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-
The matrix equation problem

A1 XBy + A XBy+ ...+ Al XBy=C

A; € R™" B € R™™ X unknown matrix

Possibly large dimensions, structured coefficient matrices

The problem in its full generality is far from tractable, although the transformation to a
matrix-vector equation [...] allows us to use the considerable arsenal of numerical weapons
currently available for the solution of such problems.

Peter Lancaster, SIAM Rev. 1970



-
Multiterm linear matrix equation. Classical device

A XB + A XB+...+AXB,=C
Kronecker formulation
(Bf ®Ai+...+B] ®A))x=c & Ax =c

Iterative methods: matrix-matrix multiplications and rank truncation
(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta,
Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

m11P e ml,,P
Kronecker product : M@ P = : . : and vec(AXB) = (BT ® A)vec(X)

maP ... m,,P
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Applications:
Control
Deterministic and stochastic, and time dependent PDEs
Inverse problems and optimization
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> Fixed point iterations (an “evergreen”...)

» Projection-type methods = low rank approximation
» Ad-hoc problem-dependent procedures
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Multiterm linear matrix equation

A1 XBy + A XBy 4+ ...+ AlXB, = C
Alternative approaches to the Kronecker form:

> Fixed point iterations (an “evergreen”...)

» Projection-type methods = low rank approximation
» Ad-hoc problem-dependent procedures

> etc.

A sample of these methodologies on different problems:

& Stochastic PDE
& PDEs on polygonal domains
& All-at-once PDE-constrained optimization problem

& Bilinear control problems

& ...
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PDEs with random inputs

Stochastic steady-state diffusion eqn: Find u: D x Q — R s.t. P-a.s,,

{ -V - (a(x, w)Vu( w))= f(x) inD
x,w)= 0 on 9D

f: deterministic;
a: random field, linear function of finite no. of real-valued random variables
E:Q—->T,CR



-
PDEs with random inputs

Stochastic steady-state diffusion eqn: Find u: D x Q — R s.t. P-a.s,,

{ -V - (a(x, w)Vu( w))= f(x) inD
x,w)= 0 on 9D

f: deterministic;
a: random field, linear function of finite no. of real-valued random variables
E:Q—->T,CR

Common choice: truncated Karhunen—Loéve (KL) expansion,

‘
a(x,w) = p(x)+o Z VA (X)E (w)

u(x): expected value of diffusion coef. o: std dev.
(Ar, #r(x)) eigs of the integral operator V wrto V(x,x") = % C(x, x')
(AN C: D x D — R covariance fun. )



Stochastic Galerkin discretization. The SPDE-practitioner
approach.

Approx with space in tensor product form! X}, x S,

¢
Ax=c, A=GaK+» G K, b=g®h,
r=1
x: expansion coef. of approx to u in the tensor product basis {1k}
K, € R™*™ FE matrices (sym)
G, e R™*" r=0,1,...,m Galerkin matrices associated w/ S, (sym.)
8o: first column of Gy
fy: FE rhs of deterministic PDE

(£ +p)!

il = huge

ng = dim(S,) =

15,, set of multivariate polyn of total degree < p
]
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-
The matrix equation formulation

(GoRKo+GLRKI+...+GK)x=g 265

transforms into

KoXGo + KiXGy + ...+ K XG, = F, F =fg,
(Go=1)

Solution strategy. Conjecture:

e {K,} from trunc'd Karhunen—Lo&ve (KL) expansion

U
X ~ X low rank, X = X1X2T



-
Matrix Galerkin approximation of the deterministic part

Approximation space K, and basis matrix V: X=X, =WY

V. R« =0, R == KoXyx + KiXx Gy + ... + Ki X Gy — fogy

Computational challenges:

> Generation of i involved ¢ + 1 different matrices {K;} !
» Matrices K, have different spectral properties

> ny, ne so large that X, Ry should not be formed !

(Powell & Silvester & Simoncini 2017)



R —
Example. —V - (aVu) =1, D = (-1,1)?. KL expansion

p=1& ~ U(=v3,v3) and C(X1, %) = o2 exp( M>7nxz65,025,020.3

¢ p ne k  inner ng  rank time CG

its | Kk X secs time (its)

2 45 | 17 9.8 | 128 45 321 13.4 (8)

8 3 165 | 21 122 | 160 129 41.4 56.6 (10)

87% | 4 495 | 24 145 | 183 178 51.1 197.0 (12)
5 1,287 | 27 16.9 | 207 207 64.0 553.0 (13)

2 91 | 15 9.9 | 165 89 47.8 30.0 (8)

12 3 455 | 18 12.2 | 201 196 61.6 175.0 (10)

89% | 4 1,820 | 21 15.0 | 236 236 86.4 821.0 (12)
5 6,188 | 25 18.6 | 281 281 188.0 3070.0 (13)

