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Abstract. The so called Bidomain system is possibly the most complete model for the cardiac
bioelectric activity. It consists of a reaction–diffusion system, modeling the intra, extracellular and
transmembrane potentials, coupled through a nonlinear reaction term with a stiff system of ordinary
differential equations describing the ionic currents through the cellular membrane. In this paper
we address the problem of efficiently solving the large linear system arising in the finite element
discretization of the bidomain model, when a semi-implicit method in time is employed. We analyze
the use of structured algebraic multigrid preconditioners on two major formulations of the model, and
report on our numerical experience under different discretization parameters and various discontinuity
properties of the conductivity tensors. Our numerical results show that the less exercised formulation
provides the best overall performance on a typical simulation of the myocardium excitation process.

Key words. reaction–diffusion system, iterative methods, algebraic multigrid, preconditioning

AMS subject classifications. 65F10, 65F15, 65N55, 35K57, 35K65

1. Introduction. The so called Bidomain system is possibly the most com-
plete model for the cardiac bioelectric activity, see e.g. [10, 19, 34]. It consists
of a reaction–diffusion (R–D) system, modeling the intra, extracellular and trans-
membrane potentials, coupled through a nonlinear reaction term with a stiff system
of ordinary differential equations describing the ionic currents through the cellular
membrane. A major bottleneck of the whole procedure is that the excitation process
in the myocardium is characterized by different time and space scales, e.g. the small
thickness (1–2 mm) of the activation layer versus the much larger size of the cardiac
tissue. As a consequence, the numerical solution of the Bidomain system represents
a very intensive computational task: realistic three dimensional simulations typically
yield discrete problems with at least O(107) unknowns, and time steps of the order
of 10−2 milliseconds or less. To reduce the computational cost, expecially during
the excitation process, adaptive techniques and domain decomposition methods have
been developed [12, 33, 8, 18, 38, 21]. Adaptivity in space and time may represent
a valid solution to reduce the computational cost of the Bidomain system, see e.g.
[6]. These techniques have been proven to be successful for problems of moderate
sizes and are currently under investigation. Earlier Bidomain studies based on finite
differences discretizations can be found in [28, 26, 4].

Most numerical studies now employ semi-implicit methods in time, that only re-
quire the solution of linear systems at each time step - as opposed to fully implicit
approaches which require nonlinear solvers [16] - and allow larger time steps than ex-
plicit schemes. Here we also employ a semi-implicit method, and we face the problem
of efficiently solving the very large algebraic linear system arising at each time step.
The associated coefficient matrix is inherently singular and block structured, where
the blocks are associated with the differential operators appearing in the model. The
design of computationally effective iterative solvers for such linear systems calls for
the construction of efficient preconditioners, see [36] for a detailed overview of the
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methods. Attempts in the recent literature have employed diagonal preconditioners
[29], Symmetric Successive Over Relaxation [20], Block Jacobi preconditioners with
incomplete LU factorization (ILU) for each block [8, 35], multigrid [37, 38, 1, 22].

In this work we focus on algebraic multigrid based preconditioners and in par-
ticular we study two classes of structured preconditioners that take into account the
block form of the coefficient matrix. General Algebraic Multigrid preconditioning
has been already applied to the Bidomain system in one of the two formulations we
shall adopt, and its effectiveness when compared to other classical methods has been
reported; see, e.g., [37, 38, 1, 22].

We recall that the Bidomain system may be written in various forms involving dif-
ferent combinations of its main variables: the intra- and extracellular potentials ui, ue

and the transmembrane potential v = ui−ue; see, e.g., [11, 20]. Here we consider two
different pairings, the (ue, v) and the (ui, ue) formulations, where the independent
variables are ue, v and ui, ue respectively. In spite of the close relationship among
the resulting formulations, the associated linear systems provide different challenges,
so that the same general preconditioning strategy may lead to surprisingly different
performance on the two formulations. We wish to stress that while the (ue, v) for-
mulation is well accounted for in the current literature, the (ui, ue) formulation has
been somehow overlooked. This is mostly due to the fact that v is the quantity of
chief interest as well as being directly observable from the single cell to the tissue level
through optical mapping [5]. Moreover, formulation (ue, v) has also been preferred for
computational reasons: the parabolic and elliptic equations of the formulation can be
solved one after the other by means of a block Gauss–Seidel method, see [36, 20, 1].
However, such a ”natural” solution process may have misguided the algebraic treat-
ment of the problem. Indeed, our results seem to indicate that formulation (ui, ue) is
the one that provides a significantly more efficient numerical framework.

The aim of this paper is twofold. On the one hand, we wish to explore the
effectiveness of algebraic multigrid based preconditioners, which specifically exploit
the structure of the linear system. To the best of our knowledge, a study devoted to
the use of block structured multilevel preconditioners on both formulations appears
to be new on this problem. On the other hand, we compare the theoretical properties
and the performance of similar preconditioning strategies when applied to the two
aforementioned formulations. While our study with the (ue, v) formulation seems
to encourage the use of structured algebraic multigrid preconditioners, we shall see
that for the (ui, ue) formulation this is not necessarily the case. In fact, a standard
algebraic multigrid preconditioner on the whole (ui, ue) linear system provides the
overall best performance, with significantly lower timings than for all other discussed
alternatives, on a typical simulation of the myocardium excitation process. These
results are in complete agreement with the performance observed in [20], when used
with classical preconditioning strategies.

The outline of the paper is as follows. In section 2 we introduce the Bidomain
system and two of its mainly used formulations. Space and time discretizations are
presented in the same section, leading to the description of the algebraic linear sys-
tems to be solved at each time step. By using a unified form for the linear system
stemming from the discretization of both formulations, in section 3 we introduce the
class of structured preconditioners that we wish to analyze. Section 4 is devoted to the
convergence analysis of two classes of structured preconditioners. Finally, Section 5
reports on numerical experiments showing the effectiveness of the algebraic multigrid
approach.
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Throughout the paper we shall often deal with singular matrices. With a little
abuse of notation, we shall denote by A−1 the pseudoinverse of the symmetric and
singular matrix A. Nonetheless, the singularity of the matrix is taken into account
when handling the pseudoinverse.

2. The Bidomain Model. The excitation process in the myocardium is a com-
plex phenomenon characterized by rapid ionic fluxes through the cellular membrane
separating the intracellular and the interstitial fluid in the myocardium. Accurate
simulations of a complete heartbeat, from the excitation to the recovery phase, have
to incorporate realistic fiber geometry, anisotropy of cardiac conductivity and de-
tailed membrane properties. The bidomain model can account for these features (see
[10, 19, 34]), and it consists of a Reaction-Diffusion (R-D) system of equations for
the intra- and extracellular potential ui and ue, coupled through the transmembrane
potential v := ui − ue. In this model the cardiac muscle is viewed as two super-
imposed anisotropic continuous media, intra (i) and extracellular (e), occupying the
same volume and separated from each other by the cell membrane.

