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Abstract 
      In this paper the analytical formulation of 
frequency domain analysis is reviewed, under a 
unifying approach, for deterministic and random 
dynamic loading. In the random case both stationary 
and nonstationary excitations are considered. It is 
shown how, in all cases, a complex linear system must 
be solved at each frequency step; if the solutions are 
carried on independently, the solution cost grows 
almost linearly with the number of steps. Aiming at a 
computationally more efficient approach, iterative 
procedures are here proposed and developed, 
allowing for the simultaneous solution for a large 
number of frequencies. Some of the prolems arising in 
applications involving “large” systems are then 
discussed and solved. Examples are given with 
particular reference to 3D soil-structure finite-
element models. 
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1. Introduction 
 

A significant portion of the “cutting-edge” research in structural dynamics is related 
to non-linear problems; nevertheless, linearized solutions are still of utmost importance 
in the field. In fact there exist a number of practical cases in which such solutions are 
motivated not only by simplicity but also by the problem inherent features. We refer to 
situations where anticipated deformations in structural materials are extremely small and 
where all other hypotheses leading to linearization (small oscillations etc.) are actually 
justified on mechanical grounds. This is typical of vibration analyses under 
“serviceability” loads, among which we can quote the following: 
 
• vibration of machine foundations due to unbalanced rotating parts; 
• propagation of dynamic disturbances induced by traffic (road or rail) loading; 
• propagation of dynamic disturbances due to construction activities (pile driving, 

demolitions, use of explosives, etc); 
• structural vibration induced by human activities (walking, running, etc); 
• structural vibration due to normal wind or wave loading. 
 

Within this context, direct frequency domain analysis (DFDA) can be an efficient 
alternative to modal analysis and to direct time domain techniques. In fact, while direct 
step-by-step time integration offers unique opportunities to treat non-linear systems, and 
while modal analysis seems to be a very reliable approach to “standard” linear problems, 
DFDA appears as a more powerful tool for handling complex linear systems. This is 
because of its inherent capability to deal with frequency dependent mechanical 
properties of the dynamical model which is set for the analysis, where such dependence 
can be due to different causes of both physical and analytical nature. 

On physical grounds, frequency dependent properties (typically stiffness) of a 
mechanical system or component can be related to the influence of strain rate on the 
material properties; this is typical, for example, of rubber devices which are widely used 
as absorbing bearing pads (see [1] and references herein). 

In most cases, however, frequency dependence is related to modeling criteria and 
assumptions, which often lead to drastic simplification of complex phenomena or, in 
other cases, to a reduction of the problem size. The first situation is typical of the 
simplified treatment of interaction problems; as an example we can quote wind-structure 
interaction studies, where aerodynamic forces on elongated bodies are expressed in 
terms of frequency dependent aerodynamic coefficients, which are obtained from wind 
tunnel tests on harmonically oscillating specimens [2]. 

Reduction (or condensation) of the problem size, on the other hand, is often related 
to system substructuring. A typical example can be found in linearized soil-structure 
analysis [3] where, in many situations, the behavior of the ground subsystem can be 
“condensed” into a limited number of functions of frequency (impedances) expressing 
the linear relation between forces and displacement components at interface nodes. 

A simpler case of frequency dependence is represented by the linear hysteretic 
damping (LHD) model, in which the damping coefficients are assumed to be inversely 
proportional to the circular frequency. The model has been introduced with reference to 
steady state harmonic analysis; its use within the more general context of frequency 



Frequency domain response computation 

 

35 

analysis for arbitrary loading has been questioned, since LHD violates, in transient 
analysis, the causality condition (see [4] and references herein); in spite of this 
deficiency, the model will be addressed in this work, in view of the above “very small 
deformation” hypothesis. Under such hypothesis, limited material hysteresis is 
anticipated, leading to lack-of-causality errors which can be accepted in front of the 
significant advantages of the mixed (viscous plus hysteretic) damping model in treating 
complex dissipation properties. 

In the first part of this paper the analytical formulation of DFDA analysis will be 
reviewed, under a unified approach, both for deterministic and for stochastic dynamic 
loading; for the latter case, stationary and nonstationary excitations will be considered. 
Nonstationary random vibration will be treated within the framework of evolutionary 
processes, according to the well-known Priestley’s theory [5]. 

By the computational standpoint it will be shown how, in all cases, the most critical 
aspect of frequency domain analysis is represented by the linear system solution which is 
necessary, at all frequency steps, for evaluating vibration amplitudes and phases. The 
coefficient matrix of the system (mechanical impedance matrix) is complex, symmetric 
and indefinite and shows a polynomial (quadratic) variation with frequency, while the 
right-hand side remains constant. In such situation a question naturally arises, i.e. 
whether all solutions must be carried on independently to each other, or the peculiarities 
of the algebraic problem can be exploited for developing efficient strategies aiming at 
the simultaneous system solution for a large number of frequency values. 

A survey of existing literature [6] indicates that strategies of this type have been 
developed with reference to the “standard shifted form” of a linear system, i.e. to the 
form [ ] dzIT =+ λ , where λ is the parameter, which in our case must be related to 
frequency, and I is the identity matrix. These strategies are based on the properties of a 
class of iterative solvers (Krylov subspace solvers, see [7] for a comprehensive 
treatment) for which all linear systems corresponding to different λ values can be 
projected onto the same vector basis. Since the generation of the vector space (Krylov 
subspace) is the most expensive step of the iterative solution, large computational 
savings can be obtained from the simultaneous approach. 
 A preliminary problem to be solved for applying Krylov subspace methods is the 
transformation of the original complex system (which is quadratic in the frequency 
parameter) into a convenient form, linear in λ. This transformation can be performed in 
different ways, leading to different properties of the iterative solutions of the standard 
shifted system. In previous research work [6] it was shown that the transformation which 
provides the best convergence properties to the iterative schemes is such that, 
unfortunately, a system solution with the stiffness matrix is required. In spite of this 
computational overhead cost, the procedures for simultaneous solution which were 
subsequently developed (based upon the GMRES solver [8]) demonstrated excellent 
performance in comparison to independent direct solutions, at least for “medium-size” 
systems (up to 10-20 x 103 degrees of freedom). 

