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The problem

[
A BT

B −C

] [
u
v

]
=

[
f
g

]

Computational Fluid Dynamics (Elman, Silvester, Wathen
2005)

Elasticity problems

Mixed (FE) formulations of II and IV order elliptic PDEs

Linearly Constrained Programs

Linear Regression in Statistics

Image restoration

... Survey: Benzi, Golub and Liesen, Acta Num 2005



The setting

[
A BT

B −C

] [
u
v

]
=

[
f
g

]

Iterative solution by means of Krylov subspace methods

Structural properties of interest to our context:

⋆ A symmetric positive (semi)definite
⋆ BT tall, possibly rank deficient
⋆ C symmetric positive (semi)definite



Spectral properties

M =

[
A BT

B −C

]

0 < λn ≤ · · · ≤ λ1 eigs of A
0 = σm ≤ · · · ≤ σ1 sing. vals of B
λmax(C) > 0, BBT + C full rank

spec(M) ⊂ [−a,−b] ∪ [c, d], a, b, c, d > 0

⇒ A large variety of results on the spectrum of M, also for
indefinite and singular A

⇒ Search for good preconditioning strategies...



General preconditioning strategy

Find P such that

MP−1û = b û = Pu

is easier (faster) to solve than Mu = b

A look at efficiency:
- Dealing with P should be cheap
- Storage requirements for P should be low
- Properties (algebraic/functional) should be exploited

Mesh/parameter independence

Structure preserving preconditioners



Block diagonal Preconditioner

⋆ A nonsing., C = 0:

P0 =

[
A 0
0 BA−1BT

]

⇒ P
− 1

2
0 MP

− 1
2

0 =

[
I A− 1

2BT (BA−1BT )−
1
2

(BA−1BT )−
1
2BA− 1

2 0

]

MINRES converges in at most 3 iterations.

spec(P
− 1

2
0 MP

− 1
2

0 ) =
{
1, 1

2
±

√
5

2

}

A more practical choice:

P =

[
Ã 0

0 S̃

]
spd. Ã ≈ A S̃ ≈ BA−1BT

eigs of MP−1 in [−a,−b] ∪ [c, d], a, b, c, d > 0

Still an Indefinite Problem



Giving up symmetry ...

Change the preconditioner: Mimic the LU factors

M =

[
I O

BA−1 I

] [
A BT

O BA−1BT + C

]
⇒ P ≈

[
A BT

O BA−1BT + C

]

Change the preconditioner: Mimic the Structure

M =

[
A BT

B −C

]
⇒ P ≈ M

Change the matrix: Eliminate indef.

M− =

[
A BT

−B C

]

Change the matrix: Regularize (C = 0)

M ⇒ Mγ =

[
A BT

B −γW

]
or Mγ =

[
A+ 1

γ
BTW−1B BT

B O

]



Constraint (Indefinite) Preconditioner

P =

[
Ã BT

B −C

]
MP−1 =

[
AÃ−1(I −Π) + Π ⋆

O I

]

with Π = B(BÃ−1BT + C)−1BÃ−1

Constraint equation satisfied at each iteration

If C nonsing ⇒ all eigs real and positive

If BTC = 0 and BBT + C > 0 ⇒ all eigs real and positive

⇒ More general cases, B̃ ≈ B, C̃ ≈ C



Block triangular preconditioner

A spd, P =

[
Ã BT

0 −C̃

]
Ã ≈ A, C̃ ≈ BA−1BT + C

Ideal case: Ã = A, C̃ = BA−1BT + C ⇒ MP
−1 =

[
I 0

BA−1 I

]

Recovering symmetry?

If C̃ = C nonsing., then σ(MP−1) in R
+

If Ã < A then σ(MP−1) in R
+ with

λ ∈ [χ1, χ2] ∋ 1, χj = χj((B
T Ã−1B + C)C̃−1, Ã−1A)



Regularized problem and Augmented preconditioners

Augmented Lagrangian approach:

Mγ =

[
A+ 1

γ
BTW−1B BT

B O

]

Particularly interesting for A indefinite or singular
⋆ Any of the above preconditioners may be used.