The nonlinearity arises through the current-voltage relationship across the mem-
brane which is described by a set of nonlinear ODEs (see [13] for more details). The
anisotropic properties of the media are modeled by the intra- and extracellular con-
ductivity tensors Mi = Mi(x) and Me = Me(x) defined as:

Ms(x) = σs
t I + (σs

l − σs
t ) a(x)a(x)T s = i, e (2.1)

where a = a(x) is the unit vector tangent to the cardiac fiber at a point x ∈ Ω, I is
the identity matrix and σs

l , σs
t for s = i, e are the conductivity coefficients along and

across fiber, in the (i) and (e) media, assumed constant with σs
l > σs

t > 0. It can be
easily verified that Mi,e satisfy the following uniform ellipticity condition:

∃λs
m, λs

M > 0, λs
m|ξ|2 ≤ ξT Ms(x)ξ ≤ λs

M |ξ|2 ∀ξ ∈ R
2,x ∈ Ω s = i, e (2.2)

with Ω ∈ R
2 modeling the cardiac tissue.

The R-D system governing the cardiac electric activity may be written in various
forms involving different combinations of the variables ui, ue, v; see, e.g., [11, 20]. As
already mentioned, here we consider two different formulations, the (ue, v) and the
(ui, ue) formulations. For both formulations we will deal with a FEM discretization
in space and a semi–implicit scheme in time: implicit for the diffusion and explicit for
the reaction term.

2.1. (ui, ue) formulation. The evolution of the intra and extracellular poten-
tials ui(x, t) and ue(x,

¯
t) and transmembrane potential v(x, t) = ui(x, t) − ue(x, t) is

described by the following reaction–diffusion system, characterized by two nonlinear
parabolic equations coupled through the reaction term Iion with a system of ODE’s
describing the evolution of the gating variables and ion concentration:

Given Iapp : Ω×]0, T [→ R and u0
e, u

0
i : Ω → R, find ui, ue : Ω×]0, T [→ R and

v = ui − ue such that:














cm∂tv − div Mi∇ui + Iion = Iapp in Ω×]0, T [
cm∂tv + div Me∇ue + Iion = Iapp in Ω×]0, T [
nT Mi,e∇ui,e = 0 on Γ×]0, T [
v(x, 0) = 0 in Ω

(2.3)

where Ω ⊂ R
2 models the heart tissue, Γ = ∂Ω, n denotes the outward unit normal

to the boundary Γ and Iapp is an applied current used to initiate the process.
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Since the aim of this work is to test the effectiveness of algebraic multigrid pre-
conditioners we mostly focus on the solution of the partial differential equations of
the bidomain system. Thus, for simplicity but without losing generality, here we deal
with the FitzHugh-Nagumo model for the membrane kinetic. Then Iion is a cubic
like function of v: Iion(v) = χ

cm

I(v) with I(v) = Gv(1− v/vth)(1− v/vp), χ the ratio
of the membrane area per unit tissue, cm the surface capacitance of the membrane,
G the maximum membrane conductance per unit area and vth, vp the threshold and
plateau values of v.

For applied current Iapp satisfying the compatibility condition
∫

Ω
Iapp dx = 0,

system (2.3) uniquely determines v, while the potentials ui and ue are defined only
up to the same additive time-dependent constant related to the reference potential,
see [9].

Space and Time discretization. Let T h be a uniform triangulation of Ω and V h

the associated space of P 1 finite elements. We obtain a semidiscrete problem by
applying a standard Galerkin procedure. Choosing a finite element basis {ϕi} for V h,
we denote by

C =

{

crk =

∫

Ω

ϕrϕk dx

}

, As =

{

ar,k =
∑

K∈Th

∫

K

(∇φr)
T Ms∇φk dx

}

s = i, e

the symmetric mass matrix and stiffness matrices and by Ih
ion and Ih

app the finite el-
ement interpolants of Iion and Iapp, respectively. By using (2.2) and standard finite
element arguments, we can assert that As, s = i, e are symmetric and positive semidef-
inite with Ase = 0; in particular, ak,k for k = 1, n are positive and ak,k = −

∑

j 6=k aj,k.

The time discretization is performed by a semi–implicit scheme using for the
diffusion term the implicit Euler method, while the nonlinear reaction term Iion is
treated explicitly. Then the following general algebraic system can be obtained:

Aξk+1 = b with A =

[

Ct + Ai −Ct

−Ct Ct + Ae

]

, (2.4)

b =
[

Ct vk − Ih
ion(vk) + Ih

app;−Ct vk + Ih
ion(vk) − Ih

app

]

, Ct = cm

τ C diagonal with

positive diagonal entries, τ the time step, vk = ui
k −ue

k and ξk+1 =
[

ui
k+1;ue

k+1
]

.

Matrix A is positive semidefinite, indeed, for 0 6= ξ = [ui;ue] ∈ R
2n, we have

ξTAξ = ui
T Ctui − 2ue

T Ctui + ue
T Ctue + ui

T Aiui + ueAeue

= (ui − ue)
T Ct(ui − ue) + ui

T Aiui + ue
T Aeue ≥ 0,

since As, s = i, e are positive semidefinite and Ct is positive definite. Moreover, for
e the vector of all ones, A[e; e] = 0 and the system is consistent, in that b has zero
mean, that is eT b = 0. As in the continuous model, vk is uniquely determined, while
ui

k and ue
k are determined only up to the same additive time-dependent constant.

2.2. (ue, v) formulation. In system (2.3) the bidomain model was formulated
in terms of the potential fields ui and ue but it can be equivalently expressed in terms
of the transmembrane and extracellular potentials v and ue. Indeed, adding the two
evolution equations of the system (2.3) and substituting v = ui − ue, we obtain an
elliptic equation in the unknown (ue, v), i.e. the following equivalent formulation of
the anisotropic bidomain model:
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find (v(x, t), ue(x, t)), x ∈ Ω, t ∈ [0, T ] such that














cm∂tv − div Mi∇v + Iion = div Mi∇ue + Iapp in Ω×]0, T [
−div M∇ue = div Mi∇v in Ω×]0, T [
nT Mi∇v = 0, nT M∇ue = 0 on Γ×]0, T [
v(x, 0) = 0 in Ω.