While GMRES appears to be the method of choice on small size problems for its 
favorable convergence properties, different strategies need to be devised for large 
problems, in order to limit memory requirements (see [6]). We showed in [9] that an ad-
hoc implementation of the Lanczos procedure (SSL - Simplified Shifted Lanczos 
method) can conveniently exploit the symmetry properties of the problem so as to 
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comply with the mentioned limits. In this paper we review the SSL algorithm and linge 
over some practical implementation aspects that make the method amenable to the 
treatment of very large application problems. 

Another aspect concerns the system solution with the stiffness matrix, which is 
necessary for the transformation into the standard form; for small and medium size 
systems the matrix can be factored once and stored for the remaining of the analysis. For 
systems having a larger number of degrees of freedom, this becomes impossible and an 
iterative scheme must be again devised, leading to a so-called “inner-outer” iteration, 
where “inner” denotes the solution with the stiffness matrix and “outer” the overall 
procedure for the simultaneous solution of the frequency steps. A procedure of this type 
has been developed (ISSL - Inexact Simplified Shifted Lanczos) and will be here 
described with particular reference to some critical aspects of the inner iteration, namely 
the choice of the stopping criterion and the treatment of ill-conditioned stiffness 
matrices. 

In the last section of this paper some numerical experiments will be reported, mainly 
focused on 3D soil-structure interaction problems. The performance of the SSL and 
ISSL procedures will be first compared to that of an efficient iterative solver, applied 
separately at each frequency. Further results will be finally given, specifically addressing 
the case of ill-conditioned stiffness matrices and the influence of the tolerance of the 
inner procedure. 

 
2. Frequency analysis of discretized linear systems 

We are interested in the dynamic response of a discretized n-DOF linear, time-
invariant system, whose motion is described by the following matrix equation 
 

)(tFgKqqCqM =++ &&&                                                                                                       (1) 
 
where M, C, and K are the mass, viscous damping and stiffness (n, n) matrices 
respectively, while q is the configuration vector, F is a (n, m) load amplitudes matrix and 
g is a (m,1) load histories vector. In most practical situations involving large systems the 
number of independent load histories m is at least one order of magnitude smaller than n. 

In the most general case we can suppose g(t) to be a realization of an m-dimensional 
non stationary stochastic process; focusing our attention to the case of evolutionary 
processes [5], the loading histories can be expressed in the Fourier-Stieltjes integral 
form: 
 

∫
∞

∞−
= )(),()( 2 fdeftt fti GΨg π                                                                                            (2) 

 
where ΨΨΨΨ(t, f) is a diagonal matrix containing m deterministic, slowly varying modulating 
functions. The dG(f) vector, whose components must be of the order of df , lists the 
realizations of an m dimensional process having the following orthogonality property: 
 

[ ] 211122
*

1 )()()()( dfdfffffdfdE gSGG −= δ                                                           (3) 
 

In Eq. (3) the asterisk denotes conjugation and transposition, E[ ] is the expectation 
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operator, δ  is a Dirac delta and Sg(f) is the (m, m) power spectral density matrix of the 
“underlying” m-dimensional stationary process whose realizations can be expressed as 
 

∫
∞

∞−
= )()( 2 fdet fti Gg π                                                                                                       (4) 

 
The system response to the above-described dynamic excitation can be computed 

via the usual time domain convolution: 
 

∫ −=
t

t
dtt

0

)()()( τττ gFhq                                                                                               (5) 

 
where h(t) is the (n, n) matrix of unit-impulse response functions and t0 the time in 
which initial conditions are imposed. Substituting Eq. (2), interchanging the order of 
integration and applying the change of variable u = t − − − − τ  leads to the following 
frequency domain integral: 
 

=−=−= −∞

∞−

∞

∞−

∞

∞− ∫ ∫∫∫ )(),()()(),()()( 222

0

fdeduefutudfdeftt ftifuifit

t
GΨFhGΨFhq ππτπ τττ

 
      ∫

∞

∞−
= )(),( 2 fdeft fti GΓ π                                                                                                 (6)  

 
Note that the upper limit of the convolution integral (5) can always be extended to 

infinity for causal systems, since h(t − τ) = 0 for τ > t: the lower limit can go to minus 
infinity whenever the envelope functions are null for t < t0 and in all situations in which 
the effect of initial condition has vanished. 

In Equation 6 a time varying frequency response function (n, m) matrix was defined 
as: 
 

duefutuft fui π2),()(),( −∞

∞−
−= ∫ ΨFhΓ                                                                          (7) 

 
It’s worth noting that for a deterministic transient excitation, for which G(f) is 

differentiable and ΨΨΨΨ(t, f) can be omitted, we get the following standard relations 
 

FHFhΓ )()(),( 2 fdueuft fui == −∞

∞−∫
π                                                                             (8) 

 

∫
∞

∞−
= dfefft fti π2)(~)()( gFHq                                                                                        (9) 

 
where H(f)  is the (n, n) matrix of frequency response functions and the )(~ fg vector is 
the Fourier Transform of g(t). 

In the stochastic case Eq. (6) points out that q(t) is again a multi-dimensional 
nonstationary process of evolutionary type, having ΓΓΓΓ(t, f) as modulating function matrix. 
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Since this matrix is no longer diagonal, each ealization of q(t) is actually the sum of m 
evolutionary process realizations. 

