_{k} only updated, not recomputed from scratch.

Block GMRES

$$
R_{0}=B-A X_{0}, \quad K_{k}\left(A, R_{0}\right)=\operatorname{span}\left\{R_{0}, A R_{0}, \ldots, A^{k-1} R_{0}\right\}
$$

\mathcal{U}_{k} orth. basis, $\mathcal{U}_{k}=\left[U_{1}, U_{2}, \ldots, U_{k}\right] \in \mathbb{C}^{n \times k s}$
Block Arnoldi process ($s \mathrm{MxV}+$ Gram-Schmidt)

$$
\Rightarrow A \mathcal{U}_{k}=\mathcal{U}_{k} \mathcal{H}_{k}+U_{k+1} \chi_{k+1, k} E_{k}^{*}=\mathcal{U}_{k+1} \underline{\mathcal{H}}_{k} \quad\left(\mathcal{H}_{k}=\mathcal{U}_{k}^{*} A \mathcal{U}_{k}\right)
$$

$$
\begin{aligned}
\min _{Y}\left\|R_{0}-A \mathcal{U}_{k} Y\right\| & =\min _{Y}\left\|E_{1} \rho-\underline{\mathcal{H}}_{k} Y\right\| \quad R_{0}=U_{1} \rho \\
\underline{\mathcal{H}}_{k} & =\left[\begin{array}{llll}
\square & \square & \cdots & \square \\
\square & \square & \cdots & \square \\
O & \square & \cdots & \square \\
O & O & \ddots & \square \\
O & O & O & \square
\end{array}\right]
\end{aligned}
$$

Block GMRES

$A \in \mathbb{R}^{6400 \times 6400}:$ FD discretiz. of $\mathcal{L}(u)=-\Delta u+\frac{1000}{x+y} u_{x}$ in $[-1,1]^{2}$

Coping with long-term recurrences
Restarted, Truncated, etc variants.

Coping with long-term recurrences
Restarted, Truncated, etc variants.
Restarted: Choose $m_{\text {max }}$.
Set $x=x_{0}, r_{0}=b-A x_{0}$ for $i=1,2, \ldots$
$z \leftarrow \operatorname{GMRES}\left(A, r_{0}, m_{\max }\right)$ (or other method)
$x \leftarrow x+z, \quad r_{0}=b-A x$
Check Convergence

Pros and Cons

Pros:

- Shorter dependencies
- Lower and fixed memory requirements

Pros and Cons

Pros:

- Shorter dependencies
- Lower and fixed memory requirements

Cons:

- All optimality properties are lost

$$
K_{m_{\max }}\left(A, r_{0}^{(0)}\right)+K_{m_{\max }}\left(A, r_{0}^{(1)}\right)+\ldots K_{m_{\max }}\left(A, r_{0}^{(k)}\right)+\ldots
$$

- Additional parameter. What value for $m_{\max }$??

A problem with the restarting parameter? ...

A problem with the restarting parameter? ... or with the method?

Explanation

$$
K_{m_{\max }}\left(A, r_{0}^{(0)}\right)+K_{m_{\max }}\left(A, r_{0}^{(1)}\right)+\ldots K_{m_{\max }}\left(A, r_{0}^{(k)}\right)+\ldots
$$

GMRES: $r_{0}^{(k)} \in \operatorname{range}\left(V_{m_{\max }+1}^{(k-1)}\right)$. Almost stagnation: $\rightarrow r_{0}^{(k)} \propto v_{1}^{(k-1)}$

Explanation

$$
K_{m_{\max }}\left(A, r_{0}^{(0)}\right)+K_{m_{\max }}\left(A, r_{0}^{(1)}\right)+\ldots K_{m_{\max }}\left(A, r_{0}^{(k)}\right)+\ldots
$$

GMRES: $r_{0}^{(k)} \in \operatorname{range}\left(V_{m_{\max }+1}^{(k-1)}\right)$. Almost stagnation: $\rightarrow r_{0}^{(k)} \propto v_{1}^{(k-1)}$

FOM: $r_{0}^{(k)} \propto v_{m_{\max }+1}^{(k-1)} \quad$ Subspace keeps growing

Truncating

Only local orthogonalization (k-term recurrence, H_{m} banded)

