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Motivation. Model Order Reduction

Given the continuous-time system

~

Aofsizem<<E<n

so that all relevant properties are captured by >




Motivation (cont'd): Linear Dynamical Systems

Time-invariant linear system:

x'(t) = Ax(t) + Bu(t),
y(t) = Cx(1)

e Approximation of parameter-dependent systems

e Approximation of the matrix Transfer function

e Other problems (e.g., Matrix equations)

Emphasis: A large dimensions, W (A) C C~




Projection methods: the general idea

Given space K C R™ of size O(m) and (orthonormal) basis V,,,,

A — A,=V!IAV,

B — B,=V!B
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Projection methods: the space

Choices of K in the literature:

e Standard Krylov subspace:
K..(A, B) = Range{[B, AB, ..., A" 1B]}

e Shift-Invert Krylov subspace: K,,((A—ocl)™,B) =

Range{[B, (A —oI)™'B,...,(A—ol)~(m=UB]}; often o = 0

e Extended Krylov subspace:
EK,,(A,B) = K,,(A,B) + K,,(A™1,A71B)
e Rational Krylov subspace:

K (A, B,s) = Range{[(A — s1I) " 'B,(A—s2I)"'B,...,(A—snI)"'B]}

in the past, s = [s1, ..., S| a-priori




Parameter-dependent linear systems
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Parameter-dependent linear systems
r=f,(A)b = zx€K

Here, f,(\) = (A 4+ o)~ 1. A different perspective:

e Shifted linear systems. Many shifts in a wide range

(e.g., Structural dynamics, electromagn.)
(A4 oil)z =, o; € |a,B], large interval,j = O(100)

e Few (possibly complex) shifts (e.g., quadrature formulas)

k
E —1

e [ransfer function

h(o) =c' (A —iocl)™'b, o€ la,p]

11



Shifted systems

Approximation. Defining T, = V> AV,,,

T~ Ty = Vi fo(Tm)er = Vi (Ton +0I) ey

Galerkin condition: r,, :==b— (A+ol)z,, L K.

(standard Galerkin-type approximation for shifted systems, cf. FOM,
CG, ...)

Key fact: A single K for all shifted systems.

Note: Solve systems with A to approximate (A + o) tw

Added feature: restarting made easy




A numerical example

Matrix A discretization of  L(u) = —Au + 50(x + y)(us + uy)
b =1, 500 shift in [0, 5]

(“backslash” takes 2.52 secs for each system of size 160 000)

n  subspace std Krylov Extended Krylov
dimension  CPU time (#cycles) CPU time (#cycles)

2500 10 1.50 (41) 0.65 (4)
2500 20 1.57 (14) 0.63 (2)

10 000 10 3.23 (49) 1.96 (7)
10 000 20 4.35 (27) 1.75 (3)
160 000 10 399.80 (>300) 62.81 (13)
160 000 20 356.63 (97) 109.87 (6)




Sylvester-type equations

In shifted systems, the right-hand side may depend on the parameter:
B = [b(o1),...,b(0s)]

AX + XS = B, S = diag(o1,...,0%)

(special case of more general Sylvester equation)

Generate approximation space starting with B = V3 3

(V1 orthnormal columns, By possibly rectangular)




A numerical example. Direct frequency analysis in structural dynamics

(K* — o*M)x(0) = b(o), size 3627

K* complex symmetric, B = [b(o1),...,b(os)] of rank 2.

Simultaneous solution:

K*X+MXS =B, S=—dag(oi,...,03).

S

For M real sym nonsingular, M = LL" and

~

(LKL X +XS=L"'B, X=UX

with L' K*L~" complex symmetric = bilinear form z'y




A numerical example. Direct frequency analysis in structural dynamics

Comparison with: Q(o)z (o) K* — 0?M for each o,

(complex symmetric CG method, preconditioned with LDL" with drop. tol. 10~2)

Sparse Direct | Complex sym | Extended Krylov | Extended Krylov
Solver CG Direct solves K* lter.solves K*
12.57 48.30 (108) 1.59 (36) 8.00 (36)
24.88 96.33 (108) 2.12 (40) 9.69 (40)




Transfer function approximation

A with field of values in C—

Given space K of size m and V,,, s.t. K=range(V,,),

h(w) = eV, (VEAV,, —iwl)™(V.1'b)

Next:

Classical benchmark experiment with Standard, Shift-invert and
Extended Krylov




An example: CD Player, n =120

|h(w)] = |Co..(A —iwl) ' B, 1|

m = 20 m = 50

—o—true

Y- = = = Krylov

= = =Krylov ) —— extended
extended B 3 ©= = invert-Krylov

—O—true

== invert-Krylov
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Rational Krylov Subspace Method. Choice of poles

Km(A,B,s) = Range{[(A — s1I) !B, (A —s2I)"'B,...,(A—snI)"'B]}

cf. General discussion in Antoulas, 2005.