To define the evolutionary spectral density matrix of the output process q(t), we can 
express the time-varying covariance matrix in terms of the response equation (6) derived 
above, i.e.: 
 

[ ] [ ]∫ ∫∫
∞

∞−

∞

∞−

∞

∞−
=== ftfdfdEftdfftttEt qq ),()()(),(),()()()( 2

*
2

*
11

* ΓGGΓSqqµ
     

       

∫∫ ∫
∞

∞−

∞

∞−

∞

∞−
=−= dfftfftdfdfftfffft gg ),()(),(),()()(),( *

122
*

1211 ΓSΓΓSΓ δ

  
(10)

 

                     
Eq. (10) implicitly defines the (n, n) evolutionary spectral density matrix of q(t) as: 

 
),()(),(),( * ftfftft gq ΓSΓS =                                                                                    (11) 

 
In the stationary case (unit envelope functions, i.e. ΨΨΨΨ = I) Eq. (8) holds and the 

spectral density matrix of the response process takes the usual form 
 

)()()()( * ffff T
gq HFSFHS =                                                                                   (12) 

 
When the computation of ΓΓΓΓ(f, t) is considered, we can note that Eq. (7) is the time 

convolution of two matrix functions, namely FΨΨΨΨ (t, f) and )2exp()( tfit π−h . According 
to the frequency domain convolution theorem, the Fourier Transform of ΓΓΓΓ(t, f) can thus 
be computed as the following product of the transforms of the two functions 
 

),(~)(),(~)(),(~ )(2 fffdueuf ufi αααα απ ΨFHΨFhΓ +==∫
∞

∞−

+−                                (13) 

 
where ),(~ fαΨ is the Fourier Transform of the envelope functions matrix and H(f) is 
again the frequency response matrix. The time varying frequency response matrix can be 
thus computed as: 
 

∫
∞

∞−
+= ααα απ deffft ti2),(~)(),( ΨFHΓ                                                                        (14) 

 
For the evolutionary case, we can note that the envelopes are slowly varying so that 

their transforms are narrow-banded around the frequency origin. Therefore, for each 
frequency f the envelope transforms act, in the integral (14), as bandpass filters centered 
on f and applied to the frequency response functions. 

For the limiting case of a stationary excitation process, i.e. for a unit envelope 
function, we have [ ])(),(~ αδα diagf =Ψ  and Eq. (14) obviously yields to the same result 
as in Eq. (8). 
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3. The formulation of the algebraic problem in frequency 
analysis 
A key issue in the evaluation of the numerical performance of frequency domain 

analysis is represented, as it can be inferred by Eq. (9) (deterministic case), Eq. (12) 
(random stationary) and Eqs. (11-14) (random nonstationary), by the computation of the 
product H(f)F. This amounts to solving, for a large number of frequencies, the following 
complex symmetric linear system with m right-hand sides: 
 

FqE =)()( ff                                                                                                               (15) 
 

where E(f) is the well-known mechanical impedance matrix 
 

[ ]KCMHE ++−== − )2()2()()( 21 fifff ππ                                                          (16) 
 

When mixed damping (hysteretic+viscous) is introduced, the impedance matrix 
takes the complex and symmetric form: 
 

[ ]HV ififf CKCME +++−= )2()2()( 2 ππ                                                                 (17) 
 

where CV and CH are the viscous and hysteretic damping matrices respectively. 
If a direct solver is employed in (15) the computing time grows almost linearly with 

the number of frequencies, since the factorization must be recomputed for each value of 
f. On the other hand, to exploit the properties of shifted systems, Eqs. 15-17 must be 
transformed into the standard form. As demonstrated in previous research [6], the 
performance of the iterative procedures which will be used for the system solution is 
significantly improved if the system is first rewritten in terms of acceleration amplitudes 
as unknowns, namely 
 

FaKCM * =







−

++ 2)2(
1

)2(
1

ffi V ππ
                                                                              (18) 

 
where qaCKK 2

* )2(, fi H π−=+=  and a “single-input” system (m=1) has been first 
considered. 

To obtain the standard form, a two-step approach can be adopted. In the first step 
the system is transformed into a new one, of twice the size, of the type 
 
[ ] dxΒΑ =+ λ                                                                                                               (19) 

where [ ]F0d ;,)2( 1 == −fi πλ  and where A and B are the following (2n, 2n) 
symmetric matrices: 
 









=







−
=








= − a

a
x

K
M

Β
CM
M

Α
*

1)2(
;

0
0

;
0

fiV π
                                                     (20) 
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As a second step B−1 can be collected on the right, to get the standard shifted system 
in the form 
 

[ ] xΒzΒΑTdzIT ===+ − ;; 1
2nλ                                                         (21) 

 

in which n2I  is the unit matrix of dimension 2n. 
The formulation obtained, though suitable for the efficiency of iterative solvers, has 

the obvious disadvantage of requiring solutions with matrix B. For “medium size” 
systems the matrix can be factored once and stored. For larger systems different 
strategies must be adopted. We also emphasize that the case of M singular can be dealt 
with easily; indeed, since M is diagonal, its zero rows and columns can be eliminated. In 
such situation, the resulting augmented system is of size (n + nm), where nm is the 
number of nonzero diagonal elements in M [10]. 

It can also be noted that, though A and B in (20) are symmetric, symmetry is lost in 
(21). We recall, however that a square matrix X is J-symmetric if JX = XTJ, where J is a 
symmetric nonsingular matrix; for our case it is easy to verify that the matrix T is both 
A-1 and B-1 symmetric. This property will be exploited in the solution phase. 
 