(2.5)

with M = Mi + Me bulk conductivity tensor.
The above system differs from problem (2.3) in that the change of variable allows

us to replace the second parabolic equation with an elliptic equation, thus loosing the
degenerate temporal structure of system (2.3). This approach was usually preferred
because the two equations can be solved one after the other.

Proceeding as before, i.e. using a finite element discretization in space and a
semi–implicit scheme in time, we get:

Mξk+1 = b with M =

[

Ct + Ai Ai

Ai (Ai + Ae)

]

, (2.6)

with b =
[

Ct vk − Ih
ion(vk) + Ih

app;0
]

, vk = ui
k − ue

k, ξk+1 =
[

vk+1;ue
k+1
]

. As
before, we can prove that the symmetric matrix M is positive semidefinite: let 0 6=
ξ = [v;ue] ∈ R

2n, then

ξTMξ = vT Ctv + vT Aiv + uT (Ai + Ae)u + 2vT Aiu

= vT Ctv + (v + u)T Ai(v + u) + uT Aeu ≥ 0

since As, s = i, e are positive semidefinite and Ct is positive definite. Moreover,
M[0; e] = 0.

At each time step we thus have to solve the large linear system (2.6) or (2.4),
whose conditioning considerably worsens as the problem dimension increases, result-
ing in an unacceptable increase in the computational costs of the whole simulation.
In this context, preconditioning is therefore mandatory. It is also important to realize
that the possibly high cost of constructing an effective preconditioner may be accept-
able when compared to the total CPU time required by the entire simulation, if the
preconditioner is generated once for all.

Classically, the system with M was solved by means of a nested iteration that
can be explicitly stated as a block Gauss–Seidel method involving the two diagonal
blocks.

3. Block Preconditioners. Both formulations are characterized by a 2 × 2
block form, which for brevity we denote by

B =

(

B11 B12

B12 B22

)

, (3.1)

with B11, B22 positive (semi)definite. Note that all matrices are square and symmet-
ric. It is therefore natural to derive preconditioners that exploit this structure, as is
the case in various multilevel methods (see, e.g., [30], [32]) as well as in saddle point
problems [3].

Here we analyze two symmetric structured preconditioners, namely block diagonal
and block factorized preconditioners, which have been widely used in the literature in
a number of contexts. To this end, we consider

Pd = blockdiag(K,D), (3.2)
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where K is a symmetric and positive definite approximation to the (1,1) block B11,
while D is a symmetric and positive definite approximation either to the Schur com-
plement B22 − B12B

−1
11 B12, or to the (2,2) block B22. The application of this pre-

conditioner at each iteration entails one solve with each of the two matrices K and
D.

We also consider the more expensive, but possibly more effective block factorized
preconditioner

Pf =

[

I O
B12K

−1 I

] [

K B12

O D

]

,

where K and D have the same meaning as before. The application of this factorized
preconditioner corresponds to the solution of two block triangular systems, that is
[

y1

y2

]

= P−1
f

[

v1

v2

]

=

[

K−1 −K−1B12D
−1

O D−1

] [

I O
−B12K

−1 I

] [

v1

v2

]

.

This may be performed with the following steps
z1 = K−1v1

y2 = D−1(v2 − B12z1)
y1 = z1 − K−1(B12y2)

showing that the application of P−1
f requires two solves with K and one solve with

D, together with two (cheap) multiplications with the sparse matrix B12.
In the following sections we discuss a-priori convergence results on the conver-

gence of CG when Pd or Pf are used as preconditioners, and we compare them with
other alternatives. The choice of the block matrices K and D are based on their
approximation to some corresponding blocks in the original matrix. More precisely,
for two symmetric positive semidefinite matrices A and B, we will use the notation
A ≤ B if vT Av ≤ vT Bv. Therefore, we say that B is a good preconditioner for
A if there exist two positive constants c1, c2, as close as possible to one, such that
c1B ≤ A ≤ c2B. The two matrices A and B are spectrally equivalent if the constants
c1, c2 do not depend on specific discretization parameters, such as the grid size.

4. Convergence analysis. The Conjugate Gradient (CG) method can be used
to solve the large linear systems Bξ = b when B is symmetric and positive definite.
In general, the possible singularity of B is not harmful for CG, as long as the system
is consistent, that is, the right-hand side does not have any component onto the null
space of B. After j iterations of CG, the error in the approximation, measured in the
energy norm, can be bounded in the following well known manner (see, e.g., [27])

‖ξj − ξ‖B ≤

(

√

cond(B) − 1
√

cond(B) + 1

)j

, (4.1)

where cond(B) is the spectral condition number of the coefficient matrix, that is,
cond(B) = λmax(B)/λmin(B), in which λmax(B), λmin(B) are the largest and smallest
nonzero eigenvalues of B. Note that from this estimate, a bound for the Euclidean
norm of the residual can also be obtained, since ‖b−Bξj‖ ≤ λmax(B)1/2 ‖ξj−ξ‖B. The
right-hand side in (4.1) provides a bound on the worst case convergence scenario for
the given linear system. In particular, it may give a good estimate of the convergence
rate of the method, rather than an accurate account of the actual convergence history.
This fact will be shown in the following sections.
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To speed up convergence, preconditioning is employed so as to lower the condition
number of the preconditioned matrix. In this section we illustrate some condition
number estimates of the preconditioned matrix, when the structured preconditioners
of the previous sections are employed.

We first recall some general results that can be appropriately adapted to the
analysis of the preconditioners Pd, Pf . To this end, we use once again the generic
matrix notation in (3.1). We introduce the following constant (C.B.S. constant)

γ2 = sup
v∈Rn\N(B22)

vT B12B
−1
11 B12v

vT B22v
, (4.2)

where N(B22) is the null space of the possibly singular matrix B22. The following
result holds for the condition number of the block diagonal preconditioner1

Proposition 4.1. [2, Theorem 9.3] Let γ be defined in (4.2). Assume that the
matrices K and D in (3.2) are such that there exist positive constants α1, α2, β1, β2

satisfying

α1B11 ≤ K ≤ α2B11, β1B22 ≤ D ≤ β2B22,

with α2 ≥ β2. Then

cond(P−1
d B) ≤

α2

α1(1 − γ2)
φ(α1/β1)φ(β2/α2)

where φ(τ) = 1
2 (1 + τ) +

√

1
4 (1 − τ)2 + τγ2.

Note that φ(τ) → 1 + γ for τ → 1, while φ(τ) → 1 as τ → 0. Function φ behaves
linearly in τ as long as γ is close to unit. For γ smaller, φ grows much more slowly.

