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Abstract. The electrical activity of the heart may be modeled by a non-linear system of partial
differential equations known as the bidomain model. Due to the rapid variations in the electrical
field, accurate simulations require a fine-scale discretization of the equations and consequently the
solution of large severely ill-conditioned linear systems at each time step. Solving these systems is a
major bottleneck of the whole simulation. We propose a highly effective preconditioning strategy for
a general and popular 3D formulation of the problem. A theoretical analysis of the preconditioned
matrix ensuring mesh independence of the spectrum is also described. Numerical comparisons with
state of the art approaches confirm the effectiveness of our preconditioning technique. Finally, we
show that an equivalent but less exercised formulation provides the best performance, in terms of
CPU time.

1. Introduction. Computer simulations of cardiac electrophisiology are a help-
ful tool in the study of the bioelectric activity of the heart both in normal and patho-
logical conditions. These simulations are based on a system of two PDEs, named the
bidomain system, and are coupled to a set of ODEs describing the membrane kinet-
ics of cardiac cells. Indeed the excitation process in the myocardium is a complex
phenomenon characterized by rapid ionic fluxes through the cellular membrane sep-
arating the intracellular and the interstitial fluid in the myocardium, see [16, 21, 38]
for details.

Due to its time and space multiscale nature, the numerical solution of the bido-
main system represents a very intensive computational task. More specifically, be-
cause of the rapid variations in the electrical field, sufficiently accurate simulations
require a fine-scale discretization of the equations. For realistic geometries this leads
to a large number of grid points, at least O(107), and consequently large linear systems
have to be solved each time step. To limit the computational cost, adaptive techniques
and domain decomposition methods have been developed [10, 22, 30, 33, 53, 59].
Adaptivity in space and time may represent a valid solution to reduce the compu-
tational cost of the bidomain system, see, e.g., [6], although until now successful
investigations have only been reported for moderate size problems. Earlier bidomain
investigations based on finite difference discretizations can be found in [5, 39, 44].

Fully implicit methods in time have been considered in few studies (see e.g.
[26, 24, 25]) and require the solution of non-linear systems at each time step. However,
most numerical studies now employ semi-implicit methods in time: these allow for
wider time steps than explicit schemes, at the cost of dealing with a large algebraic
linear system at each time step, whose conditioning considerably worsens as the prob-
lem dimension increases, resulting in an unacceptable increase in the computational
costs of the whole simulation. In this context, preconditioning is therefore mandatory.
The design of computationally effective iterative solvers for such linear systems calls
for the construction of efficient preconditioners, see [57] for a detailed overview of the
methods. Attempts in the literature range from diagonal preconditioners [46], Sym-
metric Successive Over Relaxation [32], Block Jacobi preconditioners with incomplete
LU factorization (ILU) for each block [10, 56], to multigrid [51, 1, 37, 58, 45].
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In this work we build upon our former experience with structured preconditioning
techniques in the 2D setting (cf. [34, 35]), to propose a highly effective preconditioning
strategy for a general and popular 3D formulation of the problem. The approach does
not require any parameter tuning and relies on a public-domain, recently developed
algebraic multigrid solver as building block. The resulting preconditioner is non-
symmetric, however the spectral properties are so favourable that a cheap short-term
recurrence method such as bicgstab can be effectively employed. We describe a novel
theoretical analysis of the preconditioned matrix ensuring mesh independence of the
spectrum if appropriate multigrid strategies are used. Numerical comparisons with
state of the art approaches confirm the effectiveness of our preconditioning strategy.
In addition, we show that an equivalent but less exercised formulation provides the
best performance, in terms of CPU time, with a saving of 50% of the total computa-
tional time with respect to the more common formulation. These results envision the
possibility to simulate the whole excitation process in a very affordable time frame.

General geometric and algebraic multigrid preconditioning have been already ap-
plied to the bidomain system in one of the two formulations we shall adopt, and
their effectiveness when compared to other classical methods has been reported; see,
e.g., [51, 1, 37, 58, 59, 57]. However, most of these studies rely on the application
of multigrid methods only on the elliptic equation of the bidomain system related to
the extracellular potential. It was recently shown in [48] that, for the same level of
accuracy, solving the coupled system of elliptic-parabolic equations is more efficient
than dealing with the two equations separately.

The outline of the paper is as follows. In section 2 we introduce the bidomain
system and two of its mainly used formulations. Space and time discretizations are
presented in the same section, leading to the description of the algebraic linear sys-
tems to be solved at each time step. By using a unified form for the linear system
stemming from the discretization of both formulations, in section 3 we introduce the
class of structured preconditioners that we wish to analyze. Section 4 is devoted to
the convergence analysis of the employed structured preconditioners. To the best of
our knowledge, this provides the most realistic spectrum analysis in the literature for
this general preconditioning strategy. Finally, Section 6 reports on numerical experi-
ments showing the effectiveness of the block structured algebraic multigrid approach
for one formulation, and the effectiveness of using the less common formulation.

Throughout the paper we shall often deal with singular matrices. With a little
abuse of notation, we shall denote by A−1 the pseudoinverse of the symmetric and
singular matrix A. Nonetheless, the singularity of the matrix is fully taken into
account when dealing with A−1.

2. The Bidomain Model. The Bidomain model is the most complete model
to simulate the bioelectric activity of the heart (see [17, 31, 55]), and it consists of a
nonlinear Reaction-Diffusion (R-D) system of equations for the intra- and extracellular
potentials ui and ue, coupled through the transmembrane potential v := ui − ue. In
this model the cardiac muscle is viewed as two superimposed anisotropic continuous
media, intra (i) and extracellular (e), occupying the same volume and separated from
each other by the cell membrane. The non linearity arises through the current-voltage
relationship across the membrane which is described by a set of nonlinear ODEs (see
[23] for more details).

Cardiac tissue model with fiber architecture and anisotropy. The domain Ω ⊂ R3,
chosen in this work to represent the left ventricle, is modeled by a family of truncated
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Fig. 2.1. Fiber direction on the truncated ellipsoidal geometry modeling the left ventricle (left)
and on an horizontal section of it (right).

ellipsoids described by the parametric equations:

x = a(r) cos θ cosϕ θ1 ≤ θ ≤ θ2,
y = a(r) cos θ sinϕ 0 ≤ ϕ ≤ 2π,
z = c(r) sin θ 0 ≤ r ≤ 1,

where a(r) = a1 + r (a2 − a1), c(r) = c1 + r (c2 − c1) and ai, ci, i = 1, 2 are given
coefficients determining the main axes of the ellipsoid, see Fig. 2.1. The surfaces
corresponding to r = 0 and r = 1 describe the endo- and epicardium respectively.