2 231 | 16 9.4 | 281 206 111.0 94.7 (8)

20 3 1,771 | 23 123 | 399 399 197.0 845.0 (10)
93% | 4 10,626 | 26 154 | 454 454 556.0 || Out of Mem

% of variance integral of a

9/27
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Linear matrix equations for convection-diffusion PDEs

—aluxx—aguyy+w~Vu+ﬁu=f, (Xay)EQu

Q C R? sufficiently regular domains, e.g., polygons, not necessarily convex

Standard procedures giving Au = f:

v

Large class of finite element methods
Spectral (element) methods

Isogeometric Analysis

>
>
» Mimetic FD or Virtual element methods
» Classical Finite differences

| 2

Proof of concept:

Explore venues leading to linear matrix equations )




-
The Poisson equation in a square

—lU — Uy, =f, in Q=(0,1) (+hom.Dirb.c.)

j=it

:

B H

" i=1 *‘n}* i=il
Usual lexicographic ordering = Au=0>b



-
The Poisson equation in a square

—lU — Uy, =f, in Q=(0,1) (+hom.Dirb.c.)

j=it

:

B H

" i=1 *‘n}* i=il
Usual lexicographic ordering = Au=0>b

Discretization: U;; = uy,,, with (x;, y;) interior nodes, so that

U.7 .

Uirj—2Uij+ Uy, 1 i1

e (%3, ;) & ——2 h2u 2 - §[11_271] |:UUi,j
i1,

1
Uijo1 —2Ui;+ Uija 1
uyy (X, y7) = — hzlj A = 2 lUii—1, Uiy, Uijial [—12}




-
The Poisson equation - matrix formulation

Let T = tridiag(—1,2, —1)

1 U,;l,j 1 1
e (xi,yj) = 5 [L,—=2,1] | Ui uyy (xi,yj) * 5 [Uij-1, Uij, Uijaa] | =2
h h
Uit 1
Collecting all nodes together,
—Uy ~ TU, —uy, =~ UT

Therefore, directly from the grid,

—Ug — Uy, = = TU+ UT =F, Fij = f(xi,y))



|
Convection-diffusion eqns in a rectangle (with D. Palitta)

—eAu+ ¢1(x)Y1(y)ux + d2(x)2(y)uy + 11 (X)12(y)u = f

(x,y) € QCR?, ¢;,v;,7i, i = 1,2 sufficiently regular func's + b.c.
Problem discretization by means of a tensor basis
Multiterm linear matrix equation:
—eTiU —eUT, + ©1B,UV; + &,UB, W, + UM, = F

Finite Diff.: U;; = U(x;, yj) approximate solution at the nodes

but also Isogeometric Analysis (IGA), certain spectral methods, etc. J
... A classical approach, Bickley & McNamee, 1960, Wachspress, 1963
(Early literature on difference equations) J




|
Discretization of more complex domains (with Y. Hao)

—Uy — Uy, =Ff, in

(x,y) €Q, x=rcos, y=rsind

(r,0) € [ro, 1] % [0, %1
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Discretization of more complex domains (with Y. Hao)

—Uy — Uy, =Ff, in

(x,y) €Q, x=rcos, y=rsind

(n@EMJﬂXM%]

& Transformed equation in polar coordinates:
- . = s
_r2urr_rur_U90:f7 (r79)€[r0,r1]><[0,z]

Matrix equation after mapping to the rectangle:

®2T0+ 0T — oBU =F|
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Discretization of more complex domains (with Y. Hao)

—Uy — Uy, =Ff, in
(x,y) €Q, x=rcos, y=rsind

(n@EMJﬂXM%]

& Transformed equation in polar coordinates:
- . = s
_r2urr_rur_U90:f7 (r79)€[r0,r1]><[0,z]

Matrix equation after mapping to the rectangle:

®2T0+ 0T — oBU =F|

& Transformed equation in log-polar coordinates (r = e”):

N N ~ ™
—Upp — Ugg = fa (rag) € [fo, rl] X [07 Z]

Matrix equation after mapping to the rectangle:

~ ~ ~
TU++UT=F
_ V. Simoncini - Multiterm linear matrix equations 14 /27
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Discretization of polygons with > 4 edges (with Y. Hao)

We need an automatic procedure to map a polygon into a rectangle J

Schwarz-Christoffel conformal mappings
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Schwarz-Christoffel conformal mappings

{z1,...,2z,}: polygon vertices  {¢17,...,¢,m}: vertices interior angles
Pre-images of the vertices (or pre-vertices): wi,...,w, € R, with
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Schwarz-Christoffel (SC) map g: g(w) = g(wo) + c/ H(( —w;)%td¢ (*)
wo j—1
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Discretization of polygons with > 4 edges (with Y. Hao)