Truncating

Only local orthogonalization (k-term recurrence, H_{m} banded)

a reasonable strategy

Truncating

...but not always good

Making it without long-term recurrences: short-term recurrences for A non-Hermitian

- Non-Hermitian Lanczos
- BiCGStab $(\ell): \ell$ iterations of GMRES at every step
- $\operatorname{IDR}(s): r_{k} \in \mathcal{G}_{k}$, where $\mathcal{G}_{k+1} \subset \mathcal{G}_{k}$

Stopping criterion: Problem dependence

Choice of tolerance:

- Direct method accurate up to machine precision (likely)
- Iterative method accurate up to what is wanted (hopefully)

Stopping criterion: Problem dependence

Choice of tolerance:

- Direct method accurate up to machine precision (likely)
- Iterative method accurate up to what is wanted (hopefully)

Algebraic problem: Discretization of PDEs

$$
\text { error } \quad \rightarrow O(h)
$$

h discretization parameter...

Stopping criterion: Problem dependence

Choice of criterion and norm:

$$
\left\|b-A x_{k}\right\|_{2} \quad \text { vs. } \quad\left\|b-A x_{k}\right\|_{*}
$$

Stopping criterion: Problem dependence
Choice of criterion and norm:

$$
\left\|b-A x_{k}\right\|_{2} \quad \text { vs. } \quad\left\|b-A x_{k}\right\|_{*}
$$

For instance, CG optimal: $\left(\|x\|_{A}^{2}=x^{*} A x\right)$

$$
\min _{x_{k} \in x_{0}+K_{k}\left(A, r_{0}\right)}\left\|b-A x_{k}\right\|_{A^{-1}}=\min _{x_{k} \in x_{0}+K_{k}\left(A, r_{0}\right)}\left\|x-x_{k}\right\|_{A}
$$

Available: Cheap, reliable estimates of $\left\|x-x_{k}\right\|_{A}$

Stopping criterion: Problem dependence
Choice of criterion and norm:

$$
\left\|b-A x_{k}\right\|_{2} \quad \text { vs. } \quad\left\|b-A x_{k}\right\|_{*}
$$

For instance, CG optimal: $\left(\|x\|_{A}^{2}=x^{*} A x\right)$

$$
\min _{x_{k} \in x_{0}+K_{k}\left(A, r_{0}\right)}\left\|b-A x_{k}\right\|_{A^{-1}}=\min _{x_{k} \in x_{0}+K_{k}\left(A, r_{0}\right)}\left\|x-x_{k}\right\|_{A}
$$

Available: Cheap, reliable estimates of $\left\|x-x_{k}\right\|_{A}$
For instance, matrix G associated with FE error measure:

$$
\min _{x_{k}}\left\|b-A x_{k}\right\|_{G}
$$

Matrix dependence

A may be very ill-conditioned
\Rightarrow small residual does not necessarily imply small error

$$
\frac{1}{\kappa(A)} \frac{\left\|b-A x_{k}\right\|}{\|b\|} \leq \frac{\left\|x^{\star}-x_{k}\right\|}{\left\|x^{\star}\right\|} \leq \kappa(A) \frac{\left\|b-A x_{k}\right\|}{\|b\|}
$$

Well-known fact, but often not used

$$
\frac{\left\|b-A x_{k}\right\|}{\|b\|} \text { vs } \frac{\left\|b-A x_{k}\right\|}{\|b\|+\|A\|_{*}\left\|x_{k}\right\|}
$$

(here $x_{0}=0$)

Matrix dependence

Inner-outer methods. e.g. Solve

$$
B M^{-1} B^{\top} x=b
$$

Each multiplication with $A=B M^{-1} B^{\top}$ requires solving a system with M

$$
u=A v \quad \Leftrightarrow \quad \begin{aligned}
& \tilde{u}=B^{\top} v \\
& \tilde{\tilde{u}} \text { solves } M \tilde{\tilde{u}}=\tilde{u} \\
& u=B \tilde{\tilde{u}}
\end{aligned}
$$

How accurately should one solve with M ?