Anatomic studies showed that the fiber direction rotates counterclockwise from
epicardium to endocardium and that fibers are arranged in sheets, running through
the myocardial wall [49, 36]. The fiber structure and the anisotropic properties of
the cardiac tissue are modeled by the intra- and extracellular conductivity tensors
Mi = Mi(x) and Me = Me(x) defined as:

Ms(x) = σsl al(x)al(x)T + σsn an(x)an(x)T + σst at(x)at(x)T s = i, e, (2.1)

with al(x) unit vector tangent to the cardiac fiber at a point x ∈ Ω, at orthogonal
to the fiber direction in the fiber sheet and an orthogonal to the sheet. The conduc-
tivity coefficients measured along the corresponding directions are σsl , σ

n
l , σ

s
t , s = i, e

respectively. If we have axial isotropy, i.e. same conductivity in both tangential and
normal directions, the tensors can be written as:

Ms(x) = σst I + (σsl − σst ) al(x)al(x)T , s = i, e, (2.2)

where I is the identity matrix and σsl , σ
s
t for s = i, e are the conductivity coefficients

along and across fiber, in the (i) and (e) media, assumed constant with σsl > σst > 0.
In both cases it can be easily verified that Mi,e satisfy the following uniform ellipticity
condition:

∃λsm, λsM > 0, λsm|ξ|2 ≤ ξ
TMs(x)ξ ≤ λsM |ξ|2 ∀ξ ∈ R3,x ∈ Ω, s = i, e. (2.3)
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The fibers rotate intramurally linearly with the depth for a total amount of 120o

proceeding counterclockwise from epicardium and endocardium. More precisely, in a
local ellipsoidal reference system (eφ, eθ, er),the fiber direction a(x) at a point x is
given by:

a(x) = eφ cos(α(r)) + eθ sin(α(r)), with α =
2
3
π(1− r)− π

4
, 0 ≤ r ≤ 1.

The obliqueness of a with respect to the ellipsoidal surfaces is modeled by introducing
the “oblique” angle β (called imbrication angle) which describes the deviation of a
from the tangent position, for more details see [9]. Figure 2.1 shows the fiber directions
on the truncated ellipsoidal geometry modeling the left ventricle (left plot) and on an
horizontal section of it (right plot).

The R-D system governing the cardiac electric activity may be written in various
forms involving different combinations of the variables ui, ue, v; see, e.g., [18, 32]. Here
we consider two different formulations, the (ue, v) and the (ui, ue) formulations. For
both formulations we will deal with a FEM discretization in space and a semi–implicit
scheme in time: implicit for the diffusion term and explicit for the reaction term. In
spite of the close relationship between the resulting formulations, the associated linear
systems provide different challenges, so that the same general preconditioning strategy
may lead to surprisingly different performance on the two formulations. We wish to
stress that while the (v, ue) formulation is well accounted for in the current literature,
the (ui, ue) formulation has been somehow overlooked. This is mostly due to the fact
that v is the quantity of chief interest as well as being directly observable from the
single cell to the tissue level through optical mapping [13]. Moreover, formulation
(v, ue) has also been preferred for computational reasons: the parabolic and elliptic
equations of the formulation can be solved one after the other by means of a block
Gauss–Seidel method, see [1, 32, 57]. Nonetheless, we believe the (ui, ue) formulation
deserves higher consideration due to its very favourable computational performance,
also taking into account that v can be readily recovered as v = ui − ue.

(ui, ue) formulation. The evolution of the intra and extracellular potentials
ui(x, t) and ue(x, t) and transmembrane potential v(x, t) = ui(x, t) − ue(x, t) is de-
scribed by the following reaction–diffusion system, characterized by two nonlinear
parabolic equations coupled through the reaction term Iion with a system of ODE’s
describing the evolution of the gating variables and ion concentration:

given Iapp : Ω×]0, T [→ R and u0
e, u

0
i : Ω → R, find ui, ue : Ω×]0, T [→ R and

v = ui − ue such that:
cm∂tv − div Mi∇ui + Iion(v, w) = Iapp in Ω×]0, T [
cm∂tv + div Me∇ue + Iion(v, w) = Iapp in Ω×]0, T [
nTMi,e∇ui,e = 0 on Γ×]0, T [
v(x, 0) = 0 in Ω

(2.4)

where Ω ⊂ R3 models the heart tissue, Γ = ∂Ω, n denotes the outward unit normal
to the boundary Γ and Iapp is an applied current used to initiate the process. The
function Iion is a nonlinear function of the transmembrane potential v and of suitable
ionic variables denoted by w related to the ionic model chosen. There are additional
ordinary differential equations governing the evolution of v, the analysis of which
is beyond the scope of this work. Problem (2.4) admits the following variational
formulation:
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find ui, ue :]0, T [→ H1(Ω) such that:
cm

d

dt
(v(t), ϕ) + ai (ui(t), ϕ) + (Iion(v(t), w(t)), ϕ) = (Iapp(t), ϕ) ∀ϕ ∈ V

cm
d

dt
(v(t), ϕ)− ae (ue(t), ϕ) + (Iion(v(t), w(t)), ϕ) = (Iapp(t), ϕ) ∀ϕ ∈ V

(2.5)

where v(t) = ui(t) − ue(t), V = H1(Ω), (ψ, φ) =
∫

Ω
ψ φ dx ∀ψ, φ ∈ L2(Ω) and

as(·, ·) : V × V → R, s = i, e, are the bilinear symmetric continuous forms defined as

as(ψ, φ) =
∫

Ω

(∇ψ)TMs∇φ dx, ∀ψ, φ ∈ V s = i, e. (2.6)

Well posedness analysis of the Bidomain system with FitzHugh-Nagumo ionic
model and more general ionic kinetics can be found in [11] and [55] respectively. For
applied current Iapp satisfying the compatibility condition

∫
Ω
Iapp dx = 0, system (2.4)

uniquely determines v, while the potentials ui and ue are defined only up to the same
additive time-dependent constant related to the reference potential, see [11]. To fix
such arbitrary constant we impose that ue has zero average on Ω.

The preconditioners proposed in this paper are mainly related to the structure
of the partial differential equations of the bidomain system and are independent of
membrane kinetics considered. We do not deal with a specific choice of the ionic
model, however, in the numerical results presented in Section 6 we will use the Rogers-
McCulloch model, that is:

Iion(v, w) = Gv

(
1− v

vth

)(
1− v

vp

)
+ η1vw,

∂w

∂t
= η2

(
v

vp
− η3w

)
,

where G, η1, η2, η3 are positive real coefficients, vth is the threshold potential and vp
the peak potential.

(v, ue) formulation. The R-D system governing the cardiac electric activity may
be written in various forms involving different combinations of the variables ui, ue, v;
see, e.g., [32, 34]. Here we deal with the formulation generally used for the numerical
simulations, i.e. with a parabolic equation for the transmembrane potential v coupled
with an elliptic equation for the extracellular potential ue:

find (v(x, t), ue(x, t)), x ∈ Ω, t ∈ [0, T ] such that
cm∂tv − div Mi∇v + Iion(v, w) = div Mi∇ue + Iapp in Ω×]0, T [
−div M∇ue = div Mi∇v in Ω×]0, T [
nTMi∇v = 0, nTM∇ue = 0 on Γ×]0, T [
v(x, 0) = 0 in Ω,

(2.7)

with M = Mi + Me bulk conductivity tensor. We will refer to (2.7) as the (v, ue)
formulation of the bidomain model.

The above system differs from problem (2.4) in that the change of variable allows
us to replace the second parabolic equation with an elliptic equation, thus loosing the
degenerate temporal structure of system (2.4). This approach was usually preferred
because the two equations can be solved one after the other.

Space and Time discretization. Let T h be a uniform unstructured tetrahedral
mesh of Ω and V h the associated space of P 1 finite elements. We obtain a semi-discrete
problem by applying a standard Galerkin procedure. Choosing a finite element basis
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{ϕi} for V h, we denote by

C =
{
crk =

∫
Ω

ϕrϕk dx

}
, As =

{
ar,k =

∑
K∈Th

∫
K

(∇φr)TMs∇φk dx

}
s = i, e,

the symmetric mass matrix and stiffness matrices and by Ihion and Ihapp the finite el-
ement interpolants of Iion and Iapp, respectively. By using (2.3) and standard finite
element arguments, we can assert that As, s = i, e are symmetric and positive semidef-
inite with Ase = 0; in particular, ak,k for k = 1, n are positive and ak,k = −

∑
j 6=k aj,k.