We need an automatic procedure to map a polygon into a rectangle J

Schwarz-Christoffel conformal mappings

{z1,...,2z,}: polygon vertices  {¢17,...,¢,m}: vertices interior angles
Pre-images of the vertices (or pre-vertices): wi,...,w, € R, with
Wy <wp < e < Wy = 00.

whn—1

Schwarz-Christoffel (SC) map g: g(w) =g(wo) + ¢ H(§ —w;)%td¢ (%)

wo J:]-

Practical problems associated with Schwarz-Christoffel maps:

» SC parameter problem: determining the pre-vertices wj in closed form;

» quadrature formulas: Integrating the rhs of (*)

Schwarz-Christoffel Toolbox for Matlab, T. Driscoll, 1996, 2005 J




|
Computing with Schwarz-Christoffel maps (with Y. Hao)

j=i

Canonical rectangular domain 1 — z=g(§,n7) — (Convex) physical domain Q

z=g(w) =g +in) =x(&n) +iy(&n)

Jacobian matrix of the conformal map g:

J= [;2 ;ﬂ S = J(&n) = det(T) = xeyy — Xpye = x¢ + x>0

and Ug = uexe + Uy ye, Uy = UxXy + Uy Yy —_—



|
Poisson equation in a polygon (with Y. Hao)

_uxx_uyy:f7 (Xay)EQ

S
B

A RERRY TSN
/TS

_Eiﬁ_ﬁnn:f?v (&) en J




|
Poisson equation in a polygon (with Y. Hao)

_uxx_uyy:f7 (X,y)EQ

$o
TS
R

_Eiﬁ_ﬁnn:f?v (&) en J

With finite diff. discretization:

ThU+UT,=F|, F+b.C., and F;JZ(/F)(E;,T]J'), 1<i<m,1<;<m

Poisson equation is the ideal setting for SC mappings! )




-
Adding a reaction term

—Au+Bu="~f, (xy)€eQ, u=0 on 09.



-
Adding a reaction term

—Au+Bu="~f, (xy)€eQ, u=0 on 0.

In the canonical (reference) domain I:

_655_5777]+(/B)H:/Fa (gan)ena H:07 (§7n)€8n

thus giving the following matrix equation:

WU+ UT,+ GoU=F]|

(o denotes the (element-wise) Hadamard product)
with G(i,j) == (ZB)(&,nj), with1 <i<nyand 1 <j<n



-
A simple convection-diffusion problem

—U — Uy +w-Vu=Ff, (x,y)e
Transformed SC-mapped problem:

—e(lige + lyn) + Xelle + X0y = ZF, (&) €Ni=0, (&n)€an,

where we used w = (1,0).

This yields the matrix equation

‘€T1U+6UT2 +X§o(BlU)+Xno(UB2) = F7‘

Where (Xg),',j = Xg(gi,’/]j), (XTI)"J = Xn(f,', ﬁj), | = ].7 ceey M, j = 1, NN 1 )



N
Conclusions. 1

» Linear matrix equations can be obtained for general domains with different
discretization procedures (IGA, FD, conformal mappings, ...)

> Structural properties should be exploited (different from Kronecker formulations)

» 3D case leads to linear tensor equations: a new research area
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Solution strategies: Projection-type methods. 1

A XB + A XB+...+AXB,=C

Given approximation spaces K4, Kg,

X ~ X, with vee(Xm) € Kg @ Ka

X is approximated by a low rank matrix ! )

Galerkin condition: R := A1 XnB1 + A XuBo+ ...+ AXyBr— C L Kg®Ka

V) RW,, =0 Ka = Range(V,,), Kg = Range(W,,)

Let X, == Vi, Y W.I.
Projected matrix equation:

V) (A XmBi+ ...+ AXnBy — O)W,,, =
(Vo AV )Y (W) BLW) + .o+ (V) AV Y (W) BoW,) — VI CW,, = 0



-
Solution strategies: Projection-type methods. 2

Solve for Y:

(Vg ALV )Y (WS ByW) + .o+ (V) AV )Y (W) BeW,,) — V) CW, =0

Then, implicitly generate X, := V,,, Y, W.T

Procedure generalizes the case ¢ = 2, using the classical Galerkin projection methodology )
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Solution strategies: Projection-type methods. 2

Solve for Y:

(Vg ALV )Y (WS ByW) + .o+ (V) AV )Y (W) BeW,,) — V) CW, =0

Then, implicitly generate X, := V,,, Y, W.T

Procedure generalizes the case ¢ = 2, using the classical Galerkin projection methodology )

Crucial issues for effectiveness:

» Choice of spaces Kx,Kp
> Generation of the two spaces K4, K. Ideally,

range( Vm) - range( Vm+1)a range( Wm) c range( Wm+1)