Matrix dependence

Inner-outer methods. e.g. Solve

$$
B M^{-1} B^{\top} x=b
$$

Each multiplication with $A=B M^{-1} B^{\top}$ requires solving a system with M

$$
u=A v \quad \Leftrightarrow \quad \begin{aligned}
& \tilde{u}=B^{\top} v \\
& \tilde{\tilde{u}} \text { solves } M \tilde{\tilde{u}}=\tilde{u} \\
& u=B \tilde{\tilde{u}}
\end{aligned}
$$

How accurately should one solve with M ?

Note: True residual $r_{k}=b-B M^{-1} B^{\top} x_{k}$ not available!

How accurately should one solve with M ?

Typically: Inner tolerance < Outer tolerance

But: if optimal Krylov method is used to solve $B M^{-1} B^{\top} x=b$ then:

$$
\text { Inner tolerance }=c \cdot \frac{\text { Outer tolerance }}{\text { current outer residual }}
$$

Conclusions on methods

- Computational issues for Krylov solvers well understood
- Other tricks can be used (but not usually in black-box routines)
- Many ideas have wider applicability
- Theory is still under development
http://www.dm.unibo.it/~ simoncin
valeria.simoncini@unibo.it

Preconditioning techniques
Determine matrix P such that

$$
(P A) x=P b
$$

is "easier" to solve than $A x=b$, that is

- Takes less CPU time
- P is cheap to construct
- P is reasonably cheap to apply

Note: Typically, P used in operators such as $y \leftarrow P v$

Preconditioning techniques
Determine matrix P such that

$$
(P A) x=P b
$$

is "easier" to solve than $A x=b$, that is

- Takes less CPU time
- P is cheap to construct
- P is reasonably cheap to apply

Note: Typically, P used in operators such as $y \leftarrow P v$

Choice criteria :

- P s.t. $P A \approx \alpha I$, with I identity matrix

Preconditioning techniques
Determine matrix P such that

$$
(P A) x=P b
$$

is "easier" to solve than $A x=b$, that is

- Takes less CPU time
- P is cheap to construct
- P is reasonably cheap to apply

Note: Typically, P used in operators such as $y \leftarrow P v$

Choice criteria :

- P s.t. $P A \approx \alpha I$, with I identity matrix
- P s.t. P spectral properties similar to those of A^{-1}

Preconditioning techniques
Determine matrix P such that

$$
(P A) x=P b
$$

is "easier" to solve than $A x=b$, that is

- Takes less CPU time
- P is cheap to construct
- P is reasonably cheap to apply

Note: Typically, P used in operators such as $y \leftarrow P v$

Choice criteria :

- P s.t. $P A \approx \alpha I$, with I identity matrix
- P s.t. P spectral properties similar to those of A^{-1}
- P "mimicks" the operator behind A
- ...

Preconditioning. 2

$$
(P A) x=P b
$$

Classical strategy:

$$
\text { Determine } P \text { as } P=\mathcal{P}^{-1} \text { con } \mathcal{P} \approx A
$$

$$
\mathcal{P}^{-1} A x=\mathcal{P}^{-1} b
$$

Preconditioning. 2

$$
(P A) x=P b
$$

Classical strategy:

$$
\begin{aligned}
& \text { Determine } P \text { as } P=\mathcal{P}^{-1} \text { con } \mathcal{P} \approx A \\
& \qquad \mathcal{P}^{-1} A x=\mathcal{P}^{-1} b
\end{aligned}
$$

hoping that:
$\Rightarrow \mathcal{P} \approx A$ then $\mathcal{P}^{-1} \approx A^{-1}$ so that $\mathcal{P}^{-1} A \approx I$
$\Rightarrow \mathcal{P}^{-1}$ cheap to apply (via $y \leftarrow \mathcal{P}^{-1} v$), that is, solving

$$
\mathcal{P} y=v
$$

is far less expensive than $A x=b$

* Example: $\mathcal{P}=\operatorname{diag}(A):$ cheap, but little effective....