The time discretization is performed by a semi–implicit scheme (backward Euler
method): the diffusion term is treated implicitly while the nonlinear reaction term
Iion explicitly. Then the following general algebraic system can be obtained:

Mξk+1 = bk with M =
[
Ct +Ai −Ct
−Ct Ct +Ae

]
, (2.8)

with bk =
[
Ct vk − Ihion(vk,wk+1) + Ihapp;−Ct vk + Ihion(vk)− Ihapp

]
, Ct = cm

τ C

diagonal with positive diagonal entries, τ the time step, vk = ui
k − ue

k and ξk+1 =[
ui
k+1; ue

k+1
]
. It may be easily verified thatM is positive semidefinite (cf, e.g., [32]).

Moreover, for e the vector of all ones, M[e; e] = 0 and the system is consistent, in
that b has zero mean, that is eTb = 0. As in the continuous model, vk is uniquely
determined, while ui

k and ue
k are determined only up to the same additive time-

dependent constant.
When considering the (v, ue) formulation and using again a finite element dis-

cretization in space and a semi–implicit scheme in time, we get:

Mξk+1 = bk with M =
[
Ct +Ai Ai
Ai Ai +Ae

]
, (2.9)

with bk =
[
Ct vk − Ihion(vk) + Ihapp; 0

]
, vk = ui

k − ue
k, ξk+1 =

[
vk+1; ue

k+1
]
. It

can be easily proven that the symmetric matrix M is positive semidefinite, see [34].
Whichever formulation is chosen for the bidomain system, at each time step a

large linear system Mξk+1 = bk of size 2n × 2n needs to be solved, whose con-
ditioning considerably worsens as the problem dimension increases, resulting in an
unacceptable increase in the computational costs of the whole simulation. In this
context, preconditioning is therefore mandatory.

Remark 2.1. Classically system (2.9) is solved by a block Gauss–Seidel method
involving the two diagonal blocks [8]. To allow for accurate solutions the two equa-
tions should not be decoupled: an outer iteration has to be employed to reach accurate
approximations of the exact solution of the coupled system, see [8, 32]. The overall
workload is dominated by the solution of the elliptic equation and typically conver-
gence is reached in less than 10 outer iterations. Nonetheless, to increase efficiency,
most studies employing this strategy consider the decoupled components indepen-
dently, and no outer iteration is carried out. On the other hand, it was recently
shown in [48] that the decoupled solution method is less efficient than a coupled
scheme for the same level of accuracy. In particular, it was experimentally verified in
[48] that the time per iteration is approximately twice as large for the coupled system
than it is for the uncoupled one. However, the coupled method is faster overall since
it requires fewer iterations per time step to converge with the same accuracy to the
solution of the bidomain system.
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3. Block Preconditioners. Both formulations are characterized by a 2 × 2
block form, in which all blocks are square and symmetric, while the diagonal blocks
are positive (semi)definite. It is therefore natural to derive preconditioners that ex-
ploit this structure, as is the case in various multilevel methods (see, e.g., [47, 52])
as well as in saddle point problems [3]. On the other hand, our previous numerical
experience, see, e.g., [34, 35], showed that the preconditioning strategies for the two
considered formulations, (ui, ue) and (v, ue), need to be very different to achieve best
performance. In particular, in the (ui, ue) formulation best timings were observed
when an appropriate preconditioner was used for the whole matrix, that is the block
structure was not taken into account. On the contrary, block structured precondition-
ing was absolutely required for the (v, ue) formulation. The latter setting is described
next in detail.

Symmetric preconditioners. Effective structured symmetric strategies include
block diagonal and block factorized preconditioners:

Pd = blockdiag(K,D), Pf =
[

I O
AiK

−1 I

] [
K Ai
O D

]
, (3.1)

where K is a symmetric and positive definite approximation to the (1,1) block, while
D is a symmetric and positive definite approximation either to the Schur complement
or to the (2,2) block [2]; we refer to [34] for computational experience with these
preconditioners in the 2D setting. Note that if K and D exactly reproduce the (1,1)
block and the Schur complement, respectively, then Pf,ideal = M. This ideal choice
turns out to be computationally unfeasible because too expensive for large problems.

The application of the factorized preconditioner Pf corresponds to the solution
of two block triangular systems, that is[

y1

y2

]
= P−1

f

[
v1

v2

]
=
[
K−1 −K−1AiD

−1

O D−1

] [
I O

−AiK−1 I

] [
v1

v2

]
,

showing that the application of P−1
f requires two solves with K and one solve with

D, together with two (cheap) multiplications with the sparse matrix B12.
In [34] we discussed a-priori convergence results on the convergence of CG when

Pd or Pf are used as preconditioners, for various selections of K and D. These
algebraic results also apply to our 3D setting (cf. section 4).

Non-symmetric preconditioners. The following nonsymmetric “one-sided” version
of Pf has been used for nonsymmetric and also for symmetric (indefinite) saddle point
problems (see, e.g., [3]):

PM =
[
K Ai
O D

]
.

IfK andD exactly reproduced the (1,1) block and the Schur complement, respectively,
the (nonsymmetric) preconditioned matrix would be the matrix

MP−1
M =

[
I O

Ai(Ct +Ai)−1 I

]
,

whose spectrum consists of the single unit eigenvalue, so that a minimal residual
method such as gmres ([42]) would converge in at most two iterations. In gen-
eral, the behavior of the approximate versions of K and D is less predictable. The

7



performance of PM within the indefinite saddle point context highly overcomes its
nonsymmetric nature. The situation is considerably different in our context, where
the original matrix is positive (semi)definite. Applying PM destroys symmetry. Re-
markably, however, PM appears to be very competitive with respect to the symmetric
choices. First numerical evidence was reported in [34], while a preliminary conver-
gence analysis under somewhat restrictive hypotheses was proposed in [35]. Here we
provide an analysis of the spectrum location of the preconditioned problem when K
and D are spectrally equivalent approximations to the ideal cases. In particular, if
the equivalence scalars (cf. (4.2)-(4.3)) do not depend on the mesh parameters, then
we show that the spectral region of PM is also bounded independently of the mesh
parameter.

4. Spectral analysis. In this section we analyze more in detail the spectral
properties of the block upper triangular preconditioner described in the previous sec-
tion. To this end we focus on the (v, ue) formulation. The analysis of nonsymmetric
structured preconditioners with approximation matrices K and D is very hard in gen-
eral, usually providing only large overestimates of the actual spectrum. Due to the
connection between PM and Pf , we are able to more accurately describe the spectral
region of the matrix MP−1

M .
In the following, the notation B ≤ A for two square matrices B,A means that

A − B is positive definite; if A and/or B are singular, the notation silently assumes
that the relation holds only in the matrix ranges. Moreover, whenever the inverse of a
singular matrix is used, this inverse is meant to be a pseudo-inverse, as all computation
is assumed to be performed in the range of the given matrices.