———————–

Somehow related preconditioner for M =

[
A BT

B O

]
:

P =

[
A+BTW−1B BT

O W

]



Application. Convex Quadratic Programming (QP) Pbs

We focus on the linear algebra phase of Interior-Point methods
applied to convex QP problems.

Primal-dual pair of convex QP problems in standard form:

min
x

cTx+ 1
2x

THx subject to Jx = b, x ≥ 0

max
x,y,z

bT y − 1
2x

THx subject to JT y + z −Hx = c, z ≥ 0

H ∈ R
n×n, symmetric and positive semidefinite

J ∈ R
m×n, m ≤ n is full-row rank

x, z, c ∈ R
n, y, b ∈ R

m



Interior Point (IP) methods

At a generic IP iteration k, the primal-dual Newton direction
solves, possibly approximately, the linear system of dimension
2n+m with direction (∆xk, ∆yk, ∆zk):




H JT −In
J 0 0

−Zk 0 −Xk




︸ ︷︷ ︸
K3




∆xk
−∆yk
∆zk


 =



−c−Hxk + JT yk + zk

b− Jxk
τke−XkZke




where

Xk = diag(xk), Zk = diag(zk) and (xk, zk) > 0

e = (1, . . . , 1)T ,

τk = xTk zk/n: barrier parameter (controls distance to
optimality). Gradually reduced through the IP iterations



Block eliminations approaches

Unreduced matrix: K3 of dimension 2n+m.

Reduced matrix:

K3 =



H JT −I
J 0 0
−Z 0 −X


 =⇒ K2 =

[
H +X−1Z JT

J 0

]

K2 is symmetric and has dimension n+m;
inexpensive to form since X and Z are diagonal.

Condensed matrix:

K2 =

[
H +X−1Z JT

J 0

]
=⇒ K1 = J(H +X−1Z)−1JT



Regularized matrices

Given δ ≥ 0 and ρ ≥ 0, consider the regularized problem

min
x,r

cTx+
1

2
xTHx+

1

2
ρ‖x‖2 +

1

2
‖r‖2 subject to Jx+ δr = b, x ≥ 0

Then

K3,reg =



H + ρIn JT −In

J −δIm 0
−Z 0 −X




K2,reg =

[
H + ρIn +X−1Z JT

J −δIm

]

Eigenvalues of H and singular values of J are shifted away from
zero.

[Altman and Gondzio 1999], [Friedlander and Orban 2012], [Gondzio 2012],

[Saunders, 1996].



Main features of reduced and unreduced matrices

For X and Z positive definite, K2,reg and K3,reg are
nonsingular.

If (x̄, ȳ, z̄) solves the QP pair then x̄, z̄ ≥ 0 and

x̄iz̄i = 0, i = 1, . . . , n.

K2,reg becomes increasingly ill-conditioned as the IP
iterates approach the solution due to X−1Z.

K3,reg can be convenient in terms of eigenvalues and
conditioning throughout the IP iterations,
[Forsgren, 2002], [Forsgren, Gill and M. Wright, 2002], [M. Wright,

1998].



Nonsingularity of K3,reg

Greif, Moulding and Orban have recently provided spectral
bounds for K3,reg and claimed that in terms of eigenvalues and
conditioning, it may be beneficial to use the unreduced
formulation.

Theorem (Greif, Moulding and Orban, 2014)

K3,reg is nonsingular at (x̄, ȳ, z̄) if and only if

1 x̄ and z̄ are strictly complementary, x̄i = 0 =⇒ z̄i > 0 ∀ i

2 If ρ = 0, ker(H)∩ ker(J)∩ ker(Z̄) = {0} where Z̄ = diag(z̄).

3 If δ = 0, the Linear Independence Constraint Qualification
(LICQ) is satisfied at x̄, i.e. for A = {i | x̄i = 0 } , the
matrix [

JT − IA
]

has full column rank.



Spectral Properties of the K3,reg

K3,reg is symmetrizable and has real eigenvalues, [Forsgren,
2002], [Saunders, 1998]. Let

R =



In 0 0
0 Im 0

0 0 Z
1
2




By the similarity transformation associated with R we
obtain

K3,sym = R−1K3,regR

=



H + ρIn JT −Z

1
2

J −δIm 0

−Z
1
2 0 −X




There are other ways to symmetrize K3,reg.
Here K3,sym remains nonsingular in the limit but R
becomes ill-conditioned.