4. The iterative solvers 
4.1 Krylov subspace methods 

The special structure of a standard shifted system can be efficiently exploited by 
Krylov subspace methods [7]; these methods approximate the system solution by 
projecting the problem on the subspace 
 

{ }vTTvvvTΚ 1,...,,),( −= k
k span                                                                                   (22) 

 
where T is the coefficient matrix and v is a starting vector. The latter is usually taken as 
a normalized residual: 
 

( ) ββ // 00 Tzdrv −==                                                                                                 (23) 
 

where z0 is a starting approximate solution and 
2

1 ,0
2

0
2 ∑ =

== n

i irrβ  is the square of the 
norm of 0r .  

The subspace (22) is invariant under shift, so that the system (21) can be projected 
onto the same subspace for all values of the parameter λ, as long as the generating vector 
v does not depend on the parameter. 
 
4.2 The GMRES method 

In previous research work [6] the performance of the GMRES solver [8] was tested. 
Given a starting vector v1 ≠ 0, at each iteration k the method generates a new vector vk+1 
of the Krylov subspace by multiplying the previous vector vk by the matrix T and by 
orthogonalizing vk+1, according to the Gram-Schmidt technique, with respect to all 
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previous vectors kvv ,...1 . By defining the matrix Vk = [v1, …, vk], whose columns span 
Kk (T, v), the following relation holds 
 

kkk NVVT 1+=                                                                                                                   (24) 
 
 

where Nk is a (k + 1, k) upper Hessenberg matrix whose coefficients are computed 
according to the orthonormalization procedure. 

In GMRES, the approximation zk = z0 + Vk  y is obtained by minimizing the norm of 
the residual rk = d − Tzk. Denote by ek the kth column of the unit matrix. By using (23) 
and the orthonormality condition, the residual can be computed as follows: 
 

( ) ( )yNeVyNVvyTVryVzTdTzd kkkkkkk −=−=−=+=− ++ 111100- ββ                  (25) 
 

Orthonormality of the columns of  Vk+1 yields the simplified expression 
 

( ) yNeyVzTd kk −=+ 10- β                                                                                      (26) 
 

The minimization of (26) is simple and inexpensive, since it requires the solution of 
a least squares problem of size (k + 1, k), where k is the subspace dimension. 

The main advantage of the GMRES method is that monotonic convergence, in terms 
of residual norm, is assured. On the other hand, the subspace grows during the iteration 
and all basis vectors must be kept for the orthogonalization process. To face the problem 
a restart option can be adopted: when the Krylov subspace reaches a maximum 
allowable size, a new subspace is generated assuming the last computed residual as a 
new starting residual. 

When the simultaneous solution of the system (21) for several, say s, values of λ is 
sought, the subspace generation must be performed only once for all parameters; each 
solution vector can be subsequently obtained by the residual minimization. Some 
problems arise when a restart must be performed; to solve them the true minimization 
must be sacrificed, so that monotonic convergence is no longer guaranteed. We also 
point to the more recent work in [11] for further investigations on this topic. 

In [6] the performance of the simultaneous solution procedure based upon GMRES 
and restarted GMRES was compared to the one of the sparse symmetric solver ME47 
[12] for six prototype systems stemming from civil engineering dynamics problems. The 
number of degrees of freedom ranged from 327 to 11957; in almost all cases, and 
especially for the largest systems, the simultaneous iterative procedures based on 
GMRES outperformed the direct solver. In addition, the computing time growth as a 
function of the number of frequencies was almost linear for the direct solver, whereas it 
was very limited for the proposed procedures (only +6% passing from 11 to 101 
solutions for the largest model). Note that ME47 was also used to factorize B, that is K, 
to obtain B-1vj  in the iterative procedures. 
 
4.3 Procedures based on the Lanczos method 

We first refer to the non-shifted solution T z = d. For a non-symmetric matrix T the 
Lanczos algorithm generates the two Krylov subspaces 



 Federico Perotti  & Valeria Simoncini 

 

42

{ }vTTvvvTΚ 1,...,,),( −= k
k span                                                                                   (27) 

 

( ){ }vTvTvvTΚ ~,...,~,~)~,( 1−= kTTT
k span                                                                            (28) 

 
The vector sequences vj and jv~  are biorthogonal, i.e. 0~ =i

T
j vv  for j ≠ 1 and they 

satisfy a “three-term recurrence” algorithm, based on the matrix relation: 
 

kkk SVVT 1+=           (29) 
 
where Sk is a tridiagonal (k+1, k) matrix. The first basis vector 1v  is again the 
normalized starting residual, while 1

~v  is arbitrary. To compute an approximate solution 
as yVzz kk += 0 , similar reasoning as in GMRES can be applied, leading to 
computation of the residual according to: 
 

( )ySeVTzd kkk −=− + 11 β            (30) 
 

Since the columns of  Vk+1 are no longer orthonormal, a relation of the type (26) 
does  not  hold  true.  However  it  seems  still  reasonable  to  minimize  the function 
||βe1 − Sky|| to compute y and the approximate solution; this procedure is called Quasi-
Minimal Residual (QMR) approximation. In a practical implementation, the three-term 
recurrence above is usually replaced by a more stable coupled two-term recurrence. We 
refer to [13] for a detailed description of this procedure, which is the one used in the 
experiments reported in section 5. 

Whenever T is symmetric, the Lanczos algorithm builds an orthogonal basis of the 
Krylov subspace Kk ; in the popular “Conjugate Gradient” (CG) method an approximate 
solution is subsequently computed by imposing that the system residual is orthogonal 
(Galerkin condition) to the subspace Kk. 