An example: Cholesky incomplete decomposition
A sym.pos.def. $\quad A=L L^{T} \approx L_{0} L_{0}^{T}$
L_{0} obtained from L by threshold chopping (element values below tol zeroed out)
L Original

approximation L_{0}

A corresponds to the Poisson operator, and tol $=10^{-2}$

A possible strategy for incomplete LU (ILUT, Algorithm 10.6, Saad)

A $n \times n$, "threshold dropping" strategy

1. for $i=1 \ldots n$ do
2. $\quad w=a_{i,:}\left(\right.$ with $\left.w=\left(w_{1}, \ldots, w_{n}\right)\right)$
3. for $k=1 \ldots i-1$ and $w_{k} \neq 0$ do
4. $\quad w_{k}:=w_{k} / a_{k, k}$
5. Apply the '(dropping rule') to w_{k}
6. If $w_{k} \neq 0, w:=w-w_{k} u_{k,:}$, end
7. endfor
8. Apply the ''dropping rule', to the row w
9. $\quad l_{i, 1: i-1}=w_{1: i-1}, \quad u_{i, i: n}=w_{i: n}$
10. endfor
zero threshold: ILU(0) and CHOLINC(0)
$A \approx L U$ such that L and U have the same sparsity pattern as A $(n n z(L+U-\operatorname{speye}(\operatorname{size}(A)))=n n z(A))$

...also other strategies...
Theorem. If A is a P-matrix, then there exists an incomplete factorization of A with fixed zero sparsity pattern, such that $A=L U-R$ with $L U$ non-singular

PCG, maintaing symmetry

For A sym pos.def., $A \approx P=L L^{T}$. The preconditioned problem:

$$
A x=b \Rightarrow \underbrace{L^{-1} A L^{-T}}_{\widetilde{A}} \underbrace{L^{T} x}_{\tilde{x}}=\underbrace{L^{-1} b}_{\widetilde{b}},
$$

PCG, maintaing symmetry

For A sym pos.def., $A \approx P=L L^{T}$. The preconditioned problem:

$$
A x=b \Rightarrow \underbrace{L^{-1} A L^{-T}}_{\widetilde{A}} \underbrace{L^{T} x}_{\tilde{x}}=\underbrace{L^{-1} b}_{\widetilde{b}},
$$

For $\tilde{p}^{(0)}=\tilde{r}^{(0)}=\tilde{b}-\tilde{A} \tilde{x}^{(0)}=L^{-1}\left(b-A x^{(0)}\right)=L^{-1} r^{(0)}$, we have

$$
\tilde{x}^{(j+1)}=\tilde{x}^{(j)}+\alpha_{j} \tilde{p}^{(j)}, \text { with } \quad \alpha_{j}=\frac{\left(\tilde{r}^{(j)}, \tilde{\tilde{r}}^{(j)}\right)}{\left(\tilde{A} \tilde{p}^{(j)}, \tilde{p}^{(j)}\right)}
$$

$$
\tilde{r}^{(j+1)}=\tilde{r}^{(j)}-\alpha_{j} \widetilde{A} \tilde{p}^{(j)}
$$

$$
\tilde{p}^{(j+1)}=\tilde{r}^{(j+1)}+\beta_{j} \tilde{p}^{(j)} \text {, con } \quad \beta_{j}=\frac{\left(\tilde{r}^{(j+1)}, \tilde{\tilde{r}}^{(j+1)}\right)}{\left(\tilde{r}^{(j)}, \tilde{r}^{(j)}\right)}
$$

PCG, maintaing symmetry

For A sym pos.def., $A \approx P=L L^{T}$. The preconditioned problem:

$$
A x=b \Rightarrow \underbrace{L^{-1} A L^{-T}}_{\widetilde{A}} \underbrace{L^{T} x}_{\tilde{x}}=\underbrace{L^{-1} b}_{\tilde{b}},
$$