For K = B11 and D = B22 it holds that cond(P−1
d B) = (1+γ)/(1−γ) ([2, Corol-

lary 9.4]). Therefore, if K and D are very good approximations to the corresponding
matrices B11 and B22, the performance of PCG is still driven by γ, which is problem
dependent. In particular, if γ is very close to one, convergence can still be slow, and
other structured preconditioners should be considered; see also the discussion in [17].

The following result holds for the condition number of the block factorized pre-
conditioner.

Proposition 4.2. [2, Theorem 9.5] Assume there exist positive constants α1, α2,
δ1, δ2 such that

α1B11 ≤ K ≤ α2B11, δ1B22 ≤ S ≤ δ2B22,

where S = D + B12K
−1B12, and α2 ≥ 1 ≥ α1 > γ2, δ2 ≥ 1 ≥ δ1 > γ2. Let φ = φ(τ)

be as defined in Proposition 4.1. Then

λmin(P−1
f B) ≥

(

1 +
max{α2, δ2} − 1

1 − γ2
φ(r2)

)−1

where r2 = min{α2−1
δ2−1 , δ2−1

α2−1} and α2 > 1 and/or δ2 > 1.
Moreover,

λmax(P
−1
f B) ≤

(

1 −
1 − min{α1, δ1}

1 − γ2
φ(r1)

)−1

1Here and in the following, the notation B ≤ A with A singular, silently assumes that the relation
is required to hold only in the range of A.
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where r1 = min{ 1−α1

1−δ1

, 1−δ1

1−α1

} and α1 < 1 and/or δ1 < 1.

In particular, if K = B11, then cond(P−1
f B) ≤ (δ2 − γ2)/(δ1 − γ2) [2, Case 9.1,

p.386]. Other special cases are discussed in the same reference.

4.1. Specialized analysis for the two formulations. The results of the pre-
vious section may be specialized to the two matrix formulations, by replacing the
matrix B above with the matrix in (2.6) and in (2.4), for the (u, v) and (ui, ue) for-
mulations, respectively.

4.1.1. The (u, v) formulation. In this setting, the CBS constant is given as

γ2 = sup
v∈Rn\N(Ai+Ae)

vT Ai(Ct + Ai)
−1Aiv

vT (Ai + Ae)v
. (4.3)

Next lemma ensures that γ < 1 in the (u, v) formulation and provides a bound of γ2

in terms of the eigenvalues of the pair (Ae, Ai). We recall here that N(Ai + Ae) =
N(Ai) = N(Ae).

Lemma 4.3. With the previous notation, γ2 ≤ (1 + λmin(Ae, Ai))
−1 < 1, where

λmin(Ae, Ai) is the smallest nonzero eigenvalue of AeA
−1
i .

Proof. We have Ct +Ai > Ai, so that (Ct +Ai)
−1 < A−1

i . Moreover2, AiA
−1
i Ai =

Ai. For any v ∈ R
n \ N(Ai + Ae), v 6= 0 we have

vT Ai(Ct + Ai)
−1Aiv

vT (Ai + Ae)v
≤

vT Aiv

vT (Ai + Ae)v
=

wT w

wT (I + A
− 1

2

i AeA
− 1

2

i )w
≤

1

1 + λmin(Ae, Ai)
,

where w = A1/2v and A
−1/2
i = (A−1

i )1/2.
The result shows that γ2 is bounded by a quantity that only depends on the

conductivity tensors of the two stiffness matrices, and not on the grid. Indeed, it
can be shown that for 0 6= v ∈ R

n \ N(Ai), the two stiffness matrices are related
as c1v

T Aev ≤ vT Aiv ≤ c2v
T Aev, with c1 = σi

t/σe
t and c2 = (σi

l − σi
t)/(σe

l − σe
t ),

independently of the mesh.
In this formulation, the spectral scalars αi, βi are defined by the following in-

equalities involving the approximation symmetric matrices K and D:

α1(Ai + Ct) ≤ K ≤ α2(Ai + Ct), β1(Ai + Ae) ≤ D ≤ β2(Ai + Ae). (4.4)

Table 4.1 reports the values of these parameters for the example in section 5 when an
Algebraic Multigrid method (AMG) is used to approximate the blocks Ai + Ct and
Ai + Ae, The table also reports the values of γ2. We refer to section 5 for additional
information on AMG preconditioning.

The numbers clearly show independence of the meshsize. We notice that the
condition α2 ≥ β2 in Proposition 4.1 does not hold in this case. However, a closer
inspection of the proof of Theorem 9.3 in [2] reveals that for the result to hold, it is
sufficient that the following weaker conditions on α2, β2 hold (cf. formula (9.15) in
[2])

γ2 ≤
1

2
(1 −

α2

β2
) +

√

1

4
(1 −

α2

β2
)2 +

α2

β2
γ2 ≤ 1.

2Note that the equality holds also in the singular case, where A−1
i is the pseudoinverse of Ai.

[15, p.422]
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n α1 α2 β1 β2 γ2

2705 1 1.0164 1 1.4233 0.3856
10657 1 1.0785 1 1.6261 0.4282
42305 1 1.1609 1 1.7084 0.4406

168577 1 1.2054 1 1.8278 0.4435
Table 4.1

(u, v) formulation. Values of α1, α2, β1, β2 for different problem sizes, and values of γ2 in (4.3).
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Fig. 4.1. (u, v) formulation. Convergence history and asymptotic rate of the Pd and Pf pre-
conditioner for n=10657.

It can be easily verified that these two inequalities hold with the data in Table 4.1.
For the block diagonal preconditioner, Proposition 4.1 with the blocks of this

formulation yields

cond(P−1
d B) ≤

α2

α1(1 − γ2)
φ(α1/β1)φ(β2/α2). (4.5)

The convergence history (residual norm) for n = 10657 of CG preconditioned by
Pd is reported in the left plot of Figure 4.1. The plot also shows the approximate
asymptotic convergence rate obtained by using the right-hand side in the inequality
(4.5), in the classical CG bound (4.1). The agreement is quite satisfactory.

For the factorized preconditioner, we next show that if K and D are specifically
chosen, as in (4.4), then the hypothesis on S of Proposition 4.2 is satisfied.

Lemma 4.4. Let S = D + AiK
−1Ai. If

α1(Ct + Ai) ≤ K ≤ α2(Ct + Ai), β1(Ai + Ae) ≤ D ≤ β2(Ai + Ae),

then δ1(Ai + Ae) ≤ S ≤ δ2(Ai + Ae), with δ1 = β1 and δ2 = β2 + α−1
1 .