 
4.3.1 The Simplified Shifted Lanczos (SSL) method 

In our setting the system to be solved is [ ] dzIT =+ n2λ . Let us for the moment omit 
the shift λI. We have observed that the matrix T = AB−1 is B−1-symmetric. Moreover, by 
choosing 1

1
11

~ vBv −= γ , for some complex 1γ , we can compute the next vector of the left 
subspace (28) by first performing the following operation 
 

1
1

11
1

11
~ vTBvBTvT −− == γγ TT                                                                                      (32) 

 
The next vector 2

~v  is then obtained upon normalizaton and orthogonalization with 
respect to 1

~v . In the same way we can show that all subsequent vectors satisfy the 

relation kkk vBv 1~ −= γ , where kγ  is a normalization factor and can be determined from 

1−kγ ; therefore the left Krylov subspace in (28) is simply B−1 times the right Krylov 
subspace. Note that a solution with B is anyway necessary, at each iteration, for the 
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computation of the next vector in the right Krylov subspace. This means that, in practice, 
only the set of the vk basis vectors need to be recursively computed, while the vectors 

kv~ can be recovered at no additional cost [9]. 
When the shifted system is considered, due to the property 

),(),( 112 vTΚvITΚ knk =+ λ  (shift-invariance of Krylov subspaces), the following 
relation holds: 

 
[ ] [ ]kkkkn ISVVIT λλ +=+ +12                                                                                          (33) 
 
where [ ]0II ;kk = . Note that the generating vector must be the same for all value of λ. 
Since we take v1 to be equal to the normalized starting residual (23), z0 must be the zero 
vector in order to have v1 = d for all shifted systems. Once the space Kk (T, v1) is built, 
an approximate solution zk(λj) = Vk y (λj) can be obtained for each sjj ,...1, =λ , by 
using a QMR procedure, i.e. by minimizing 
 

[ ] yISe kjk λβ +−1
                                                                                                       (34) 

 
Finally, when zk is obtained the approximate solution to the original system (19) is 

determined as 
kk zBx 1−= . However, since zk is obtained as a linear combination of the 

columns of Vk, from (32) it follows that the solution xk can directly be updated using the 
(left) basis 

kV~ . 
Convergence of the method can be monitored by computing the norm of the residual 

of the system (19), i.e. rk = d−[A + λB]xk. Upper bounds of the residual norm can be 

easily obtained as shown in [9]. Let (1) (2);k k k =  x x x . If after k iterations the exact 

solution were determined, we would have that )1()2(
kk xx λ= . In general, )1(

kx  provides an 
approximate solution ka to the original problem (18), whereas the residual norm kr  can 

substantially differ from that of the original system (18), 2 .k v * kR F M C K a = − + λ + λ   

However, if the approximate solution of (18) is estimated as )2(1
kk xa −= λ , then the 

following relation holds [10] 

knnk rIIR 



=

λ
1,  

 

and ||Rk|| can easily be bounded, at iteration k, by using the estimates of ||rk||. At 
termination the choice between )1(

kx  and )2(-1
kxλ  can be done “a posteriori”. 

In terms of memory requirements the overall procedure is very efficient. In fact the 
Krylov subspaces are obtained by means of the Lanczos short-term recurrence. The basis 
vectors do not need to be stored, since each solution zk(λj) = Vk y(λj) can be updated, at 
each iteration, by only employing the last computed vectors. The same consideration 
applies to the minimization (34), which can be carried out without explicitly assembling 
the whole matrix Sk. Globally SSL requires six vectors of 2n components and two (2n, s) 
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matrices, where s is the number of frequencies; the size of the matrices can be drastically 
reduced when, as often happens, only a limited number of components of the solution 
vector is of interest. 
 
4.3.2    Acceleration procedures 

The velocity of convergence of the iterative procedure depends on the spectral 
properties of the coefficient matrix. In typical iterative strategies, preconditioning (see 
again [7]) of the matrix is usually applied to enhance these properties. 

We recall that a preconditioner of an iterative technique can be roughly defined as a 
matrix operator P, which is applied to the system matrix T at each iteration in order to 
achieve better efficiency. 

A common choice is to perform an “incomplete” factorization of T; this is defined 
as LUP ≈ , where L and U are the complete factors of T and P is determined by 
dropping some of the entries of L and U, according to a specified criterion. The simplest 
and most economical criterion is to impose to P the same sparsity pattern of T. The 
resulting preconditioner is often termed as incomplete factorization with “zero fill-in”. 
More sophisticated techniques entail the definition of strategies for performing some 
degree of fill-in, i.e. for adding coefficients to P; this results in a more demanding 
preconditioning procedure, both in terms of computing time and storage, which can be 
compensated by acceleration of convergence. A fill-in parameter p is generally defined 
as the number of the coefficients per column which are null in T and non-zero in the 
preconditioner. 

Preconditioning of the SSL method, however, is complicated by two problems; the 
first is that the coefficient matrix AB−1 is not formed explicitly, so that incomplete 
factorization schemes are not applicable. Secondly, preconditioning a system while 
maintaining the shifted structure is by itself a challenging problem.  

An alternative acceleration strategy consists in shifting, i.e. choosing a reference 
value λ0 and then solving the problem, either the original (18) or the linearized (19), with 
respect to the parameter 0λλλ −= . Implications and problems related to shifting are 
thoroughly discussed in [9]; here we recall that this technique could be also employed to 
face breakdown problems which may be encountered using the Lanczos procedure. In 
the numerical experiments  we shall report on, no particular acceleration strategy has 
been employed and no breakdown occurred. 
 
4.3.3 Application to “large size” systems 

As already pointed out, the SSL method solves one of the problems related to the 
application of Krylov subspace solvers to the analysis of “large” shifted systems, i.e. the 
generation of the subspace on the basis of a short-term recurrence capable of exploiting 
the J-symmetric structure of matrix T. 

