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Dynamical systems and the Riccati equation

Time-invariant linear system

t(t) = Az(t) + Bu(t), z(0) = xq

y(t) = Cu(t),
u(t) : control (input) vector; y(t) : output vector
x(t) : state vector; T : initial state



Dynamical systems and the Riccati equation

Time-invariant linear system

t(t) = Az(t) + Bu(t), z(0) = xq

y(t) = Cu(t),
u(t) : control (input) vector; y(t) : output vector
x(t) : state vector; T : initial state
Minimization problem for a Cost functional: (simplified form)

i%fj(u,xo) J(u, zqg) 1= /OOO (z(t) ' C " Cx(t) + u(t) "u(t)) dt



Dynamical systems and the Riccati equation

i%fj(u,xo) J(u,xg) := /OOO (z(t) ' C " Cx(t) + u(t) " u(t)) dt
Riccati equation:

ATX +XA-XBB'X+CTC =0

THEOREM. Let the pair (A, B) be stabilizable and (C, A) observable.
Then there is a unique solution X > 0 of the Riccati equation.
Moreover,

i) For each xg there is a unique optimal control, and it is given by

u, (1) = —B' Xexp((A — BB'X)t)zg for t>0

i) J (us,20) = 29 Xag for all zg € R”

see, e.g., Lancaster & Rodman, 1995



Order reduction of dynamical systems by Galerkin projection

Let Vi, € R™*% have orthonormal columns, d; < n

Let Tk—V AVy, Bk_V B, CT—V Cr
Reduced order dynamical system:

Z(t) = Tiu@(t) + Bp(t),  Z(0) = Ty :=V, o

Typical frameworks:

e Transfer function approximation

e Model reduction

* Petrov-Galerkin projection is also common (see, e.g., Antoulas '05)



Reduced Riccati equation

T, Y+YT,-YB,B,Y+C/C,L=0 (%)

THEOREM. Let the pair (T}, Bi) be stabilizable and (Cy, T)) observ-
able. Then there is a unique solution Y > 0 of (%) that for each

gives the feedback optimal control
ﬂ* (t) = _BZYk exp((Tk — BkBZYk)t)/fo, t Z 0

for the reduced system.




Reduced Riccati equation

)Y +YT,—-YB,B, Y +C, C,=0 ()

THEOREM. Let the pair (T}, Bi) be stabilizable and (Cy, T)) observ-
able. Then there is a unique solution Y > 0 of (x) that for each g

gives the feedback optimal control

f/LL\* (t) — _BZYk exp((Tk — BkBZYk)t)fo, t Z 0

for the reduced system.

& If there exists a matrix K such that A — BK is dissipative?, then
the pair (T}, By) is stabilizable.

@A matrix is dissipative if its field of values is all in C™.



Reduced optimal control vs approximate control

* Our reduced optimal control function:

U, (t) = =Bl YjeTeBuBe Yo)ig 4>
* Commonly used approximate control function:
Consider the Riccati equation
ATX + XA -XBB'X+C"C=0
If X is some approximation to X, then

U(t) ;= —BTXZ(t) where F(t):=eA-BB Xty

However,

. £ 0

They induce different actions on the functional 7 (even for X = VkYkaT)




Reduced optimal control vs approximate control
Consider the interpolated approximation: X; = VkYkaT

Riccati residual matrix:
R, =ATX, +X.A—X.BB™X, +CTC

* Reduced optimal control function: @.(t) = —B;Yke(Tk—BkBl;rYk)%o

THEOREM. Assume that A — BB ' X is stable and
u(t) := —B ' Xx(t) approx control. Then

1Rell T

‘/’UO ZEO,

T (u, z0) — jk(@*,:?oﬂ =&, with &, <

. T
where o > 0 is such that ||e(A=BB Xu)t|| < e~ for all t > 0.

Note: |7 (@, zo) — Ji(Ux, To)| is nonzero for Ry, # 0



On the choice of the reduction space
Reduced problem, T}, = V,.' AV, By, =V, B, CV;, = Ch,
Ty Yi + YT~ Y By By Yy, + Cr ' Crp = 0

JIC = Range(V%):

& Krylov-type subspaces (extensively used in the linear case)
o Ki(A,C"):=Range([CT,AC",... A*=1CT]) (Polynomial)

o EKL(A,CT) :=Kp(A,CT)+Kp(A~1, A~1CT) (EKS, Rational)
k—1

o RKL(A,CT,s):=Range([C",(A—s2I)"1CT,..., H (A—sji )70
j=1

(RKS, Rational) Adaptive choice of shifts involves nonlinear term BB

& Proper Orthogonal Decomposition (functional based)

& Balanced Truncation
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Back to the reduced Riccati equation

T)Y+YT,—YB,B,Y+C/C,=0 (%)

THEOREM. Let the pair (T}, Bi) be stabilizable and (Cy, T)) observ-
able. Then there is a unique solution Y > 0 of (x) that for each g

gives the feedback optimal control
ﬂ* (t) = _BZYk exp((Tk — BkBZYk)t)fo, t Z 0

for the reduced system.

& If there exists a matrix K such that A — BK is dissipative, then the
pair (Ty, By) is stabilizable.
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The dissipating feedback matrix problem

Given
r = Ax— Bu
u = Kz,

(1)

and A not dissipative, find, if it exists, a dissipating feedback matrix
K such that the closed-loop linear system & = (A — BK)x is

dissipative.