For K = Ai + Ct and D = Ai + Ae (here and in the following the ideal choices),
the matrix MP−1

M can be written as:

MP−1
M =

[
I O

Ai(Ai + Ct)−1 I

][
I O
O I − S

]
, S=Ai(Ai + Ct)−1Ai(Ai +Ae)−1,(4.1)

whose real spectrum is bounded independently of the mesh parameter [35].
In the “non-ideal” case, we assume that K and D are spectrally equivalent to

the matrices they approximate. More precisely, there exist positive scalars αj and βj ,
j = 1, 2 such that

α1(Ai + Ct) ≤ K ≤ α2(Ai + Ct), (4.2)
β1(Ai +Ae) ≤ D ≤ β2(Ai +Ae). (4.3)

The bounds above are assumed to hold on the range of the given matrices. Table 4.1
reports rough estimates of these parameters for the example in section 6 for various
discretization refinements, when Ai + Ae is approximated by an Algebraic Multigrid
method (AMG), while Ai +Ct is approximated by its diagonal. We refer to section 6
for additional information on the actual implementation. The numbers clearly show
independence of the mesh size in all cases except for β2, where a mild dependence is
observed. We should add that such dependence may be due to a severe inaccuracy in
the rather expensive estimation of this parameter.

To proceed with a spectral analysis when K and D are not ideal, we start by
summarizing some relevant results from [34] with the current notation. To this end,
we recall that the C.B.S. constant γ is defined as (see, e.g., [2])

γ2 = sup
v∈Rn\N(Ai+Ae)

vTAi(Ai + Ct)−1Aiv
vT (Ai +Ae)v

, (4.4)
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n α1 α2 β1 β2

22,782 1.000000331762804 1.000000419186690 0.9979 49.60
52,131 1.000000000037860 1.000004561309334 0.9981 39.80

172,785 1.000000001108531 1.000110488680402 0.9982 65.77
333,373 1.000000004725318 1.000294287694825 0.9972 70.45

Table 4.1
(v, ue) formulation. Values of α1, α2, β1, β2 for different problem sizes.

and it holds that ([34, Lemma 4.1]) γ2 ≤ (1+λmin(Ae, Ai))−1 < 1, where λmin(Ae, Ai)
denotes the smallest nonzero eigenvalue of AeA−1

i . Due to the properties of the
matrices Ae, Ai, we obtain

λmin(Ae, Ai) ≥ `, ` := λem/λ
i
M , (4.5)

and λem, λ
i
M defined in (2.3). If we consider axial isotropy, i.e. Mi,e defined in (2.2)

and for our choice of data (cf. Table 6.1), we obtain ` = (σel −σet )/(σil −σit) = 0.2416.
Therefore, γ2 can be easily bounded, independently of the mesh parameter.

Next proposition collects some spectral bounds obtained for P−1
f M in [34, Propo-

sition 4.2] (see also [2, Th.9.5]) and [34, Lemma 4.2].
Proposition 4.1. Assume that K and D satisfy (4.2) and (4.3), respectively,

with α2 ≥ 1 ≥ α1 > γ2. Let δ1 = β1, δ2 = β2+α−1
1 and assume that δ2 ≥ 1 ≥ δ1 > γ2.

Moreover, let φ(τ) = 1
2 (1 + τ) +

√
1
4 (1− τ)2 + τγ2. Then(

1 +
max{α2, δ2} − 1

1− γ2
φ(r2)

)−1

≤ λ(P−1
f M) ≤

(
1− 1−min{α1, δ1}

1− γ2
φ(r1)

)−1

,

where r2 = min{α2−1
δ2−1 ,

δ2−1
α2−1} and α2 > 1 and/or δ2 > 1; and r1 = min{ 1−α1

1−δ1 ,
1−δ1
1−α1

}
and α1 < 1 and/or δ1 < 1.

The following result proved in [35] shows that the spectrum ofMP−1
M is bounded

independently of the mesh parameter for the ideal choice K = Ai + Ct and for judi-
ciously chosen D. This result was described in the 2D context and it was a first step
towards a spectral analysis of the fully approximated preconditioning matrix PM . In
fact the result still holds in the three-dimensional case. In this section we complete
this analysis for the general case K 6= Ai +Ct. To the best of our knowledge this rep-
resents the most exhaustive and realistic spectral analysis available in the literature
for this general preconditioning strategy.

Theorem 4.2. [35, Th. 1] With the previous notation, let K = Ai + Ct.
i) If D = Ai +Ae, then

λmin(MP−1
M,ideal) = 1− µ, λmax(MP−1

M,ideal) = 1,

with µ ≤ (1 + λmin(Ae, Ai))−1, µ constant independent of h.
ii) If D satisfies (4.3) for some positive β1, β2, then either λ(MP−1

M ) = 1 or
β1(1− µ) ≤ λ(MP−1

M ) ≤ β2, with µ satisfying the requirement of (i).
We next provide general and insightful bounds for the eigenvalues of the precon-

ditioned matrix resulting from using the preconditioner PM with spectrally equivalent
matrices K and D. Our starting point is that the “one-sided” preconditioner can be
written as

MP−1
M =MP−1

f

[
I 0

AiK
−1 I

]
. (4.6)
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Lemma 4.3. For any symmetric and positive semi-definite K and D we let
Pf = RTR, K = RTKRK and D = RTDRD be the Cholesky decompositions of Pf ,K
and D, respectively. Setting H = R−TMR−1 it holds

R−TMP−1
M RT = H+H

[
0 0

R−TD AiR
−1
K 0

]
. (4.7)

Proof. The equality follows from multiplying (4.6) by R−T and RT from the left
and right, respectively.

Lemma 4.3 shows a tight connection between the preconditioned matrix MP−1
f

with Pf symmetric and positive semidefinite, and the fully nonsymmetric precondi-
tioned matrixMP−1

M . Keeping in mind that similarity transformations with R do not
modify the spectrum, (4.7) reveals that R−TMP−1

M RT is a modification of the sym-
metric matrix H, therefore it is possible to bound its eigenvalues by means of the real
eigenvalues of H or equivalently, of MP−1

f . In the following, =(X) = (X −XT )/(2ı)
is the skew-Hermitian part of a square matrix X.

Theorem 4.4. Assume that K and D satisfy (4.2) and (4.3), respectively, for
some positive constants αj , βj. Let λM be an eigenvalue of MP−1

M . Then there exists
an eigenvalue λ of MP−1

f such that

|λ− λM | ≤ λmax(MP−1
f ) ‖R−TD AiR

−1
K ‖, with ‖R−TD AiR

−1
K ‖ <

√
α1

β1
,

and

|=(λM )| ≤
∥∥∥∥=(H [ 0 0

R−TD AiR
−1
K 0

])∥∥∥∥ .
Proof. Using Lemma 4.3, the result is an application of Kahan’s theorem [20]; see

also [50, sec. IV.5.1]. We are only left to show the bound for ‖R−TD AiR
−1
K ‖. We have

‖R−TD AiR
−1
K ‖2 = λmax((R−TD AiR

−1
K )TR−TD AiR

−1
K ). Therefore, for any vector x 6= 0,

xTR−TK AiD
−1AiR

−1
K x

xTx
=
yTAiD

−1Aiy

yTKy
=
zTA

1
2
i D
−1A

1
2
i z

zTA
− 1

2
i KA

− 1
2

i z

=
zTA

1
2
i D
−1A

1
2
i z

zTz

zTz

zTA
− 1

2
i KA

− 1
2

i z

≤ 1
β1

zTA
1
2
i (Ai +Ae)−1A

1
2
i z

zTz
α1

zTz

zTA
− 1

2
i (Ai + Ct)A

− 1
2

i z
<
α1

β1
,

where we used y = R−1
K x and z = A

1
2
i y, while the last inequality follows from noticing

that A
1
2
i (Ai +Ae)−1A

1
2
i ≤ 1 and A

− 1
2

i (Ai + Ct)A
− 1

2
i > 1.

n 22,782 52,131 172,785 333,373
norm 0.2336 0.2512 0.4250 0.4431

Table 4.2
Estimated values of ‖R−T

D AiR
−1
K ‖ for various refinements.
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Fig. 4.1. Eigenvalues of MP−1
f (’◦’) and of MP−1

M (’×’). The imaginary scale is

[−5 10−3, 5 10−3].