A second problem is represented by the solution with matrix B, i.e. with the 
complex stiffness matrix K*, which is necessary at each iteration. Though such matrix is 
sparse, its factor can be quite dense and memory consuming. 

In such situations an iterative scheme for the solution with B can be adopted for the 
larger cases, leading to an inner-outer iterative procedure; within this context, a problem 
that must be faced is the influence of the inner system solution accuracy on the overall 
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performance of the method. Some very recent research results [21] have shown how to 
dinamically change the inner stopping tolerance without affecting the overall 
convergence history of the method. As a result, significant computation cost savings can 
be observed at no implementation overhead; we shall show that this technique can be 
successfully applied in our context. 

Another important aspect is represented by the choice of the inner procedure. In the 
experiments reported here the Conjugate Gradient method for complex symmetric 
matrices was used; preconditioning was performed according to the ICT algorithm by 
Chow & Saad [14], adapted for complex systems. The ICT method produces an 
incomplete Choleski factorization, governed by a fill-in parameter and a threshold value; 
the latter ensures that small elements are not taken into consideration in the fill-in 
procedure. The resulting inner-outer iterative procedure has been termed as ISSL 
(Inexact Simplified Shifted Lanczos). 

A particular situation arises when the stiffness matrix K* is singular. A typical case 
is represented by unrestrained systems. In infinite precision this implies that the matrix 
has six zero eigenvalues associated with the rigid-body modes. In practice, these 
eigenvalues are no longer zero, but some orders of magnitude smaller than the others and 
the rigid-body modes are close (known) approximations to the associated eigenvectors. 
The resulting matrix is in general severely ill-conditioned; numerically speaking the 
system behaves as if highly deformable springs were supporting it. In the following we 
shall call quasi-rigid-body (QRB) modes those associated with the six small natural 
frequencies. 

To avoid the numerical problems due to ill-conditioning, we can exploit the fact that 
the vector basis W of size (n, 6) listing the model rigid-body modes can be easily 
formed, and that these vectors are good approximations to the eigenvectors associated to 
the QRB modes. Hence, a recent projection-type algorithm can be exploited that 
efficiently employs the computed basis W [15]. The idea is to generate an approximation 
space that adds W to the currently generated Krylov subspace. In [15] it is shown that 
for CG-type methods this can be done in an efficient manner, so that each iteration only 
requires a few additional operations on vectors of size n. We shall call this approach the 
Augmented CG (ACG) method, as it augments (enriches) the approximation space with 
the basis W. It can be proved that the method is particularly effective when W is a good 
approximation to eigenvectors corresponding to the smallest eigenvalues (in modulo) of 
the coefficient matrix, which is exactly our setting. 
 
4.4 Multiple-input systems 

So far we have considered the case of a single right-hand side, i.e. the situation of a 
dynamic loading which is characterized by a single time history. In the multiple-input 
case the linear system (18) must be solved for all right-hand sides represented by the m 
columns of F. In such situation the linearized system (19) takes the form 
 
[ ] DXΒΑ =+ jλ                                                                                                            (35) 
 

where the r.h.s. D = [0; F] and the solution  X = X(λj) are now (2n, m) matrices. 
The system (35) can be transformed into the standard form as [ ] DZIT =+ n2λ . 

The latter problem can be solved by using a generalization of the Simplified Shifted 
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Lanczos algorithm for multiple right-hand sides. The methods builds the following block 
Krylov subspace: 
 

{ }DTTDDDTΚ 1,...,,),( −= k
mk span                                                                               (36) 

 
and then approximates all shifted systems using the shift-invariance of Kmk  (cf. eg. [16]). 
The block version of the two-term Lanczos recurrence can be used for efficiently 
generating the subspace (36). Again, the approximate solutions are obtained as 

)()( jkkjk λλ YVZ = , where the least squares solution Yk is updated at each iteration at a 
cost which is of the order of m2. 

It must be observed that, in some settings, there exists an alternative strategy for 
facing the multiple-input case. Looking at the deterministic response computation as 
given in Eq. (9), we note that if the right-hand side in Eq. (1) is expressed in term of the 
(n, 1) time varying vector P(t) = Fg(t), the frequency domain convolution takes the form 
 

∫
∞

∞−
= dfefft fti π2)(~)()( pHq                                                                                          (37) 

 
where )(~ fp is the Fourier Transform of p(t). Therefore, to compute the Fourier 
Transform )(~ fq  of the response vector the following linear system must be solved: 
 

)(~)(~)( fff pqE =                                                                                                        (38) 
 

showing a frequency dependent single right-hand side. The linearized version of (38) can 
be still cast in the form (19), where, however, )(λdd = . To solve the problem all 
systems can be treated simultaneously, yielding a Sylvester equation whose solution can 
be again approximated upon projection on a block Krylov subspace. The implementation 
is analogous to that for constant multiple right-hand sides. The computational cost for 
updating the least squares solution yk at each iteration, however, is proportional to the 
square s2 of the number of frequencies. The preference between the two approaches here 
described, therefore, depends on the magnitude of s (number of frequencies) and m 
(number of independent loading histories). 

Finally, we observe that in [17] a method is proposed, for real symmetric positive 
definite matrix AB-1, that deals with the multiple right-hand side and associated shift. It 
would be interesting to see whether a generalization to our setting would be possible. 

 
5. Numerical experiments 
5.1  Description of test cases 

In previous research activity it was demonstrated how simultaneous solution 
strategies based on Krylov subspace methods are able to outperform direct solvers for 
what we called “medium size” systems, i.e. systems for which it is possible to store the 
triangularized stiffness matrix. 