(Guglielmi, Simoncini, tr 2018)

This means “the field of values of A — BK is all in C™", that is

(A-BK)+ (A—BK)' <0
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Known existence results and parameterization

A classical result (tailored to our setting):

see, e.g., Skelton, lwasaki & Grigoriadis 1998

THEOREM. Assume B is full column rank. Then

(i) There exists a matrix K satisfying A+ A" — BK — (BK)' < 0 if
and only if

B*(A+A")BH' <0 or BB' >0;
(i) The following parameterization holds
K=-R'BT +R2LO"2,

where L € R?*™ is an arbitrary matrix such that ||L|| < 1 and

R € R?%? is an arbitrary positive definite matrix such that
®:= (BR'B' —(A+A"))"t>0.
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A counter-example

This parameterization does not seem to include all possible Ks:

ExaAMPLE. Consider () := A + Al = diag(a, —a), with a > 0, and
B =e; = [1;0]. Let us take R~! = & with @ > a. Then

1 1
® = (BR'B*—Q)!'=diag(——,>) >0,
a—a «
~ 1 1 \/5
B = ®2BR 2 = e
Va—a
with || B|| = \/\/; > 1 for all choices of & > 0 and & > «. By taking

L= %B, a and & can be selected so that ||L|| > 1, while for this
choice of L we still have BK + K'B" +Q < 0. O



Thinking again the existence result

(A+A") B
BT 0

M =

e If the matrix (A + A'") is negative definite on the kernel of B,
then M has exactly g positive and n negative eigenvalues

e The matrix A+ A" is negative definite on the kernel of B if and
only if there exists a K € R9*" such that W(A — BK) c C~

Constructive derivation:

X X
M — A, A <O
Y Y
Then
K=YX! (X nonsingular)
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Thinking again the existence result. Generalization.

The set of all K's can be enlarged:

THEOREM. There exists a matrix K such that W(A — BK) Cc C™ if
and only if the pencil (M, D) admits n negative eigenvalues for some
symmetric and positive definite matrix D € R(+a)x(n+a),

Hence, for any D symmetric and positive definite such that

X X
M =D A, A<O
Y Y
X .
with e R"T9)*" D_orthogonal, we define K := Y X!
Y

- Other parameterizations are possible
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Computing a (weakly) dissipating feedback of minimal norm

Let WI*™(A, B) be the set of dissipating matrices for the pair (A, B)

The problem: Find K € W™ (A, B) such that

min | K]
KeWaxn(A,B)

(x = F-norm, 2-norm)

& For K € Wi*"(A, B), the matrix A+ A" — BK — (BK)'" has a
zero eigenvalue with multiplicity m, with 0 <m < ¢
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The Linear Matrix Inequality (LMI) optimization problem

& LMI framework for the 2-norm:

min || K||2 subject to
KERQXTL
I, K
A+ AT _BK-K'BT <o, T >0
K' ~I,
(where v > 0 is such that ||K||2 < 7)
& LMI framework for the F-norm:
min || K||p subject to
KeRan
1 vec( K
A+A' -BK-K'B' <0, (K)
vec(K) ' ol

(vec(K) stacks all columns of K one after the other, so that ||K||% < )
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A simple example

Method  description
GL(m) 2-step functional method with m eigs (Guglielmi-Lubich, '17)
LMI Matlab basic function for the LMI problem (mincx)
Yalmipl  Matlab version of Yalmip with SeDuMi solver (2-norm)
Yalmip2  Matlab version of Yalmip with SeDuMi solver (F-norm)
Pencil minimization problem with pencil (M, D)
—02 16 02 26 —04] [ 0.6 0.5 ]
-0.2 -08 -12 -0.7 -—1.8 —-0.2 0.3
A= 1|14 0.7 —-1.1 0.2 0.8 B=105 0
0.3 0.8 0.1 —-0.1 —-0.9 0.2 0.6
02 02 07 —19 01 | 06 —0.6

1
N5 (A + AT)) = {—2.4752, —1.8301, —0.7238, 0.6506, 2.2785}
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A simple example

& Numerically optimal dissipating matrices:

0.3690 —0.12149 0.34503  0.1119 0.35065
1.0340  0.66501  —0.01895 1.3640 —1.2432

and

0.3684 —0.11954 0.35079 0.1097 0.3467
KYalmin —
1.0118 0.65736 —0.03002 1.3995 —1.2240

& Eigs of S(K) = A4+ A" — BK — (BK) ":
i (S(Kar)) € {—2.4765, —1.8306, —0.72468, —2.4-107?, —1.3-107%}
and

i (S(Ky aimip2)) € {—2.4743, —1.8298, —0.72353, —2.4-107'% 5.0 10717}
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A simple example

Comparison of the different methods:

Method  Minimization || K.l|2 | K:||F
GL(2) F-norm 2.2166 2.3063
LMI 2-norm 2.2166 2.6714
Yalmipl 2-norm 2.2166  2.5765
Yalmip2 F-norm 2.2166 2.3063
Pencil F-norm 2.2560  2.7585

Note: on harder problems Yalmip always gives smallest minimum
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Outlook

& Reduced Differential Riccati equations
(see, e.g., Koskela & Mena, tr 2017-2018, Giildogan etal tr 2017)

Xt)=ATX{t)+X(t)A— X(t)BB'X(t)+cTC
(work in progress, with G. Kirsten)

& Parameterized Algebraic Riccati equations
(see, e.g., Schmidt & Haasdonk, 2018)

& Feedback control for nonlinear PDEs by state dependent Riccati
equation

z(t) = f(z(t)) + Bu(t),  f(z) = A(z)x
z(t) = Cx(t)

(work in progress, with A. Alla and D. Kalise)
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