Proof. For v 6= 0, the lower bound is readily obtained as vT Sv = vT Dv +
vT AiK

−1Aiv ≥ β1v
T (Ae + Ai)v, with δ1 = β1. To get the upper bound, for v 6= 0

and recalling from Lemma 4.3 that Ai(Ai + Ct)
−1Ai ≤ Ai we write

vT Sv = vT Dv + vT AiK
−1Aiv ≤ β2v

T (Ae + Ai)v +
1

α1
vT Ai(Ai + Ct)

−1Aiv

≤ β2v
T (Ae + Ai)v +

1

α1
vT Aiv ≤ δ2v

T (Ae + Ai)v,

9



where δ2 = β2 + α−1
1 .

Lemma 4.4 shows that in this formulation, it is sufficient to obtain a good ap-
proximation D to the (2,2) block, and S will also be a good approximation to the
matrix used in Proposition 4.2.

With the hypotheses of the lemma above, and under additional hypotheses on
the parameters, Proposition 4.2 ensures that the following bound on the condition
number of the preconditioned matrix holds:

cond(P−1
f B) ≤

1 + max{α2,δ2}−1
1−γ2 φ(r2)

1 − 1−min{α1,δ1}
1−γ2 φ(r1)

. (4.6)

Clearly, if αi, δi are mesh independent, so is cond(P−1
f B).

The right plot of Figure 4.1 shows the actual residual norm curve of CG precondi-
tioned with Pf for the problem of size n = 10657. The asymptotic rate was obtained
by using (4.6) in (4.1), with the parameters in Table 4.1. The agreement is once again
quite satisfactory.

4.1.2. The (ui, ue) formulation. In this case the CBS constant is given as

γ2 = sup
v∈Rn\N(Ae)

vT Ct(Ct + Ai)
−1Ctv

vT (Ct + Ae)v
. (4.7)

We notice that the condition v ∈ R
n \ N(Ae) would not be requested to ensure a

nonzero denominator. However, due to the consistency of the linear system, vectors
in N(Ae) are not involved in the computation, so that the constraint v ∈ R

n \N(Ae)
is verified in practice, assuming exact arithmetic. It is interesting to observe that
without the condition v ∈ R

n \N(Ae), we would have obtained γ = 1, readily derived
for v ∈ N(Ae) = N(Ai).

Next lemma ensures that γ < 1 in the (ui, ue) formulation.
Lemma 4.5. With the previous notation, γ2 ≤ (1 + λmin(Ae, Ct))

−1 < 1, where
λmin(Ae, Ct) is the smallest nonzero eigenvalue of AeC

−1
t .

Proof. We have Ct+Ai ≥ Ct, so that (Ct+Ai)
−1 ≤ C−1

t . For any v ∈ R
n\N(Ae),

v 6= 0 we have

vT Ct(Ct + Ai)
−1Ctv

vT (Ct + Ae)v
≤

vT Ctv

vT (Ct + Ae)v
=

wT w

wT (I + C
− 1

2

t AeC
− 1

2

t )w
≤

1

1 + λmin(Ae, Ct)
,

where w = C
1/2
t v.

We notice that the bound is quite accurate. For instance, for the smallest grid
in section 5 (Ai of size 2705), we found γ = 0.99913 while (1 + λmin(Ae, Ct))

−1 =
0.99978. Note also that in this example, γ is very close to unit (cf. also Table 4.2),
predicting slow convergence of the preconditioned method even in the case of optimal
preconditioning, namely for αi = βi = 1, i = 1, 2. Since Ct is the mass matrix, it is
also quite clear that the bound for γ may depend on the mesh.

The following result shows that the hypothesis on S in Proposition 4.2 is satisfied
in the (ui, ue) formulation by appropriately choosing D.

Lemma 4.6. Let S = D + CtK
−1Ct. If

α1(Ct + Ai) ≤ K ≤ α2(Ct + Ai), β1(Ct + Ae) ≤ D ≤ β2(Ct + Ae),

then δ1(Ct + Ae) ≤ S ≤ δ2(Ct + Ae), with δ1 = β1 and δ2 = β2 + α−1
1 .

10
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Fig. 4.2. (ui, ue) formulation. Convergence history and asymptotic rate of the Pd and Pf

preconditioner for n=10657.

Proof. The proof is similar to that of Lemma 4.4. For v 6= 0, the lower bound is
readily obtained as vT Sv = vT Dv +vT CtK

−1Ctv ≥ β1v
T (Ae + Ct)v, with δ1 = β1.

To get the upper bound, for v 6= 0 and recalling that (Ai + Ct)
−1 ≤ C−1

t (cf. proof
of Lemma 4.5), we write

vT Sv = vT Dv + vT CtK
−1Ctv ≤ β2v

T (Ae + Ct)v +
1

α1
vT Ct(Ai + Ct)

−1Ctv

≤ β2v
T (Ae + Ct)v +

1

α1
vT Ctv ≤ δ2v

T (Ae + Ct)v,

where δ2 = β2 + α−1
1 .

In particular, if S is exact, that is S = Ct +Ae, then δ1 = δ2 = 1 and Proposition
4.2 ensures that

cond(P−1
f A) ≤

α2 − γ2

α1 − γ2
. (4.8)

In Table 4.2 we report the relevant parameters of this formulation when K and
D are computed with the AMG preconditioner available in the pifiss software (see
section 5 for more details).

n α1 α2 β1 β2 γ2

2705 1 1.0164 1 1.0164 0.99912931
10657 1 1.0785 1 1.0734 0.99912954
42305 1 1.1609 1 1.1036 0.99912961

168577 1 1.2054 1 1.2509 0.99912962
Table 4.2

(ui, ue) formulation. Values of α1, α2, β1, β2 for different problem sizes, and values of γ2 in
(4.7).

Remark 4.7. The values of γ appear to be very close to one already for quite
coarse meshes (cf. Table 4.2). As a result, even assuming that it is affordable to explic-
itly approximate the Schur complement matrix D ≈ S−Ct(C +Ai)

−1Ct, convergence
may be slow. These considerations are confirmed by our numerical experiments. For
this reason, in the case of this formulation we have explored various alternatives for
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Fig. 5.1. Delaunay mesh: starting mesh (left) - 1 refinement (right)

D. Our experiments of section 5 reveal that nonoptimal choices of D can still provide
us with fast convergence, although a mild dependence on the mesh remains. This is
revealed by the low but increasing number of iterations.

Figure 4.2 shows the convergence history (Euclidean norm of the residual) of CG
on the problem for n = 10657 when the preconditioners Pd (left) and Pf (right)
are used. In both plots, the asymptotic convergence estimated with the computed
parameters is also reported. In both cases, the asymptotics are able to capture the
worst convergence phase of the actual convergence history.