The Inexact SSL method was subsequently developed for targeting applications to 
larger systems. In this light, its performance was compared to the one of an efficient 
iterative solver, applied to the original system (18) separately for each frequency; 
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numerical experiments are reported in section 5.2. Further experiments were run, dealing 
with the aspects of the ISSL implementation which we mentioned in the previous 
section, i.e. the problem of treating ill-conditioned B matrices (section 5.3) and the 
influence of the inner tolerance on the overall procedure (section 5.4). 

The experiments were performed on the test cases whose essential features are 
gathered in Table 1; cases B, C, F and F1 represent a subset of the examples considered 
in [6]. Table 1 lists the number of DOFs, the number of nonzero coefficients in the 
stiffness  matrix  and  an  estimate of its condition number in the 1-norm. The  frequency  
 

Table 1. Numerical properties of the test cases. 
 

 
 

interval employed for the analysis is also given. In all cases a single dynamic load was 
applied to the dynamic model. 

In case B a reinforced concrete foundation is modeled by means of 8-node brick 
elements resting on a Winkler-type spring bed. In case C a reinforced concrete structure is 
considered, composed of an upper deck, which is modeled with shell elements and is 
connected to a lower massive foundation beam by means of column elements. Soil-
structure interaction is considered by a lumped parameter approach; accordingly, the 
foundation beam is restrained by springs and dashpots modeling ground deformability and 
damping. 

In cases F and F1 a simple 3-D FE soil-structure model is analyzed, encompassing a 
rigid slab (2 x 2 m) centered on a ground parallelepiped (10 x 10 x 4 m) which is 
modeled via 8-node brick elements (see Fig. 1). Ground shear modulus and Poisson 
coefficient are taken equal to 100 Mpa and 0.3 respectively. According to Lysmer and 
Kuhlemeyer [18], viscous dampers are used as absorbing boundaries at nodes located on 
the outer faces of the ground mesh (see Fig. 2), thus leading to a singular complex 
stiffness matrix. 

To avoid strict singularity, highly deformable springs (stiffness ks = 1 kN/m) were put, 
in case F, in parallel to the quoted dampers, this leading to the very unfavorable condition 
number (2.6 x 1012) listed in Table 1; in F1 the springs stiffness was taken equal to 1000 
kN/m to achieve a condition number of 2 x 107. In judging the magnitude of ks it can be 
noted that, for a soil of the type here considered (see elastic modulus) a reasonable value of 
the modulus of subgrade reaction should be of the order of 10-50 x 103 kN/m3 leading to a 
spring constant of 2500-12500 kN/m. 

In case G the same problem is analyzed by using a larger FE mesh (14 x 14 x 8 m) 
with the same element size (0.5 m). In order to test the influence of the condition properties  
of  K and  the  performance of  the ACG method  (see 4.3.3), three case were analyzed 
with different boundary conditions, corresponding to ks equal to zero, 100 and 1000 kN/m. 
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Figure 1. Test case F/F1: side view of the FE discretization. 
 

 
Figure 2. Viscous absorbing boundaries. 

 
Note that the condition number was not estimated for the largest case G. 

Nonetheless, the same considerations as for cases F/F1 hold.  
 
5.2 Comparison with other techniques 

The iterative algorithm chosen for the comparison with ISSL is the complex 
symmetric QMR method [19]. Two strategies were considerated in the solution of (18); 
in the first one (PQMR-ME47) the exact factorization of the impedance matrix at 
f=30Hz was computed and applied, as a preconditioner, to all solutions. In the second 
(PQMR-ICT), the system was preconditioned by the ICT method with zero fill-in, 
performed at each frequency. Note that fill-in in the PQMR-ICT preconditioner provided 
an overall worse performance of the method than no fill-in. 

The performance of ISSL was also compared to that of SSL, where the ME47 
routine was used to solve for B at each iteration. 
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In the ISSL tests, the inner procedure was run with high preconditioning fill-in 
(p=100 for cases B and C and p=30 for cases F and F1) and strict tolerances (10-6 for 
case B and 10-8 for the rest). For the outer iteration the relative residual norm was tested, 
in all cases, against a tolerance of 10-4  (see [9] for further details). 

In Figs 3 to 6 the results of the comparison are given in terms of total elapsed time 
vs. number of solutions, i.e. number of frequency values. 
 

 
Figure 3. Case B. Performance comparison: simultaneous vs independent solutions. 

 
 

 
 

Figure 4. Case C. Performance comparison: simultaneous vs independent solutions. 
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Note that, in order to make a fair performance evaluation, SSL should be compared 
to PQMR-ME47, since they both perform a direct solution, while ISSL should be 
compared to PQMR-ICT. In the latter comparison we can notice that the sparsity pattern 
of the coefficient matrix in (18) is, in our application, the same as that of K*. Solving 
(18) is thus not much worse that solving with K*, so that the inner-outer solver cannot do 
better if the number of iterations to solve the linearized problem (21) is larger than the 
number  of  frequencies. On  the  other hand, unless  K* is  severely ill-conditioned as in  
 

 
Figure 5. Case F. Performance comparison: simultaneous vs independent solutions. 

 

 
Figure 6.  Case F1. Performance comparison: simultaneous vs independent solutions. 
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case F, ISSL outperforms PQMR-ICT for a large enough number of frequency values. 
 

Examination of the curves in all figures suggests the following considerations. 
 

• Severe ill-conditioning of K* results in very poor performance of the inner-outer 
method, as can be seen from case F (Fig. 5) where the ISSL curve is out of the plot. 

• Computing time grows very little with the number of frequencies for both SSL and 
ISSL. 