We remark that if the constants α1, β1 are independent of h, then ‖R−TD AiR
−1
K ‖

is bounded independently of h. Since all eigenvalues ofMP−1
f are bounded indepen-

dently of h, the result of Theorem 4.4 combined with that of Theorem 4.2 implies
that the spectrum of MP−1

M is also bounded independently of h. The numbers in
Table 4.2 report an estimate of the norm in Theorem 4.4 for various discretizations
of the (v, ue) formulation. For a much coarser discretization (n = 1676) we were able
to explicitly compute the spectra of both MP−1

f and MP−1
M , and these are reported

in Figure 4.1. Notice that the spectrum of MP−1
M (× symbol) remains very close to

that of the symmetric counterpart, with an imaginary part that is significantly lower
than even λmax(MP−1

f ) ‖R−TD AiR
−1
K ‖ ≈ 8 · 10−2.

We conclude this section with an important consideration on the actual expected
convergence behavior for a residual minimizing method such as GMRES. It is known
that the eigenvalues alone may not give a complete picture of the actual behavior of
the iterative solver in the nonsymmetric case; information on the associated eigen-
vectors or invariant subspaces would provide a more reliable picture. In [35] explicit
eigenvector bases were given for the ideal and quasi-ideal cases, which could be used for
bounding the residual norm of GMRES [42]. In the much more general case analyzed
here an explicit expression of the eigenvectors appears cumbersome. A perturbation
analysis would allow us to present a more sophisticated though very technical anal-
ysis, which is however far beyond the aim of this paper. Nonetheless, we found the
eigenvalue distribution to satisfactory adhere to the actual convergence history of the
methods, suggesting that the eigenvectors do not play a significant role.

5. Implementation considerations. If the positive definite symmetric pre-
conditioners Pd or Pf were employed, the Preconditioned Conjugate Gradient (pcg)
algorithm would be the method of choice; this was extensively used, for instance, in
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the 2D case in [34]. In there, however, we also experimentally observed that PM is
more effective. Therefore, here we opt for this block triangular preconditioner, al-
though it requires the use of a nonsymmetric solver. In this section we describe some
important aspects associated with the use of iterative methods and PM , for various
choices of its diagonal blocks.

All block preconditioners mentioned in previous sections require solves with K
and D, once the selection of appropriate matrices or operators is made. In the case
of y = P−1

M v, yT = [yT1 ,y
T
2 ] for instance, this entails performing the following two

steps:
y2 = D−1v2

y1 = K−1(v1 −Aiy2)
We recall that PM is a one-sided version of Pf , and thus it avoids the extra

solve with K one would have at each application of Pf , lowering the computational
cost per iteration. Therefore, given that using PM is cheaper than using Pf , the
overall effectiveness of the nonsymmetric approach fully relies on the total cost of
the employed nonsymmetric solver. Unless the number of iterations is very low, the
optimal gmres method ([43]) may be expensive, with a cost that grows nonlinearly
with the number of iterations. On the other hand, due to the very favorable spectral
properties of our preconditioned problem (cf. Theorem 4.4), we found the much
cheaper bicgstab method to perform very satisfactorily [54], with a cost per iteration
comparable to that of pcg.

As for the choice of matrices K and D, we employ an algebraic multigrid precondi-
tioner for K: a preliminary call is made to set up the preconditioner before the actual
iterative solution has started; then a call to an AMG routine at each application of
the preconditioner is performed. As of D, we found that a simple Jacobi precondi-
tioner, that is D = diag(Ct + Ai), was sufficient to ensure mesh independence. We
experimentally observed that the constants αi, βi in (4.2), (4.3) were mesh indepen-
dent, so that we expect these choices to provide optimal performance of a method like
gmres. In fact, the performance of bicgstab did not significantly deviate from that
of gmres, yielding much lower timings. Not unexpectedly, other choices for K and D
such as Incomplete Cholesky factorizations did not provide us with mesh independent
performance, and in fact their performance significantly degraded with the problem
size, therefore these options were soon abandoned.

5.1. Inner-outer procedure. In this section we discuss a different strategy for
approximating the ideal preconditioner PM,ideal that will be compared in section 6
with our approach to solve for the (v, ue) formulation. An alternative to Multigrid,
Multilevel or Incomplete Decompositions consists of approximating the ideal choices
K = Ai + Ae and D = Ct + Ai by means of a preconditioned iterative solver. This
is the approach taken in [14], giving rise to a so called inner-outer procedure: at each
iteration of the (outer) solver, two (inner) iterative solves, one with Ai +Ae and one
with Ct +Ai are performed. The accuracy at which the inner solvers can be stopped
is in general a major concern. In [14] the authors state that a very loose stopping
tolerance can be used for both inner preconditioned iterations, without significantly
influencing the performance of the outer solver. This consideration is particularly
crucial for systems with Ai+Ae, whose accurate solution would require very many pcg
iterations without heavy preconditioning. Instead, solving with Ct +Ai is extremely
cheap and the authors report 1-2 inner iterations with it; this performance confirms
that replacing Ct + Ai with its diagonal (Jacobi preconditioning) would be equally
effective.
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The inner-outer strategy requires tuning an extra parameter, the inner stopping
tolerance. In addition, since the operator that approximates, say, (Ai+Ae)−1 changes
at each iteration, a flexible outer algorithm needs to be employed to ensure that the
unpreconditioned solution be correctly recovered. The authors in [14] opt for the
flexible version of the residual minimizing gmres method, here and later denoted
by fgmres [41]. As already mentioned, the computational costs of this method grow
superlinearly with the number of iterations while the memory allocations grow linearly
with the number of iterations; in addition, the flexible variant requires storing twice
the number of long vectors of gmres [41].

The use of an inner-outer procedure for this special problem necessitates of a
careful analysis of the final solution accuracy, which seems to be influenced by the
interplay between inner and outer stopping tolerances. In particular, since a stricter
inner tolerance may lead to a more expensive overall method, one is usually tempted
to employ looser values for the inner tolerance. We proceed with an experimental
analysis of the error norm; for the description of the employed data we refer to section
6. The exact solution to the given problem was not available, therefore here and in
the following we use a reference solution obtained with the iterative solver by using a
very small stopping tolerance (tol=10−12); we will denote this solution by uref . The
solution uniqueness is ensured by the deflation of the null space vector.

The stopping criterion was based on the relative residual norm; experiments with
the backward error yielded very similar results. Here and in the sequel, we employ
the relative error Euclidean norm, which is commonly restricted to the extracellular
potential ue, namely

error =
‖urefe − ue‖
‖urefe ‖

, (5.1)

to measure the accuracy of the obtained solution for a-priori selected inner and outer
tolerances (data corresponding to 10 msec after stimulation). The computation time
to reach an equivalent level of accuracy for each method is used as a level of efficiency.