Spectral bounds for nonsingular K3,reg

Theorem (Greif, Moulding and Orban, 2014)

The eigenvalues θ of K3 (δ = ρ = 0) satisfy

θ ∈ [θ1, 0) ∪ [θ3, θ4]

The eigenvalues θ of K3,reg (δ, ρ > 0) satisfy

θ ∈ [θ1,−δ] ∪ [θ3, θ4], θ3 ≥ ρ

Drawbacks in the unregularized case:

a meaningful upper bound on negative eigenvalues is not
provided;

if H is positive semidefinite, θ3 goes to 0 as x → x̄ and z → z̄,
even though, in the limit, K3 may be nonsingular.

Our focus: Assess the potentials of the use of the unreduced

formulation by providing new results on spectral analysis and its

solution.



Refined spectral estimates for nonsingular K3,reg

xmin = min
i

xi zmax = max
i

zi

λmin = λmin(H) λmax = λmax(H) σmin = σmin(J) σmax = σmax(J)

Theorem

Let θ− be a negative eigenvalue of K3. It holds

θ− ≤ θ2 where θ2 is the greatest negative root of the cubic polynomial

π(θ) = θ3 + (xmin − λmax)θ
2 − (xminλmax + σ2

min + zmax)θ − σ2
minxmin

and is s.t. θ2 > −xmin.

If (x̄, z̄) is approached, A and I are the index sets of active and inactive

bounds at x̄, GT =

[
JA JI

−Z
1
2

A 0

]

, then

θ− ≤ µ2 = max
{
−(xI)min,

1
2

(
λmax −

√
λ2
max + 4σ2

min(G)
)}

+
√

(zI)max

Note: if A 6= ∅ then θ2 goes to 0 as (x̄, z̄) is approached.



Refined spectral estimates for nonsingular K3,reg

Theorem

Let θ+ be a positive eigenvalue of K3.

If (x̄, z̄) is approached, A and I are the index sets of active and

inactive bounds at x̄, GT =

[
JA JI

−Z
1
2

A
0

]
, then

θ+ ≥ µ3 = µ̃3 − (xA)max

where µ̃3 is the smallest positive root of the cubic polynomial

q(µ) = µ
3
− (λmax + λmin)µ

2 + (λ2
min − σ

2
min(G))µ+ λminσ

2
min(G)



Numerical experiments

CONT-050 problem (Maros-Mezaros Collection), n = 2597, m = 2401. No
regularization.
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Figure : Problem cont-050: eigenvalues of K3 closest to zero (solid line) and
their bounds at every iteration. Left: positive eigenvalues. Right: negative
eigenvalues.



On the use of the reduced and unreduced systems

Direct solvers: the effect of ill-conditioning in K2,reg is benign [Poncelon,
1991], [S. Wright 1995], [Forsgren, Gill, Shinnerl, 1996], [M. Wright, 1998].

Iterative solvers: preconditioning is required

P−1
2 K2,reg ∆2 = P−1

2 f2

P̂−1
3 K3,reg ∆3 = P̂−1

3 f̂3 3x3 unsymmetric

P−1
3 K3,sym ∆3 = P−1

3 f3 3x3 symmetric

Preconditioners analyzed: constraint, augmented diagonal and triangular
preconditioners.

Our conclusions:

1 Connections between the spectra of the 2x2 and 3x3 preconditioned
matrices hold.

2 Equivalences between blocks of the 3x3 preconditioned systems and
the 2x2 preconditioned systems hold.

3 As long as IP implementations with reduced and unreduced systems
are successful, CPU times are in favor of the former due to their
smaller dimensions.



Relations between unreduced and reduced matrices

Unsymmetric formulation. Let

L̂1 =




I 0 0
0 I 0

X−1 0 I



 , L̂2 =




I 0 0
0 I 0

X−1Z 0 I





Then

K3,reg = L̂T
1



 K2,reg
0
0

0 0 −X



 L̂2

Symmetric formulation. Let

L =




I 0 0
0 I 0

X−1Z
1
2 0 I





then

K3,sym = LT



 K2,reg
0
0

0 0 −X



L

(congruence transformation).