• The SSL method is the most competitive in all cases, when a very limited number of 
solutions (45 for the most unfavorable case F) is exceeded. 

• The ISSL method becomes competitive, with respect to independent solutions via 
PQMR-ICT, for a number of frequency steps ranging from about 12 (case B) to 
about 180 (case C). 

 
5.3 Dealing with ill—conditioned stiffness matrices 

Given the influence of the condition properties of K* on the performance of the 
inner-outer method, some tests have been performed in order to assess the efficiency of 
the deflation procedure (ACG method) described in section 4.3.3. The tests were run on 
the three versions of model G, differing for the stiffness ks of the springs at ground 
boundaries. Note that for ks = 0 the system can undergo, in principle, rigid-body modes; 
actually, we have that, with a single-precision computation of K*, the first six 
eigenvalues of the matrix are of the order of 10-1, while all others are between 103 and 
107. In Table 2 we report the experimental results when using the Augmented CG 
method as inner solver and we compare the overall ISSL performance with that of ISSL 
applied to the model G when springs are put in parallel to the viscous boundaries. In the 
tests, ACG was preconditioned with ICT, by using the implementation described in [15]. 

The results in Table 2 are given in terms of computing time and number of iterations 
(average value for the inner procedure). The tests encompassed the solution for three 
frequency values (10, 23.3 and 36.7 Hz); inner tolerance was 10-6, outer tolerance was 
10-3. Storage requirements for the preconditioner were dependent on the fill-in 
parameter; for the three values here considered (p equal to 5, 10 and 15) the memory 
allocation was respectively 1.8, 2 and 2.3 Mb for real variables and 1.9, 2.2 and 2.4 Mb 
for integer variables. 
 

Table 2. Performance of the Augmented CG method and influence of stiffness conditioning. 
 

 
 

It can be observed that elapsed time is about 60% higher for the deflated model than 
for the “stiff-spring” model, which is obviously the best conditioned one. When ks is 
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actually small, however, computing times are practically the same as those obtained with 
ACG, even though the behavior is very different; in fact ACG is very efficient in solving 
the inner system, but this is compensated by slower convergence of the outer Lanczos 
procedure. 

Higher fill-in in the preconditioner does not significantly change the performance; a 
10% improvement, however, is detected for the ACG performance. In fact, since 
increase in memory requirements is limited it can be said that higher fill-in should be 
preferred. It is important to emphasize that the ACG method allows for a competitive 
solution of the original problem, without mechanical modifications.  

 
5.4  Influence of the inner stopping criterion 

In this section we report on numerical experiments we carried out on model G when 
using a dynamic inner tolerance. It is common belief that the inner system should be 
solved more accurately than the outer system throughout the iterative solution process. It 
was experimentally observed in [20] and then theoretically justified in [21] and [22] that 
the inner tolerance can indeed be relaxed (made looser) as the outer process converges. 
Using the notation of section 4.3.1, if ρk-1 represents a bound (see [9]) for the norm of the 
(outer) residual Rk-1, then it can be shown that it is in general sufficient to impose the 
following inner stopping tolerance for solving the inner system K u = d 

 

1−
<

−

k

k

ρ
εl

|||| d
Kud k                                                                                                            (39) 

 
where 

kl  depends, in general, on the condition number of K and on the maximum 

number k of iterations allowed. Note that as ρk−1   gets smaller, the inner stopping 
tolerance (the right-hand side in the formula above) becomes larger, thus allowing the 
inner method to stop after fewer iterations. The parameter 

kl  can be very small in some 
particular cases. However, 1=kl  works well in many circumstances; such value is what 

we used in our experiments, along with 610−=ε . 
In Table 3 the results obtained running ISSL with different inner stopping strategies 

are summarized with the same criteria as in Table 2. In the tests, case G with ks = 0 was 
considered and the preconditioned Augmented CG method was used as inner solver. 
 

Table 3.   Influence of inner stopping strategy on ISSL performance. 
 

 
 

It can be noted that the dynamic stopping criterion (35) leads to a speed-up of almost 
20%, due to the fact that the inner tolerance grows during the iteration, without 
significantly affecting the performance of the outer procedure. In the case p=5, for 
example, if the dynamic stopping criterion is adopted, the inner residual at convergence 
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grows from 4.7 x 10-7 at the first outer iteration to 8.7 x 10-4 at the last (301th), while the 
number of inner iterations, consequently, drops from 38 to 18. Note that 38 is the 
average number of inner iterations for the fixed tolerance case. 

 
6. Conclusions 

In this paper the performance of direct frequency domain analysis (DFDA) has been 
addressed both from the analytical and from the computational standpoint. The analytical 
formulation of DFDA has been first reviewed for deterministic and stochastic loads, 
showing how, in all situations, a linear system solution with the complex impedance 
matrix is necessary for each frequency value in the range of interest. 

The numerical solution of such system has been addressed; a simultaneous solution 
strategy has been developed which can deliver the vibration amplitudes at a 
computational cost which grows sublinearly with the number of frequency values. 

The procedure is based on Krylov subspace iterative solvers with Lanczos 
recurrence. At each iteration the procedure requires a solution with the stiffness matrix. 
For “medium-size” models this can be done with a direct solver (SSL method). For 
“large” models an inner-outer iterative method (ISSL) was devised. Particular attention 
was devoted, in its development and testing, to the influence of the inner system 
stopping criterion and to the treatment of ill-conditioned stiffness matrices. 

Examples were given with particular reference to 3D finite-element soil-structure 
systems; the performance of the ISSL and SSL procedures were compared to that of 
efficient iterative solvers, applied separately for each frequency. The results of the 
comparison show that the simultaneous solution strategies can be very effective when, as 
usually happens, a significant number of frequency values must be analyzed. 
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