In Table 5.1 we report the error norms for different levels of mesh refinement.
We used fgmres as outer solver, and pcg+ilu(0) as inner solvers, as proposed in
[14]. We refer to section 6 for additional information on the implementation. The
digits reported in Table 5.1 show that in general the final accuracy depends on the
outer tolerance, as expected. However, there are cases where a smaller inner tolerance
yields a more accurate outer solution: compare, e.g., the choices tols=[10−5, 0.12] (the
numbers denote outer and inner tolerances, respectively) and tols=[10−5, 10−2] for n =
52 132, 172 785, 333 373. Moreover, requiring a more accurate inner solution may allow
for a looser outer tolerance, compare, e.g., tols=[10−8, 0.12] and tols=[10−7, 10−2] with
n ≤ 780 333, for comparable timings. Overall, it is clear that some trial-and-error
procedure is required whenever an inner-outer method is chosen for this application
problem. Further experiments are reported in the next section.

6. Numerical results. Computational experiments were carried out to com-
pare the different formulations and solvers introduced in the previous sections. The
considered domain Ω is a truncated ellipsoidal region representing the left ventricle,
see the left top plot of Figure 6.1. The domain Ω was modeled and discretized using
Comsol [12].

The propagation was elicited by applying a current pulse of 1.A/cm3 lasting 1
msec; hence a value of Iapp = 1 is applied to each grid node of the stimulated region.
We considered the same parameter calibration used in [8] (cf. Table 6.1).
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Table 5.1
Inner-outer solver. outer: fgmres; inner: pcg+ilu(0). tols = [tol, tolinner]

tols = [10−5, 0.12] tols = [10−7, 0.12] tols = [10−8, 0.12]
n Time It error Time it error Time it error

22,782 0.15 5 9.00e-3 0.32 7 7.88e-5 0.32 7 7.88e-5
52,132 0.36 4 7.35e-2 0.97 6 6.11e-4 1.61 8 4.77e-6

172,785 1.62 4 7.71e-2 5.95 7 1.39e-4 7.66 8 1.14e-5
333,373 8.04 5 9.53e-3 15.96 7 9.09e-5 18.96 8 2.57e-5
780,333 23.04 5 2.21e-2 60.92 8 4.75e-5 71.93 9 8.80e-5

1,346,895 49.29 5 1.74e-2 121.85 8 1.02e-4 152.74 9 7.00e-6

tols = [10−5, 10−2] tols = [10−7, 10−2]
n Time It error Time It error

22,782 0.14 3 5.94e-3 0.29 4 9.03e-5
52,132 0.56 3 7.27e-3 1.08 4 1.62e-4

172,785 2.67 3 1.67e-2 8.19 5 1.85e-5
333,373 12.02 4 1.67e-3 18.75 5 7.88e-5
780,333 35.65 4 5.38e-3 72.80 6 7.51e-5

1,346,895 66.58 4 9.22e-3 139.27 6 7.23e-5

Meshes were built on Ω by using the mesh generator of Comsol that creates unstruc-
tured meshes made up of tetrahedral mesh elements. We fixed a starting mesh and
built the subsequent meshes by decreasing the mesh diameter. The number of consid-
ered mesh nodes is 2n where n ∈ {22 782, 52 132, 172 785, 333 373, 780 333, 1 346 895},
with corresponding mesh sizes h ∈ {0.2, 0.15, 0.1, 0.08, 0.06, 0.05}, whereas the time
step τ was chosen to be equal to 5 · 10−2 msec. For these choices of time and space
steps it is possible to obtain stable and accurate results as shown by the validation
carried out in [8]. In Figure 6.1 proceeding clockwise from the left top we display the
coarsest mesh (to allow for a good visualization of the mesh) and typical extracellular
potential maps (on a finer mesh) on the boundary of the domain at 10, 30 and 50 msec
after stimulation. To show the propagation through the cardiac wall, in Figure 6.2
we plot extracellular potential maps on a two dimensional section of the ellipsoid for
the same time instants, i.e. at 10, 30 and 50 msec after stimulation.

χ = 1000 cm−1 G = 1.5× 10−3 Ω−1 cm−2 cm = 1.µF cm−2

iapp = 1. A cm−3 vp = 100 mV vth = 13 mV
σe

l = 2.× 10−3, σe
t = 1.3514× 10−3 Ω−1 cm−1

σi
l = 3.× 10−3, σi

t = 3.1525× 10−4 Ω−1 cm−1

Table 6.1
Parameter calibration.

Most reported experiments below correspond to a typical temporal instant in the
time step evolution (10 msec after stimulation), thus the right–hand side includes
information generated during the previous time steps.

All computations were performed in fortran 90 on a 8GB ram, AMD Phe-
nom(tm) II X4 955 Quad-Core 64 bit at 3.2 GHz with 2MB L2 cache.

The stopping tolerance for all methods was chosen a posteriori so as to obtain a
comparable error norm of 10−5, as defined in (5.1). This strategy allowed us to make
fair comparisons among methods that employ different stopping criteria. The CPU
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Fig. 6.1. Truncated ellipsoid modeling the left ventricle: starting mesh (top-left) and extracel-
lular potential map at 10, 30 and 50 msec after stimulation.

Fig. 6.2. Extracellular potential map on a vertical section of the ellipsoid at 10, 30 and 50
msec after stimulation.

time to reach the required level of accuracy is used as an efficiency measure.
Except where explicitly stated, we used the Aggregation-based Algebraic Multi-

grid (agmg) Method of Y. Notay ([27]) as preconditioner in all instances when an
Algebraic Multigrid method is used; we refer to [28] for the description of the method
and its general performance. Default values of the method were used in all instances.

Formulation (ui, ue). The Conjugate Gradient (cg) algorithm was used to solve
the large linear system (2.8). The singularity of M is not harmful for cg, as long
as the system is consistent. The cg algorithm available within the agmg code was
used. As already mentioned, for this formulation an agmg preconditioner on the
whole matrix, hereafter Pwhole, appeared to be by far the best performing approach
among the choices we have tested. This behavior fully confirms our findings in the 2D
case, see, e.g., [34, 35], and thus we omit reporting results with other preconditioners.
We emphasize that the good performance of this simple unstructured approach is
apparently strongly related to the particular sparsity structure of the blocks of M
in this formulation (cf. (2.8)). In particular, the presence of negative off-diagonal
elements, due to the matrix −Ct, and the larger weight of the diagonal entries, seem
to make the coarsening procedure highly effective, compared to the (v, ue) case, where
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the nondiagonal block Ai includes positive entries (cf. also Table 6.5). The CPU
times, number of iterations and associated error norms are displayed in Table 6.2.
We start by emphasizing the very low CPU time associated with the solution of the
finest discretization, which involves a matrix M of size 2n = 2, 693, 790, envisioning
the possibility to simulate the whole excitation process in a very affordable time
frame. We also notice that the number of iterations decreases as mesh refinement
takes place, providing a favorable “mesh-dependent” performance. We also remark
that a substantial mesh independence was also observed in the original AGMG paper
for other 3D experiments [28]. Finally, we observe that the true relative error norm
also decreases with the mesh refinement.

tol= 10−7 tol= 10−8

PPPPPPPPn
Pwhole Time Iter err Time Iter err

22,782 0.83 34 3.25e-4 1.27 52 3.68e-5
52,132 1.55 26 1.53e-4 2.55 42 1.93e-5

172,785 5.51 24 1.47e-4 8.24 35 1.18e-5
333,373 10.30 22 6.48e-5 14.52 30 9.14e-6
780,333 25.52 20 3.64e-5 33.88 26 5.09e-6

1,346,895 38.49 17 1.57e-5 51.02 22 2.29e-6

Table 6.2
(ui, ue) formulation. CPU time and number of CG iterations to obtain a reduction of the

residual norm by a factor of 10−7 and 10−8 for Pwhole at 10 msec after stimulation.