For $\tilde{p}^{(0)}=\tilde{r}^{(0)}=\tilde{b}-\tilde{A} \tilde{x}^{(0)}=L^{-1}\left(b-A x^{(0)}\right)=L^{-1} r^{(0)}$, we have

$$
\begin{aligned}
& \tilde{x}^{(j+1)}=\tilde{x}^{(j)}+\alpha_{j} \tilde{p}^{(j)}, \text { with } \quad \alpha_{j}=\frac{\left(\tilde{r}^{(j)}, \tilde{r}^{(j)}\right)}{\left(\tilde{A} \tilde{p}^{(j)}, \tilde{p}^{(j)}\right)} \\
& L^{T} x^{(j+1)}=L^{T} x^{(j)}+\alpha_{j} L^{-1} p^{(j)}, \text { with } \quad \alpha_{j}=\frac{\left(L^{-1} r_{r}^{(j)}, L^{-1} r_{r}(j)\right.}{\left(L^{-1} A L^{-T} L^{-1} p^{(j)}, L^{-1} p^{(j)}\right)} \\
& \tilde{r}^{(j+1)}=\tilde{r}^{(j)}-\alpha_{j} \widetilde{A} \tilde{p}^{(j)} \\
& L^{-1} r^{(j+1)}=L^{-1} r^{(j)}-\alpha_{j} L^{-1} A L^{-T} L^{-1} p^{(j)} \\
& \tilde{p}^{(j+1)}=\tilde{r}^{(j+1)}+\beta_{j} \tilde{p}^{(j)}, \text { with } \quad \beta_{j}=\frac{\left(\tilde{r}^{(j+1)}, \tilde{r}^{(j+1)}\right)}{\left(\tilde{r}^{(j)}, \tilde{r}^{(j)}\right)} \\
& L^{-1} p^{(j+1)}=L^{-1} r^{(j+1)}+\beta_{j} L^{-1} p^{(j)}, \text { with } \quad \beta_{j}=\frac{\left(L^{-1} r_{r}^{\left.(j+1), L^{-1} r^{(j+1)}\right)}\right.}{\left(L^{-1} r_{r}^{(j)}, L^{-1} r_{r}^{(j)}\right)}
\end{aligned}
$$

PCG, maintaing symmetry

For A sym pos.def., $A \approx P=L L^{T}$. The preconditioned problem:

$$
A x=b \Rightarrow \underbrace{L^{-1} A L^{-T}}_{\widetilde{A}} \underbrace{L^{T} x}_{\tilde{x}}=\underbrace{L^{-1} b}_{\tilde{b}},
$$

For $\tilde{p}^{(0)}=\tilde{r}^{(0)}=\tilde{b}-\widetilde{A} \tilde{x}^{(0)}=L^{-1}\left(b-A x^{(0)}\right)=L^{-1} r^{(0)}$, we have

$$
\begin{aligned}
& \tilde{x}^{(j+1)}=\tilde{x}^{(j)}+\alpha_{j} \tilde{p}^{(j)}, \text { with } \quad \alpha_{j}=\frac{\left(\tilde{r}^{(j)}, \tilde{r}^{(j)}\right)}{\left(\widetilde{A} \tilde{p}^{(j)}, \tilde{p}^{(j)}\right)} \\
& x^{(j+1)}=x^{(j)}+\alpha_{j} L^{-T} L^{-1} p^{(j)} \text {, with } \quad \alpha_{j}=\frac{\left(r^{(j)}, L^{-T} L^{-1} r_{r}(j)\right.}{\left(A L^{-T} L^{-1} p^{(j)}, L^{-T} L^{-1} p^{(j)}\right)} \\
& \tilde{r}^{(j+1)}=\tilde{r}^{(j)}-\alpha_{j} \widetilde{A} \tilde{p}^{(j)} \\
& r^{(j+1)}=r^{(j)}-\alpha_{j} A L^{-T} L^{-1} p^{(j)} \\
& \tilde{p}^{(j+1)}=\tilde{r}^{(j+1)}+\beta_{j} \tilde{p}^{(j)}, \text { with } \quad \beta_{j}=\frac{\left(\tilde{r}^{(j+1)}, \tilde{r}^{(j+1)}\right)}{\left(\tilde{r}^{(j)}, \tilde{p}^{(j)}\right)} \\
& \left.L^{-T} L^{-1}{ }_{p}(j+1)=L^{-T} L^{-1}{ }_{r}(j+1)+\beta_{j} L^{-T} L^{-1} p_{p}(j), \text { with } \beta_{j}=\frac{\left(r^{(j+1)}, L^{-T} L^{-1}{ }_{r}(j+1)\right.}{\left(r^{(j)}, L^{-T} L^{-1} r_{r}(j)\right.}\right)
\end{aligned}
$$