5. Numerical results. The computational experiments were carried out to
compare the different formulations and solvers introduced in the previous sections.
We deal with a square domain Ω = [0, 1] × [0, 1] representing a block of myocardium
with cardiac fibers parallel to a diagonal of the square and the following conductivity
coefficients: σe

l = 2.5 × 10−3, σe
t = 1.25 × 10−3, σi

l = 2. × 10−3 σi
t = 4.16 × 10−4

(Ω−1 cm−1).

We build our meshes on Ω by using a Delaunay triangulation algorithm. We fix
a starting mesh and we build the subsequent meshes by using a regular refinement
where all of the specified triangles are divided into four triangles of the same shape.
See Figure 5.1 for a typical mesh refinement. The number of nodes of the meshes
considered is 2n with n ∈ {2705, 10657, 42305, 168577, 673025} and the corresponding
mesh size h ∈ {3.13 ·10−2, 1.57 ·10−2, 7.8 ·10−3, 3.9 ·10−3, 1.9 ·10−3} whereas the time
step τ was chosen to be equal to 4 · 10−2 msec. With these time and space steps we
can obtain stable and accurate results as shown by the validation carried out in [7].

All experiments correspond to a typical temporal instant in the time step evolu-
tion, so that the right–hand side includes information generated during the previous
time steps. All computations were performed with Matlab 7.4.0 (R2007a) [14] on a
Dell Power Edge 2800, 16 Gb RAM, Intel Xeon dual core 64 bit 3.4 GHz and 2Mb
L2 cache.

We are interested in comparing the performance of the block structured precon-
ditioners described in the preceding sections, when Algebraic MultiGrid (AMG) is
used to build the matrices K and D to approximate the corresponding blocks. Be-
fore approximating each single blocks with various preconditioners, we reorder each
block matrices of B by using the matlab function symrcm. We employ the AMG

12



n Pd Pf Pwhole P
(ic)
d

2705 0.36 (10) 0.59 (5) 0.88 (12) 0.15 (8)
10657 1.95 (12) 1.99 (7) 9.36 (29) 0.58 (14)
42305 10.37 (15) 13.73 (7) 60.33 (55) 4.15 (27)

168577 51.67 (16) 42.84 (10) 491.42 (109) 45.82 (70)
673025 232.16 (16) 167.10 (10) 6025.68 (161) 549.24 (204)

Table 5.1

(ue, v) formulation: CPU time and number of iterations (in parenthesis) for Pd, Pf , Pwhole

and P
(ic)
d

.

code available within the Matlab package pifiss ([25, 23, 24]), which is the original
amg1r5 algorithm, as once distributed by the SCAI Institute. The good performance
of the code on 2D stiffness matrices with constant coefficients has been largely verified;
see, e.g., [31]. For this reason, the algorithm was used as a black box; Gauss-Seidel
smoothing was used in all instances. In most cases, the multilevel method is built on
originally singular matrices. To increase the robustness of the preconditioning strat-
egy, in some cases we generated the preconditioner by using a shifted (nonsingular)
matrix, with a shift equal to ε1/2, where ε ≈ 10−16 is Matlab machine precision.

To test the effectiveness of the AMG block preconditioners, we report results on
both formulations when Incomplete Cholesky factorizations (IC) are used to generate
K and D in the block diagonal preconditioner, and we call the resulting preconditioner

P
(ic)
d . In this case, the obtained blocks are not spectrally equivalent to the target

matrices, therefore the condition number of the preconditioned matrix may depend
on the mesh parameters. We also consider preconditioning the whole matrix B (B = A
or B = M, depending on the formulation) with AMG, and we call this preconditioner
Pwhole. In this last case, the entries of the matrix were reordered using Symmetric
reverse Cuthill-McKee permutation (Matlab function symrcm), which lead to better
timings.

To simplify the notation, we denote by Pf (K,D) the factorized matrix for the
specific choices of K and D.

Formulation (u, v): we consider solving the system (2.6) with the following precondi-
tioners, where W in the last row is defined as

W = (Ai + Ae) + Aidiag(Ct + Ai)
−1Ai. (5.1)

Prec. K D other comments
Pd AMG(Ct + Ai) AMG(Ai + Ae) cf. Prop. 4.1
Pf AMG(Ct + Ai) AMG(Ai + Ae) cf. Prop. 4.2
Pwhole AMG(M) M as in (2.6)

P
(ic)
d IC(Ct + Ai,10−2) IC(W ,3 · 10−3) W as in (5.1)

The results, CPU times in seconds and number of CG iterations in parentheses,
to obtain a reduction of the residual norm by a factor of 10−6, are reported in Table
5.1.

We readily observe that AMG on the whole matrix, namely Pwhole, is not com-
petitive, and the number of iterations significantly increases with the problem size.
This latter shortcoming is also true for the Incomplete Cholesky preconditioner, as

expected. We notice, however, that P
(ic)
d provides the best timings on the smaller
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problems. Both preconditioners based on structured AMG preconditioning enjoy
mesh independence, with Pf becoming more efficient on the larger problems.

Formulation (ui, ue): we first consider solving the system (2.4) with a selection of
factorized preconditioners, reported in Table 5.2, where D0 is given by

D0 = Ct + Ae − Ct(Ct + Ai)
−1Ct. (5.2)

We stress that the use of D0 is only of theoretical interest, because in general it is too
expensive to compute explicitly.

As anticipated in Remark 4.7, other AMG alternatives are explored. The pro-
posed variants only differ for the choice of the matrix block D. Among them and with
the aim of simplifying the construction of an approximation to the Schur complement,
we first write the matrix D = Ct + Ae + Ct(Ct + Ai)

−1Ct as

D = [−(Ct + Ae)C
−1
t (Ct + Ai) + Ct](Ct + Ai)

−1Ct

= [−Ai − Ae − AeC
−1
t Ai](Ct + Ai)

−1Ct.

Then only the matrix in brackets is approximated by AMG, yielding

D̃ = AMG([−Ct − Ai − Ae + Aediag(Ct)
−1Ai + Ct])(Ct + Ai)

−1Ct. (5.3)

Applying D̃−1 entails performing one cycle of Algebraic Multigrid, one multiplication
with Ct + Ai and one solve with Ct. This turned out to be more efficient than other
approximations such as D ≈ Ct + Ae + Ctdiag(Ct + Ai)

−1Ct.