To increase our understanding of the preconditioner performance, we provide
estimates for the associated spectral interval, as the problem size increases. The table
below reports estimates for the parameters χ1, χ2 in the inequalities χ1M≤ Pwhole ≤
χ2M.

n χ1 χ2

22,782 0.9368 169.52
52,132 0.9377 114.01

172,785 0.9479 87.18
333,373 0.9634 85.14

We use the following well known estimate for the error B-norm after j CG itera-
tions

‖ξj − ξ‖B ≤

(√
cond(B)− 1√
cond(B) + 1

)j
, (6.1)

where cond(B) = λmax(B)/λmin(B), in which λmax(B), λmin(B) are the largest and
smallest nonzero eigenvalues of B. For B = P−1

wholeM, we can estimate cond(B) as
cond(B) ≈ χ2/χ1 to obtain that the error in the energy norm must be below 10−5

after at most j = 73 iterations on the coarsest grid. Faster convergence is observed
in practice.

For the sake of completeness in Table 6.3 we report some comparisons with a
different Algebraic Multigrid preconditioner, namely the AMG code available in the
HSL library, the hsl mi20 routine [4]. This function implements the classical (Ruge-
Stüben) AMG method, as described in [40]. All default preconditioning parame-
ters were used, except for one pass coarsen=.true., st method=1, testing=0.
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mi20 agmg
n Setup Time Iter err Setup Time Iter err

22,782 0.16 2.47 20 5.29e-5 0.06 0.83 34 3.25e-4
52,132 0.42 4.32 20 1.55e-5 0.15 1.55 26 1.53e-4

172,785 1.48 15.04 25 2.36e-5 0.56 5.51 24 1.47e-4
333,373 2.99 29.58 26 1.59e-5 1.13 10.30 22 6.48e-5
780,333 7.43 81.86 31 1.19e-5 2.77 25.52 20 3.64e-5

1,346,895 13.82 134.97 29 1.57e-5 4.96 38.49 17 1.57e-5

Table 6.3
Pwhole(ui, ue) at 10 msec after stimulation with mi20 tol=1.e-8 and agmg tol=1.e-7.

Pwhole(ui, ue) PM agmg Bicgstab PM ilu(0) Fgmres
tol= 10−7 tol= 10−8 tols= [10−8, 0.12]

n Time It error Time It error Time It error

22,782 0.83 34 3.25e-4 0.38 13 5.56e-4 0.32 7 7.88e-5
52,132 1.55 26 1.53e-4 1.45 17 1.61e-4 1.61 8 4.77e-6

172,785 5.51 24 1.47e-4 6.69 20 6.01e-5 7.66 8 1.14e-5
333,373 10.30 22 6.48e-5 11.25 17 5.24e-5 18.96 8 2.57e-5
780,333 25.52 20 3.64e-5 41.72 24 9.93e-5 71.93 9 8.80e-5

1,346,895 38.49 17 1.57e-5 67.56 22 2.09e-5 152.74 9 7.00e-5

Table 6.4
Performance evaluation for Pwhole(ui, ue), PM Bicgstab and PM Fgmres. CPU time, num-

ber of iterations and final error norms.

The preconditioner was employed within the hsl mi21 routine implementing the cg
method [19]. The table reports the preconditioner setup time, the total elapsed time
for the cg relative residual norm to pass the stopping tolerance, the number of cg
iterations and the corresponding relative error norm (cf. (5.1)). Stopping tolerances
were tuned so as to obtain similar final error norms for the finer grid. To ease the
numerical comparison the table also repeats some of the numbers from Table 6.2. For
all mesh discretizations, results are largely in favor of the agmg package of Notay
[27]. As an example, for n = 780, 333 and the same level of accuracy of the computed
solution, setup time and time per iterations of hsl mi20 are about three times greater
than those required by agmg. These results are consistent with those obtained in [28]
for 3D problems. In light of these results and of similar ones obtained with the other
formulation, in the sequel we only report on the numerical performance of agmg and
not of mi20.

Formulation (v, ue). We report on solving system (2.9) with the non-symmetric
preconditioner PM . Numerical experiments not reported here showed that PM is
more effective than Pf and Pd for the same choices of blocks D and K (cf. section 3).
As already mentioned we used bicgstab as solver (routine hsl mi26, see [19]), the
diagonal of Ai +Ct as matrix K, and the multigrid preconditioner agmg as D. CPU
times (in seconds), number of bicgstab iterations and relative error norm, to obtain
a reduction of the residual norm by a factor of 10−8 and an accuracy of order 10−5

are reported in the second set of columns of Table 6.4.
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For the sake of comparison, in the right portion of columns of the same table
we also report the performance of an inner-outer method (cf. section 5.1), similar to
that suggested in [14]. The algorithm was implemented as follows: the outer method
is fgmres (routine hsl mi15), the inner method is CG (routine hsl mi21), and the
preconditioner for both inner solvers is ILU(0) (routine hsl mi11), all from the HSL
package [19]. The inner and outer tolerances were selected so as to obtain the best
overall performance for a comparable error norm (cf. Table 5.1). We can see that
the computational cost for solving with the inner-outer method is, on the finest grid,
more than twice that of the solver with the structured AMG preconditioner, while
requiring the tuning of some extra parameter. These experiments suggest that the
structured Algebraic Multigrid is superior and more reliable than the presented inner-
outer procedure, at least for the proposed setting. To help the reader in an overall
comparison of the two formulations, we have included (once again) in Table 6.4 the
digits associated with the performance of Pwhole in the (ue, ui) formulation from Table
6.2. We readily observe that for a comparable final accuracy, the (ui, ue) formulation
provides the fastest solution. Finally, we observe that all approaches are essentially
mesh independent, as the number of iterations does not appreciably increase with the
mesh refinement.

We remark that AMG on the whole matrix (preconditioner Pwhole) is not com-
petitive on this formulation: the number of iterations significantly increases with the
problem size, leading to excessive computational costs; a typical performance is re-
ported in Table 6.5. This feature can be related to the particular structure of the
matrix in the (v, ue) formulation, characterized by many rows with non-negative off-
diagonal elements associated with the (1,2) and (2,1) blocks (cf. (2.9)).

tol= 10−7

PPPPPPPPn
Pwhole Time Iter err

22,782 0.23 6 3.77e-4
52,132 1.34 14 7.30e-4

172,785 11.48 28 9.94e-4
333,373 45.89 54 8.96e-4
780,333 207.27 100 5.25e-4

1,346,895 438.40 120 5.01e-4

Table 6.5
(v, ue) formulation. CPU time and number of CG iterations to obtain a reduction of the residual

norm by a factor of 10−7 for Pwhole at 10 msec after stimulation.