PCG, maintaing symmetry

For A sym pos.def., $A \approx P=L L^{T}$. The preconditioned problem:

$$
A x=b \Rightarrow \underbrace{L^{-1} A L^{-T}}_{\widetilde{A}} \underbrace{L^{T} x}_{\tilde{x}}=\underbrace{L^{-1} b}_{\tilde{b}},
$$

For $\tilde{p}^{(0)}=\tilde{r}^{(0)}=\tilde{b}-\tilde{A} \tilde{x}^{(0)}=L^{-1}\left(b-A x^{(0)}\right)=L^{-1} r^{(0)}$, we have With $\hat{p}^{(0)}=L^{-T} L^{-1} p^{(0)}=P^{-1} p^{(0)}$ and $z^{(j)}=L^{-T} L^{-1} r^{(j)}=P^{-1} r^{(j)}$:

$$
x^{(j+1)}=x^{(j)}+\alpha_{j} \hat{p}^{(j)} \text { with } \quad \alpha_{j}=\frac{\left(r^{(j)}, z^{(j)}\right)}{\left(A_{\left.\hat{p}^{(j)}, \hat{p}^{(j)}\right)}\right.}
$$

$$
r^{(j+1)}=r^{(j)}-\alpha_{j} A \hat{p}^{(j)}
$$

$$
\hat{p}^{(j+1)}=z^{(j+1)}+\beta_{j} \hat{p}^{(j)} \text {, with } \beta_{j}=\frac{\left(r^{(j+1)}, z^{(j+1)}\right)}{\left(r^{(j)}, z^{(j)}\right)}
$$

Practical preconditioning strategies

- LU-type approx decomposition of $A: \rightarrow P v=U^{-1} L^{-1} v$
- Algebraic multigrid (approximate representation of A on smaller version of the matrix - recursive procedure)
- Geometric multigrid (operator and domain dependent)
- Functional approximation of the underlying operator

A comparison :
Incomplete Cholesky and Algebraic Multigrid

Poisson, 2D problem on $[0,1]^{2}$. Matrices of $\operatorname{dim} n=2^{k} \times 2^{k}$

grid	incomplete Chol		AMG	
nodes per dim	$\#$ it's	CPU time	\# it's	CPU time
2^{4}	11	0.008	6	0.18
2^{5}	18	0.007	6	0.20
2^{6}	33	0.04	7	0.22
2^{7}	58	0.29	7	0.32
2^{8}	106	2.27	8	0.71

For $2^{8}, \operatorname{dim}(A)=65536 \times 65536$
!! Preconditioned CG with AMG gives grid independent \# it's !!

A comparison :
Incomplete Cholesky and Algebraic Multigrid
Poisson, 2D problem on $[0,1]^{2}$. Matrices of $\operatorname{dim} n=2^{k} \times 2^{k}$

grid	incomplete Chol		AMG	
nodes per dim	$\#$ it's	CPU time	\# it's	CPU time
2^{4}	11	0.008	6	0.18
2^{5}	18	0.007	6	0.20
2^{6}	33	0.04	7	0.22
2^{7}	58	0.29	7	0.32
2^{8}	106	2.27	8	0.71

For $2^{8}, \operatorname{dim}(A)=65536 \times 65536$
!! Preconditioned CG with AMG gives grid independent \# it's !!
Remark: For 2^{8}, tic; $A \backslash b$;toc, gives: Elapsed time is 0.58 secs

Algebraic Multigrid (AMG)

Consider the original system

$$
A_{h} u^{h}=f^{h} \quad(\star)
$$

The error vector is split in two parts: an oscillatory component (high freq.) and a regular component (smooth, low freq.)