Prec. K D comments
Pf AMG(Ct + Ai) AMG(Ct + Ae) cf. Prop. 4.2
Pf AMG(Ct + Ai) AMG(D0) D0 as in (5.2)

Pf AMG(Ct + Ai) AMG(D̃) D̃ as in (5.3)
Pf AMG(Ct + Ai) AMG(Ae) simplified version

Table 5.2

Hence we compare them with the following alternative strategies, where W in the
last row is now defined as

W = (Ct + Ae) + Ctdiag(Ct + Ai)
−1Ct. (5.4)

Prec. K D other comments
Pd AMG(Ct + Ai) AMG(Ct + Ae) cf. Prop. 4.1
Pwhole AMG(A) A as in (2.4)

P
(ic)
d IC(Ct + Ai,10−2) IC(W ,3 · 10−3) W as in (5.4)

We first discuss the numerical experiments associated with Pf .
From the numbers reported in Table 5.3 we readily see that the use of AMG(D0)

for the D matrix soon becomes unacceptably expensive. The same can be said about
the use of AMG(D̃), although for the smaller problems this choice is still feasible.
Preconditioning with AMG(Ae) represents the most competitive alternative among
all the ones we have tried.
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Pf , D : AMG(Ct + Ae) AMG(D0) AMG(D̃) AMG(Ae)
n

2705 3.72 (77) 9.37 (4) 1.21 (14) 0.28 (6)
10657 16.15 (79) 107.29 (5) 12.42 (29) 2.16 (11)
42305 68.14 (80) – 71.91 (36) 12.95 (15)

168577 312.17 (83) – 1550.95 (123) 55.82 (15)
673025 1405.74 (86) – – 211.37 (13)

Table 5.3

(ui, ue) formulation. CPU time and number of iterations (in parenthesis) for various variants
of the block factorized preconditioner Pf ; cf. Table 5.2. ”–” stands for excessive CPU time relative
to the other approaches.

n Pd Pwhole P
(ic)
d

2705 4.49 (138) 0.14 (3) 0.72 (76)
10657 18.85 (143) 0.71 (3) 2.69 (78)
42305 80.57 (145) 4.33 (4) 14.74 (92)

168577 371.86 (147) 15.66 (4) 78.71 (111)
673025 1649.61 (150) 81.35 (5) 541.23 (165)

Table 5.4

(ui, ue) formulation: CPU time and number of iterations (in parenthesis) for Pd, Pwhole and

P
(ic)
d

.

Table 5.4 reports the CPU times and numbers of iterations for all remaining meth-
ods. It is remarkable that the results are significantly different from those obtained
for the (u, v) formulation. In particular, AMG preconditioning on the whole matrix A
greatly outperforms all other methods, both in terms of number of iterations and CPU
time. Apparently the special structure of the matrix is particularly well suited for the
AMG preconditioner we used. In the table below are estimates for the parameters
χ1, χ2 in the inequalities χ1A ≤ Pwhole ≤ χ2A.

n χ1 χ2

2705 1 1.54
10657 1 1.62
42305 1 2.00

Using these estimates to approximate cond(B) in (4.1) with B = P−1
wholeA, we

clearly see that the error in the energy norm must be below 10−6 after about j = 6
iterations on the coarser grids.

Among the other methods, both AMG-based block preconditioners show almost
mesh independence. Moreover, the best Pf from Table 5.3 is far cheaper than Pd be-
cause of the much lower number of iterations performed. Block diagonal with incom-
plete Cholesky is competitive with respect to the AMG block diagonal preconditioner,
for the selected choices of K and D, although it clearly shows mesh dependence in
the number of iterations.

5.1. Overall computational costs in typical simulations. The setup time
for generating the AMG preconditioner usually represents a significant portion of the
total cost of this approach. Fortunately, in our case, the same preconditioner can be
employed for many time steps, thus fully compensating the initial setup effort. We
should add that the AMG preconditioner was used as a black-box within the pifiss

code, and no attempt was made to tune the parameters. We believe that this part of
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n 2705 10657 42305
Pf Pwhole Pf Pwhole Pf Pwhole

D = AMG(Ae) D = AMG(Ae) D = AMG(Ae)

nlevel 7-9 10 10-10 10 13-11 12
CG 2.01-1.73 1.85 2.01-1.74 1.90 1.86-1.74 1.89
CA 2.65-2.66 2.04 3.43-2.75 3.06 3.07-2.76 3.30
CS 10.01-12.47 14.78 14.03-15.81 26.85 14.36-18.51 31.63

C
(1)
S 6.87 13.75 6.93 13.87 6.96 13.93

Table 5.5

(ui, ue) formulation: number of coarse levels (nlevel), grid complexity CG, operator complexity

CA, average stencil size across all coarse levels CS and stencil size of the original matrix C
(1)
S

for
Pf , D = AMG(Ae) and Pwhole.

the computation could be significantly reduced, if the AMG code were accessible.
In the following we briefly recall the major costs and memory requirements of the

algorithm, keeping in mind that the true memory requirements of AMG are not fully
reflected by these quantities (some extra work space still needs to be allocated); see
[31].

The coarsening strategy and the size of coarse level operators can be deduced
from Tables 5.5-5.6 where we report the grid complexity CG, the operator complexity
CA and the average stencil size CS defined as:

CG =

(

nlevel
∑

ℓ=1

nℓ

)

/n1 CA =

(

nlevel
∑

ℓ=1

nnz(Tℓ)

)

/nnz(T1) (5.5)

CS =
1

nlevel

nlevel
∑

ℓ=1

nnz(Tℓ)

nℓ
(5.6)

where nlevel denotes the number of levels in the AMG coarsening, Tℓ is the coefficient
matrix at the ℓ-th level (with T1 = A), nℓ is the order of Tℓ and nnz(Tℓ) is the number
of non-zeros entries in Tℓ. The average stencil size CS has to be compared with the
average stencil size CS(1) of the original matrix [31].

The computational cost of applying AMG to a given matrix depends on many
factors, including the density of the coefficient matrices and the number of chosen
interpolation points, at all levels. CA provides an indication of the AMG storage
requirements, relative to those needed for the original matrix. The ratio CA/CG

provides a measure of how much denser the matrices Tℓ’s are, compared to the ideal
case (the larger the ratio, the denser the matrices). The cost of applying an AMG
preconditioner is proportional to the number nlevel of coarse levels and the size of
operator complexity CA.