To complete the set of comparison tests, we also analyze the setup costs and
memory requirements for the leading approaches. The setup time for generating the
preconditioner is often a bottleneck of multilevel methods. Fortunately, agmg turns
out to be very effective, compared to other multigrid methods, as reported in Table 6.6;
see also the relevant discussion in [28]. A closer look at the table shows that the setup
time is not a discriminant among the various methods. Memory requirements seem
to differ more remarkably. In Table 6.7 we report the major memory requirements of
the used preconditioners: for agmg this is the allocation reported by the code, while
for ILU(0) the computation is performed on the basis of the nonzero elements of the
involved matrices. We also recall that fgmres also requires a number of long vectors
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Pwhole PM agmg PM ilu(0)
n (ui, ue) Bicgstab Fgmres

22,782 0.06 0.03 0.024+ 0.02
52,132 0.15 0.08 0.056+0.055

172,785 0.56 0.34 0.19+0.19
333,373 1.13 0.69 0.37+0.37
780,333 2.77 1.70 0.90+0.90

1,346,895 4.96 3.00 1.56+1.55

Table 6.6
Preconditioning setup time of Pwhole(ui, ue) and of PM agmg and PM ilu(0) for the (v, ue)

formulation.

Pwhole PM agmg PM ilu(0)
n (ui, ue) Bicgstab Fgmres

22,782 6.25 3.50 2×2.54
52,132 14 6.21 2×5.94

172,785 47.55 20.14 2×19.98
333,373 90.76 39.55 2×38.84
780,333 214.20 91.77 2×91.59

1,346,895 368.79 159.32 2×158.48

Table 6.7
Memory requirements (in Mbytes) for the preconditioners all both formulations and strategies.

that is at least twice as the number of performed iterations. As expected, the agmg
preconditioner on the whole matrix (in the (ui, ue) formulation) requires the largest
amount of memory, followed by that of fgmres, if inner ILU(0) preconditioning is
performed on both blocks K and D, as suggested in [14]. Table 6.7 shows that
agmg preconditioning requires roughly the same amount of storage as an ILU(0)
preconditioner, but with a much higher performance.

6.1. Overall computational costs in typical simulations. To assess the
performance of the various approaches in a more realistic setting, we next report on the
results of a longer simulation of the myocardium excitation process. In Tables 6.6-6.8
we display the setup times and the total execution times for a simulation of 50msec,
i.e. 1000 time steps, with both formulations. In each case, we only show the best
performing setting.

The agmg based preconditioner with bicgstab is more efficient than PM fgm-
res, for all considered discretizations. It is interesting that the performance of all
methods is somewhat sensible to the time instant, as the system right-hand side
changes significantly throughout the simulation. Indeed, the average time is lower
than that obtained for the single time step chosen in previous experiments.

For n = 1, 346, 895 and the (v, ue) formulation, we observe a CPU time reduction
of 55% of PM agmg bicgstab when compared with PM fgmres. However, the
fastest time is obtained for Pwhole with formulation (ui, ue), which provides a further
20% CPU time reduction. As already verified, the setup phase time is irrelevant for
all methods, compared to the overall cost of the computation.
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Pwhole (ui, ue) PM AGMG PM ilu(0)
Bicgstab Fgmres

n Time Iter Time Iter Time Iter

22,782 0.52 20.94 0.39 13.73 0.35 7.12
52,132 1.60 26.36 1.34 16.06 1.44 7.35

172,785 5.16 22.66 5.83 17.60 8.04 8.00
333,373 9.31 19.38 12.70 18.77 20.15 8.01
780,333 22.53 17.66 40.82 23.70 70.27 8.57

1,346,895 35.51 15.47 60.91 19.52 145.54 9.02

Table 6.8
Averaged execution time (in sec) per time step and average iteration count per time step for 50

msec (i.e. 1000 time steps) for Pwhole and the (ui, ue) formulation and PM agmg Bicgstab and
PM Fgmres for the (v, ue) formulation .

6.2. Comparisons with an alternative formulation. An alternative formu-
lation was recently proposed in [14]. If we linearly combine the two equations of (2.4)
with coefficients λ

1+λ and −1
1+λ , λ > 0, we obtain the following parameter-dependent

non-symmetric formulation of the bidomain system:
find (v(x, t), ue(x, t)), x ∈ Ω, t ∈ [0, T ] such that
cm∂tv − div λ

1+λMi∇v − div
(
λMi−Me

1+λ

)
∇ue + Iion(v, w) = Iapp in ΩT

−div M∇ue = div Mi∇v in ΩT
nTMi∇v = 0, nTM∇ue = 0 on ΓT
v(x, 0) = 0 in Ω.

(6.2)

Discretization leads to a linear system with coefficient matrix

M =
[
Ct + λ

1+λAi
λ

1+λAi −
1

1+λAe
Ai Ai +Ae

]
.

This formulation was introduced in [14] to build a non-symmetric preconditioner sim-
ilar to the one studied here and in [35] for the (v, ue) formulation.

Table 6.9 reports the number of iterations for two sets of tolerances required
by the preconditioner PM proposed in [14] applied to the (v, ue) formulation (2.9),
and to the (λv, ue) formulation (6.2), with two different values of λ as suggested
in [15]. We considered the same preconditioner proposed in [14, 15], i.e. a lower
triangular preconditioner instead of the upper triangular1 one chosen in this paper.
The preconditioner is implemented by means of an inner-outer method for the diagonal
blocks, as described in earlier sections. Since the cost per outer iteration is the same
for all methods in the table, the number of iterations represents a good measure of
the relative performance.

From the reported digits we can see that the number of iterations even slightly
increases when the alternative (λv, ue) formulation in considered, for both values of
λ. Since the changes are not really in favor of this parameter-dependent formulation,
these experiments strongly suggest that the classical (v, ue) formulation should be
preferred, not last the consideration that no extra tuning of parameters is required.

1Note that in this context, the performance of the upper and lower triangular preconditioners is
expected to be very similar.
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tols = [10−5, 0.12]
PM PM PM

(v, ue) (λv, ue) (λv, ue)
n λ = 1.3 λ = 1.5344

22,782 4 5 5
52,132 4 5 5

172,785 5 5 5
333,373 5 6 6
780,333 6 7 7

1,346,895 6 7 7

tols = [10−8, 0.12]
PM PM PM

(v, ue) (λv, ue) (λv, ue)
λ = 1.3 λ = 1.5344

7 8 8
7 8 8
8 9 9
8 10 10
10 10 10
10 10 10

Table 6.9
Number of iterations required by PM at 10 msec after stimulation when applied to formulations

(v, ue) and λ(v, ue) for two different values of λ and of tolerances tols: λ = 1.3, 1.5344, tols =
[10−5, 0.12], [10−7, 10−2].

7. Conclusions. We have shown that (nonsymmetric) block triangular precon-
ditioning provides an efficient tool for solving the large symmetric linear system aris-
ing at each time-step in the semi-implicit discretization of a popular formulation of
the bidomain model. Optimality is obtained by using the recently developed alge-
braic multigrid method agmg, which experimentally ensures mesh independence of
the solver, in terms of number of iterations. The aggregation-based agmg method is
a building block within our structured preconditioner; alternative - public domain -
AMG strategies may lead to even better timings of our preconditioning technique. We
showed that alternative inner-outer methods are not competitive and may suffer from
parameter tuning. We theoretically justified the good performance of the structured
preconditioner by deriving spectral bounds for the preconditioned matrix, which en-
sure that short-term recurrence system solvers can be efficiently applied. Finally, our
best numerical results were obtained with a less popular but equivalent formulation,
for which agmg preconditioning alone is particularly effective. We thus encourage
the use of this formulation, from which the numerical solutions of the more exercised
formulation can be easily recovered.
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