A Multigrid (or multilevel) type method for a linear system is made of two ingredients:

- A smoothing step of the oscillatory portion: usually a few iterations of a classical method (e.g., Jacobi, Gauss-Seidel)
- A correction on a coarser grid for the smooth part The system (\star) is approximated by a system on a coarser grid:
A^{H}, f^{H} such that

$$
A_{H}=I_{h}^{H} A_{h} I_{H}^{h}, \quad f^{H}=I_{h}^{H} f^{h}
$$

Conceptually similar to a Galerkin projection type procedure:
I_{h}^{H} : restriction operator, full rank
I_{H}^{h} : prolongation operator, rull rank
with

$$
I_{h}^{H}=\left(I_{H}^{h}\right)^{T} \quad(\text { transposition })
$$

Remark: Geometric Multigrid uses the physical grid. Algebraic Multigrid use the matrix elements (matrix indexes \equiv grid nodes)

Algebraic Multigrid (AMG)

General procedure (on two grids):

1. Perform n_{1} steps of smoothing (e.g., Jacobi) on $A_{h} u^{h}=f^{h}$
2. Compute the residual $r^{h}=f^{h}-A_{h} u^{h} \equiv A e^{h}$
3. Project (restrict) to the coarse grid $r^{H}=I_{h}^{H} r^{h}$
4. Solve on coarse grid: $A_{H} e^{H}=r^{H}$
5. Add (prolong) $u^{h}:=u^{h}+I_{H}^{h} e^{H}$
6. Take n_{2} steps of smoothing on $A_{h} u^{h}=f^{h}$

Algebraic Multigrid (AMG). The coarse grid

Determine A_{H} from A_{h}, A_{H} is a subset of the rows/columns of A_{h} (strong connection among the elements of A_{H})

DEF. Let $\theta \in(0,1]$ be a fixed threshold. The variable u_{i} strongly depends on the variable u_{j} if

$$
-a_{i j} \geq \theta \max _{k \neq i}\left\{-a_{i k}\right\}
$$

\Rightarrow non-diagonal positive elements have a weak connection

The following steps should be taken (where: node= pair of indexes)

1. Define a "strength" matrix $\left(A_{f}\right)$ by eliminating the weak connections
2. Choose an independent set of strong nodes of A_{f}
3. Add possible nodes to have a correct proloungation operator

Spectral equivalence

Under particular conditions ${ }^{\mathrm{a}}$ on the matrix A, it can be proved that the AMG preconditioner is spectrally equivalent to A, that is:

There exist $\alpha_{1}, \alpha_{2}>0$ independent of the dimension of A such that

$$
\alpha_{1}(x, P x) \leq(x, A x) \leq \alpha_{2}(x, P x), \quad \forall x \neq 0
$$

[^1]
Spectral equivalence

Under particular conditions ${ }^{\mathrm{a}}$ on the matrix A, it can be proved that the AMG preconditioner is spectrally equivalent to A, that is:

There exist $\alpha_{1}, \alpha_{2}>0$ independent of the dimension of A such that

$$
\alpha_{1}(x, P x) \leq(x, A x) \leq \alpha_{2}(x, P x), \quad \forall x \neq 0
$$

In our context:

$$
P^{-1} A v=\lambda v \quad \Leftrightarrow \quad A v=\lambda P v
$$

so that

$$
\lambda=\frac{(v, A v)}{(v, P v)}, \quad \min _{x \neq 0} \frac{(x, A x)}{(x, P x)} \leq \lambda \leq \max _{x \neq 0} \frac{(x, A x)}{(x, P x)}
$$

$\Rightarrow \quad$ The spectral interval of the preconditioned problems does not depend on the problem dimension (or on the grid!)

[^2]
[^0]: ${ }^{\text {a At most }}$

[^1]: ${ }^{\text {a e.g., if }} A$ is Hpd is an M-matrix, that is with $a_{i i}>0 \forall i$ and $a_{i j} \leq 0 \forall i \neq j$, with non-negative inverse - the usual discretization of the Laplacian.

[^2]: ${ }^{\text {a }}$ e.g., if A is Hpd is an M-matrix, that is with $a_{i i}>0 \forall i$ and $a_{i j} \leq 0 \forall i \neq j$, with non-negative inverse - the usual discretization of the Laplacian.