» Solution of the reduced multiterm equation



-
Computational methods for certain structured problems

A particular case?:
AX + XAT + MyXM;y + ...+ M XM, = F,

with A € R"*" and the M;s having very low rank s;, M; = U; \/,-T

2|n fact, terms in the form M;XN; can also be treated
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2|n fact, terms in the form M;XN; can also be treated



-
Computational methods for certain structured problems

A particular case?:
AX + XAT + MyXM;y + ...+ M XM, = F,

with A € R"*" and the M;s having very low rank s;, M; = U; \/,-T

Using the Kronecker form (¢ = 1):

Al +10A+ (Ui U)(Vie Vi) )x=f
that is
(A+UvT)x=f
with Y = Uy ® Uy, V = Vi1 ® V; again of low rank 512

Solution method: Sherman-Morrison-Woodbury formula

x=A+UVT)H = A7 — AU +VTAT UV AT

2|n fact, terms in the form M;XN; can also be treated



-
Matrix-oriented Sherman-Morrison-Woodbury formula

x=A - AU+ VTATIU) VT AT
Solve Aw = f
Solve Ap; = u; where U = [uy, ..., us] to give P = [p1,...,ps];
Compute H = [ + VTP € R
Solve Hg =VTw
Compute x = w — Pg.

o=



-
Matrix-oriented Sherman-Morrison-Woodbury formula

x=A - AU+ VTATIU) VT AT
Solve Aw = f
Solve Ap; = u; where U = [uy, ..., ug] to give P = [p1,...,ps];
Compute H = + VTP € RS *’
Solve Hg =VTw
Compute x = w — Pg.

R o

Steps 1. and 2.:
w=A1f o AW+ WAT =F, f=vec(F)

Analogously for each p; = vec(P;) in step 2

AW + WAT = P; Lyapunov equations, with the same A - cheap “direct” solution J




-
Matrix-oriented Sherman-Morrison-Woodbury formula

x=A - AU+ VTATIU) VT AT
Solve Aw = f
Solve Ap; = u; where U = [uy, ..., ug] to give P = [p1,...,ps];
Compute H=1+ VTP ¢ RS’ xs”
Solve Hg =VTw
Compute x = w — Pg.

R o

Steps 1. and 2.:
w=A1f o AW+ WAT =F, f=vec(F)

Analogously for each p; = vec(P;) in step 2

AW + WAT = P; Lyapunov equations, with the same A - cheap “direct” solution J

Step 3.
VJTA_lut = V,'TPth» Jj= (k - 1)5+ i

Analogously for VT w in step 4
_ V. Simoncini - Multiterm linear matrix equations 24 /27
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Numerical examples. 1

Let X, be a ref. soln (uniformly distr.random), and rhs computed explicitly

We monitor: Err .= H)ﬁ;x‘l*”"
* || F
Matrix form Vector Form
n si/s» | CPU time Err CPU time Err
40 3/5 0.013 3.817934e-11 0.195 2.292375e-10
6/10 0.017 9.051326e-10 0.657 4.987161e-10
12/20 0.035 5.259884e-09 2.333  1.357709e-08
80 3/5 0.022 2.152743e-10 5.283 1.228423e-09
6/10 0.033 8.380606e-09 15.408 1.849484e-08
12/20 0.074 2.502003e-08 56.347 3.467476e-08
160 3/5 0.043 1.291839e-09 129.957 6.891372e-09
6/10 0.070 1.102578e-08 281.946 2.691323e-08
12/20 0.220 2.907566e-07 | 1030.242 1.202511e-06

Table: Symmetric and dense matrix A and Ui, U (¢ = 2) for various ranks si, s,
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Numerical examples. 2

Matrix form

Vector Form

n CPU time Err CPU time Err

40 0.012 6.452267e-10 0.037 7.231068e-10
80 0.013 2.750854e-10 0.124 2.012480e-09
160 0.024 3.253562e-09 0.581 7.208432e-09
320 0.056 4.615180e-08 2.763 1.710614e-07

Table: Numerical results for symmetric and tridiagonal banded matrix A and Ui, U> random with
s1 = 3, s, = 5 columns, resp.

Matrix form Vector Form
n CPU time Err CPU time Err
40 0.063 6.582486e-11 0.361 1.410898e-10
80 0.093 1.184547e-08 6.116 1.867875e-08
160 0.430 2.691697e-07 278.895 1.301593e-06

Table: Numerical results for nonsymmetric and full matrix A, with s; = 3, s; = 5 columns, resp.

V. Simoncini - Multiterm linear matrix equations
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» First examples where structure can be exploited

(Not reported) This approach can be used for solving linear tensor equations J
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» First examples where structure can be exploited

(Not reported) This approach can be used for solving linear tensor equations J

» Devise more general “direct” solvers, to be used in the projection phase!

Visit: www.dm.unibo.it/ simoncin
Email address: valeria.simoncini@unibo.it
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