Various attempts:

e Gallivan, Grimme, Van Dooren (1996—, ad-hoc poles)

Penzl (1999-2000, ADI shifts - preprocessing, Ritz values)

Sabino (2006 - tuning within preprocessing)

IRKA — Gugercin, Antoulas, Beattie (2008)




A new adaptive choice of poles for RKSM
Km(A,b,s) =span{(A —s1 )71, (A —soI)"tb,..., (A —smI)"1b}

s = [s1,...,Sm] to be chosen sequentially (no fixed m)

The fundamental idea: Assume you wish to solve
(A—slx=0b

with a Galerkin procedure in K,,(A,b,s). Let V,,, be orth. basis.
The residual satisfies:
Z — )\j

Z—Sj

b— (A— sz, = rm(2) = ||

g=1




A new adaptive choice of poles for RKSM. Cont'd

rm(2) = H z_ s]" A =eigs(V,  AV,,)
j=1 ’

For A symmetric:

1
Sm41 = arg ( max )

36[_>\maX7_>\min] ‘fr’m(s)|
P\mina )\max] ~ SpeC(A) (Druskin, Lieberman, Zaslavski (SISC 2010))

For A nonsymmetric:

1
St TS (masi \m(s)!)

where S,,, C CT approximately encloses the eigenvalues of —A




Example of S,,,. CD Player, m =12

Sm: encloses mirrored current Ritz values: -eigs(V,1' AV,,)
and initial estimates: s”) = 0.1, s{) = 900 & 45 - 10*
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Transfer function evaluation.

—6—true

- - -Extended Krylov
- — -std Krylov
rninvert=Krylov
— rational Krylov
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FOM Data set
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+= = Extended Krylov
= = -std Krylov
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Transfer function evaluation. Flow Data set. h(w) = ¢(A — iwE) 1D

[7(w) 7(w) = Papproz (W)

= = extended

invert-arnoldi

= rational krylov

—6—true

- = . Extended

invert-arnoldi

= rational krylov

m = 20. A, E of size 9669 (nonsym) 3(()1) = || A||/(condest(A) || E||r),
(1)
50

~ arg(max J(eigs(A))) (all real poles)




Understanding the Rational Krylov subspace. State of the art.

e Shift selection.

- Historically, a-priori selection (possibly with pre-processing)

- Given A symmetric, asymptotically optimal rational space for :R
by using an equidistributed nested sequence of real shifts

(from classical Zolotaryov sol’n)
Druskin, Knizhnerman, Zaslavsky (SISC 2009)

- For f(A)b, variants of adaptive selection (Giittel-Knizhnerman, tr
2012)

Convergence Analysis. Mostly very recent, based on classical
potential theory.

(Beckermann, Druskin, Eiermann, Ernst, Guttel, Knizhnerman, Lieberman,

Reichel, Simoncini, Vandebril, Zaslavsky)




Projection methods for matrix equations

F(X)=0
linear or quadratic equations, such as:
o AX +XAT +BBT =0 Lyapunov equation
e AX+XB+C=0 Sylvester equation
o AX + XAT - XBBT'X +C*C =0 Riccati equation

With an approximation in the space K with basis V,, ® V,,,

(Use the Kronecker formulation for the derivation only)

residual | K & VIF(Xp) Vi =0

where X,,, is the matrix approximation




The Lyapunov matrix equation

AX + XAT -+ BBT =0

Approximation by projection: K of dim. m, V,,, orthonormal basis.
X~X,=V, YV’

VTAV, )Y +Y(VEATV, )+ VIBBTV,, =0

With K being the Krylov subspace (Saad, '90, Jaimoukha & Kasenally, ’94),
the Extended Krylov subspace (Simoncini, '07), the adaptive Rational
Krylov subspace (Druskin & Simoncini, '11)




The Lyapunov equation. Cont'd.

Long term Competitor:

e Alternating Directions Implicit iteration (ADI) (large number of
contributions, see, e.g., Benner, Penzl, etc.)

problem: computation of parameters

* Extended Krylov Subspace method numerically outperforms ADI in
general

* Rational Krylov Subspace is at least as good as ADI

(Druskin, Knizhnerman, Simoncini, '11, Beckermann '11, theoretical arguments)

Convergence Analysis

Much is now known on convergence (in the last 5 years!)




Conclusions and outlook
e Projection-type methods still have great potential

e “Second” generation Krylov spaces can attack harder problem
than standard linear systems

e Quadratic problems (Heyouni, Jbilou, '09).

New very promising results for Riccati eqn (Simoncini, Szyld)

www.dm.unibo.it/“simoncin valeria.simoncini@unibo.it
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