Constraint Preconditioners

P2,C =

[
diag(H + ρIn +X−1Z) JT

J −δIm

]
,

P̂3,C =




diag(H + ρIn) JT −In

J −δIm 0
−Z 0 −X



 = L̂T
1



 P2,C
0
0

0 0 −X



 L̂2, unsymmetric 3x3

P3,C =




diag(H + ρIn) JT −Z

1
2

J −δIm 0

−Z
1
2 0 −X



 = LT



 P2,C
0
0

0 0 −X



L, symmetric 3x3

Theorem

1 P̂3,C and P3,C remain invertible in the limit (and possibly well-conditioned).

2 For the unsymmetric 3× 3 system:

θ ∈ Λ
(
P̂−1
3,CK3,reg

)
⇐⇒ θ ∈ {1} ∪ Λ

(
P−1
2,CK2,reg

)

The first two block equations of P̂−1
3,CK3∆3 = P̂−1

3,Cf3 are equivalent to

P−1
2,CK2,reg∆2 = P−1

2,Cf2, the third block equation is equivalent to the third

equation in K3∆3 = f3.

3 The same results hold for the symmetric 3× 3 formulation

4 Similar results hold for certain block triangular preconditioners



Augmented diagonal preconditioners

Let

P2,D =

[
H + ρIn +X−1Z+δ−1JT J 0

0 δIm

]

P3,D =




H + ρIn+X−1Z + δ−1JT J 0 0

0 δIm 0
0 0 X



 =



 P2,D
0
0

0 0 X





P2,D, P3,D are positive definite.

Theorem

Upon elimination of ∆z, the preconditioned 3× 3 system reduces to the 2× 2
preconditioned system.

K2,reg =

[
H + ρIn +X−1Z JT

J −δIm

]
, K3,reg =




H + ρIn JT −In

J −δIm 0
−Z 0 −X





Ideal preconditioner in terms of spectral distribution [Morini, Simoncini, Tani].



Numerical Results: condition number and direct solvers

QP problems from CUTEr solved with PDCO [Saunders].
K3,reg nonsingular at the solution.

δ = ρ = 10−6, accuracy on feasibility and complementarity: 10−6.

κe(K3,reg) κe(K2,reg) Backslash Backslash

Problem (n,m) min-max min-max Time K3,reg Time K2,reg

CVXQP1 (10000, 5000) 4-5 4-9 25.1 5.7

CVXQP2 (10000,7500) 3-5 3-9 13.0 4.4

CVXQP3 (10000, 7500) 4-5 4-9 34.4 6.2

STCQP1 (16385, 8190) 6-7 7-13 127.3 4.4

GOULDQP3 (19999, 9999) 7-10 7-13 2.9 0.6

κe(·): estimate of the 1-norm condition number (Matlab function condest),
expressed in the form 10min−max.

Total execution time (secs) for solving the sequence of linear systems

Analogous results are valid without regularization though
κe(K2,reg) is higher than above.



Numerical Results: Iterative solvers

Control on inexactness

‖K3,reg ∆3 − f3‖ ≤ ητ, ‖K2,reg∆2 − f2‖ ≤ ητ

τ = xT z/n, η = 10−2.

PC-GMRES PD-MINRES

K3,reg K2,reg K3,sym K2,reg

Problem Time Time Time Time

CVXQP1 (10000, 5000) 1.0 0.7 2.3 1.9

CVXQP2 (10000,7500) 0.8 0.5 1.6 1.0

CVXQP3 (10000, 7500) 2.1 1.7 3.7 3.2

STCQP1 (16385, 8190) 12.7 23.8 2.5 2.1

GOULDQP3 (19999, 9999) 1.6 0.9 1.8 1.9

Total execution time (secs) for solving the sequence of linear unreduced and

reduced systems



Work in progress and open problems

The use of unreduced systems may be appealing for stability
however the effect of ill-conditioning is benign with direct solvers.

As for the iterative solvers, the iteration counts of a Krylov
method are similar for any considered formulation of the systems
but the computational cost is higher in the 3x3 formulations.

We are currently investigating when the effect of ill-conditioning
is benign in Inexact IP methods.
Morini and S., Ill-conditioning in Inexact Interior-Point methods for convex

quadratic programming, in progress.
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