In Tables 5.5-5.6 we report CA, CG, CS and CS(1) for Pf , D = AMG(Ae) and
Pwhole with formulation (ui, ue), and Pf with formulation (ue, v), respectively. Values
of CA in the tables show that memory requirements of AMG based preconditioners
amount to three times the one required by the original matrix, and this is in agree-
ment with standard values of AMG complexity [31], including the fact that CA is
basically independent of the matrix size. These fact are strictly related to the simple
geometry we are dealing with. Finally, we should remark that Incomplete Cholesky
preconditioners are the most efficient in this regard, introducing the least memory
overhead of about 70% of the memory requirements of the full original matrix.
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n 2705 10657 42305
Pf Pf Pf

nlevel 7-9 10-10 13-12
CG 2.01-1.85 2.01-1.84 1.86-1.84
CA 2.65-2.95 3.43-3.00 3.07-3.05
CS 10.01-13.82 14.03-16.01 14.36-18.62

C
(1)
S 6.87 6.93 6.96

Table 5.6

(ue, v) formulation: number of coarse levels (nlevel), grid complexity CG, operator complexity

CA, average stencil size across all coarse levels CS and stencil size of the original matrix C
(1)
S

for
Pf .

n Pd Pf P
(ic)
d

2705 2.93/362.93 3.82/593.82 0.22/150.22
10657 12.45/2962.45 14.47/2004.47 0.58/550.58
42305 73/10443 109/13839 2.75/4152.75

168577 1611/53281 1490/44330 12.48/45832
673025 34169/266329 26548/193648 56.25/549296

Table 5.7

(ue, v) formulation: setup times and total execution times for 40 msec (i.e. 1000 time steps)

for Pd, Pf and P
(ic)
d

.

To evaluate the role of the setup phase, we next report on the results of a longer
simulation of the myocardium excitation process. In Tables 5.7-5.8 we display the
setup times and the total execution times for a simulation of 40msec, i.e. 1000
time steps, with both formulations. In each case, we only show the best performing

preconditioners. For comparison purposes, we also report results with P
(ic)
d .

AMG preconditioners become more efficient than P
(ic)
d starting from n = 10657

and n = 168577 for the (ui, ue) and (ue, v) formulation respectively. For n = 673025
and the (ue, v) formulation, we observe a CPU time reduction of 65% and 52% of Pf

and Pd when compared with P
(ic)
d . However, the fastest time is obtained for Pwhole

with formulation (ui, ue). Indeed, a further 30% CPU time reduction can be achieved
when compared with Pf in the (ue, v) formulation.

The setup phase of AMG based preconditioners can be costly if compared to P
(ic)
d .

Again, we recall that we used pifiss as a black-box without tuning any parameters
and we believe that these setup times could be improved. However, when solving
the time–dependent bidomain equations, it is the cost per iteration that determines
the efficiency of a method. Thus, memory requirements are the only drawback of
AMG based preconditioners, if compared with standard Incomplete Cholesky, but
their effectiveness overcomes it.

5.2. The case of discontinuous coefficients. We next report on experi-
ments where the elliptic operators have discontinuous coefficients. We consider new
anisotropic conductivity tensors M̃i,e defined as:

M̃i,e =

{

εMi,e ∀x ∈ Ω∗

Mi,e ∀x ∈ Ω \ Ω∗
(5.7)
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n Pf Pwhole P
(ic)
d

D = AMG(Ae)

2705 2.34/282.34 3.45/193.43 0.73/110.73
10657 22.53/2182.58 23.05/1433.05 0.41/3580
42305 132.62/13082 145.25/6965 2.18/14952

168577 1445.87/57265 1888.54/17548 12.73/78312
673025 25690.34/237060 53380/134730 62.07/603362

Table 5.8

(ui, ue) formulation: setup times and total execution times for 40 msec (i.e. 1000 time steps)

for Pf , D = AMG(Ae), Pwhole and P
(ic)
d

.
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Fig. 5.2. Extracellular potential maps for discontinuous conductivity coefficients with ε = 10−3

(left) and without discontinuities (right).

where Ω∗ ⊂ Ω. Setting 0 < ε ≪ 1 in Ω∗ corresponds to identifying a zone of low or
high conductivity in the domain Ω modeling the cardiac tissue.

To test our preconditioners we choose a jump zone Ω∗ = [0.25, 0.45]× [0.25, 0.75]
and the conductivity coefficient ε ∈ [10−3, 103]. Since the coefficients σi,e

l,t in the

definition of the tensors Mi,e are of the order of 10−3, a multiplication by ε = 10−3

simulates regions of no conduction, as displayed in Figure 5.2.
For a typical instant time, we show in Table 5.9 (formulation (ui, ue)) and Table

5.10 (formulation (ue, v)) the number of CG iterations to obtain a reduction of the
residual norm by a factor of 10−6, as a function of n and ε. When ε = 1 the anisotropic
coefficients σi,e

l,t have a uniform distribution and this corresponds to the minimum
number of iterations. In both cases, the method seems to be rather insensitive to
large jumps in the coefficients, with the number of iterations remaining basically
constant. On the other hand, the iteration count of CG with Pic

d preconditioning is
considerably altered by high coefficient discontinuities; cf. Table 5.11 for the (ui, ue)
formulation.

6. Conclusions. We have presented an experimental comparison of two classes
of structured preconditioners for solving the linear systems arising in the numerical
solution of two known formulations of a mathematical model in electrocardiology. We
have focused our attention on the use of algebraic multigrid based preconditioners, and
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H
H

H
H

H
ε

n
2705 10657 42305 168577 673025

10−3 4 4 5 6 6
10−2 4 4 5 6 6
10−1 3 4 5 5 6
1 3 3 4 4 5
101 5 5 4 4 4
102 19 11 6 7 5
103 10 6 3 4 5

Table 5.9

(ui, ue) formulation: number of PCG iterations for preconditioner Pwhole for different values
of ε and n.

H
H

H
H

H
ε

n
2705 10657 42305 168577 673025

10−3 8 9 10 11 12
10−2 7 8 9 10 11
10−1 7 8 9 10 11
1 5 7 7 10 10
101 5 6 7 7 9
102 5 6 6 7 9
103 6 6 7 7 9

Table 5.10

(ue, v) formulation: number of iterations for different values of ε and n obtained using Pf .

shown that their effectiveness may be significantly different on the two formulations.
In particular, the system stemming from the less exercised (ui, ue) formulation may
be very efficiently solved by CG with AMG preconditioning on the whole matrix, with
no attention to the block structure of the coefficient matrix. This approach largely
outperforms all other explored strategies in both formulations when a fine grid is
employed. We are planning to generalize the analysis to the crucial three-dimensional
case, where AMG preconditioners may become more expensive.

Finally, we have experimentally shown that the analyzed AMG preconditioners
are robust with respect to discontinuities in the operator coefficients.

Acknowledgments. We thank Michele Benzi for pointing to relevant references
on Algebraic Multigrid preconditioning.
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