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The problem

Computational Fluid Dynamics (Elman, Silvester, Wathen 2005)

Elasticity problems

Mixed (FE) formulations of Il and IV order elliptic PDEs
Linearly Constrained Programs

Linear Regression in Statistics

Image restoration and registration

... Survey: Benzi, Golub and Liesen, Acta Num 2005




The problem

Hypotheses:

* A € R™™™ symmetric

x BT e R">*™ tall, m < n

x C symmetric positive (semi)definite

More hypotheses later on specific problems...




Outline

Approximating the Schur complement
Facing a spectral difficulty
Fix during the iterative solve

Application to

- A Stokes type problem

- A PDE-constrained problem



Iterative solver. Convergence considerations.

Mx =0>

M is symmetric and indefinite —  MINRES

Tk € xg + Kp(M,rg), s.t. min ||b — Maxy||

r. =b— Muxp, k=0,1,..., xg starting guess




Iterative solver. Convergence considerations.

Mx =0>

M is symmetric and indefinite —  MINRES

Tk € xg + Kp(M,rg), s.t. min ||b — Maxy||

r. =b— Muxp, k=0,1,..., xg starting guess

If spec(M) C [—a,—b] U [c,d], with |b —a| = |d — ¢|, then

k
d— /b
vod ﬁ) 1b — M|

Vad + v/be

|6 — Maoy|| <2 (

Note: more general but less tractable bounds available




Spectral properties

O0< A, <---< )X eigsof A

0<o, <---<o0; sing. valsof B

spec(M) subset of (Rusten & Winther 1992)
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Spectral properties

O< A, <---< )\ eigsof A
0=0, <---<o07 sing. valsof B

spec(M) subset of (Silvester & Wathen 1994)
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B rank deficient, but 0 = A\, (BB! + C) full rank
Y1 = )\maX<C)




Spectral properties

o<\ eigsof A

.- <07 sing. valsof B

spec(M) subset of (Silvester & Wathen 1994)

B(—%Jr An —\/(v1+ An)? +407) 7%0\1 —\/ A1+ 49)}U[An, %()\1 + /A +4a§)]

B rank deficient, but 0 = \,in (BB! + C) full rank
Y1 = )\maX(C)

some extremes still valid for \,, =0




Block diagonal Preconditioner

* A nonsing., C' = 0:

A 0
0 BA'BY

A=2BT(BA-1BT)" 3%
0

1

1 1
MINRES converges in at most 3 iterations. spec(P, * MP, ?) = {1, %(1 +/5)}

A more practical choice:

~ spd. A= A S~ BA "B
0 S

spectrum in |[—a, —b] U [c, d], a,b,c,d >0




Approximating the Schur complement

S~ BA BT

S optimal® approximation when spec(BA~1BTS~1) well clustered

~

Typical choices for S :
e Incomplete Cholesky fact. of BA~'B*
e Algebraic/Geometric Multigrid method

e Operator-based approximation

#With some abuse of language

11



A quasi-optimal approximate Schur complement

S~ BA BT

For certain operators, the approximate Schur complement S is

quasi-optimal:

spec(BA~1BTS~1) well clustered except for few eigenvalues




A quasi-optimal approximate Schur complement

S~ BA BT

For certain operators, the approximate Schur complement S is

quasi-optimal:

spec(BA~1BTS~1) well clustered except for few eigenvalues

Possibly: well clustered eigs are mesh-independent




Questions

e Do these spectral peculiarities have an effect on the

preconditioned problem MP~17?
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Questions

e Do these spectral peculiarities have an effect on the

preconditioned problem MP~17?

e Do these spectral properties influence the convergence of MINRES

on MP~17

e Can we eliminate this influence?

All answers in the affirmative...




The role of S

Claim:

The presence of outliers in BA~'BT S~ is accurately inherited by the
preconditioned matrix MP 1

spec(BA-1BTS1)

spec(MP~1)




Spectral intervals of preconditioned problem

spec(AA™1): O< 1<+ <mm
spec(BA 'BTS1) O<pr << pm

Assume that for some ¢ < m:
O< i <---<pup < g <K ¢ <ppi1<-<pim

for some eq, cp.




Spectral intervals of preconditioned problem

spec(AA™1): O< 1<+ <mm
spec(BA 'BTS1) O<pr << pm

Assume that for some ¢ << m:
O<pur < <pu < &g < c <pi1<-<pm

for some eg, co. Then spec(MP~1) is contained in:

1 1
{5 (% - \/7% + 4’ynum>, 5 (% — VR 471/M+1) + \/So%]

1
U [717 2 (% + VR + 47num)] U [—\/60%, Yo = VYR 471/11}

-

N~

Ie

For sufficiently small g5 at most ¢ eigenvalues of MP~1! are in I




Effect on MINRES convergence

10°

P 1—norm of residual

20 40 60 80
number of iterations

10 15
number of iterations

Stokes-type problem Monge-Kantorovich problem




Eliminating the stagnation phase: “Deflated” MINRES
Consider LML Ta=b P=LL"

—

M

Let Y be an approximate eigenbasis of M.

* Approximation space: Augmented Lanczos sequence

Vji41 L Span{Y, U1, V2, ...,’Uj}, ij—l—lH =1

obtained by standard Lanczos method with coeff.matrix

—

G:=M-MYYTMY)"'YTM,  giving K;(M,Y, )
* MINimal RESidual method:
rj=b—Mi; L GK;(M,Y,v1)

= u; obtained with a short-term recurrence




Augmented MINRES ( “Stanford” style)
Given M, b, maxit, tol, P, and Y with orthonormal columns

u=Y YT./\/IY)_lYTb starting approx, r =b— Mu, r1 =r, = P~ 1y etc
while (i < maxit)

1=1+1 v=1y/p;

y =Mv - MY(YTMY) YT Mv
ifi>2,y=y—(6/Bo)r

a=vly, y=y—rea/f

Ty =r2, r2 =Y

y =P lry

Bo = B, B=/riy
e = e, § = cd + sa

v = ||[g, B8] c=g/v,
w1, = w9, wo = W

w = (v —egwy — dwa)y !

g=Y(YTMY)" YT Mw¢

u = u—g + ow

¢=x1/7. x1=x2—-90z  x2=—€

Check preconditioned residual norm (¢) for convergence

end




Stokes type problem with variable viscosity in Q C R¢

—divv(x)Du+Vp=f in €,
—divu=0 in £,
u=0 on 01,

with 0 < vpin < V(%) < Vpax < 00. (Here, v(x) = 2u + \/52+|T18>u(x)|2)

u : velocity vector field P . pressure

Du = £ (Vu+ V7u) rate of deformation tensor;

Prec. S: pressure mass matrix wrto weighted product (v~ 1., ) r2(9)




Experiments with Bercovier-Engelman model of the Bingham

viscoplastic fluid

* One zero pressure mode (eigvec easy to approx)
* One small eigenvalue of precon'd Schur Complement

= rough eigvec approximation :  {uy,p2}! ~ {ug,p2}?’

if%_73§y§%+7_sa

if0<y<3—7s, and Uy = —A"'BTp,

1
§+7_37




Bercovier-Engelman model of the Bingham viscoplastic fluid

~

A =1C(A, )

MINRES vs. Deflated MINRES, 6=0

MINRES vs. Deflated MINRES, &=1e-3

— non-deflated
== deflated

itera

— non-deflated
== deflated

MINRES vs. Deflated MINRES, d=1e-2

— non-deflated
== deflated

50
iteration number

100

80
wumber



Exact and approximate eigenvectors

MINRES vs. Deflated MINRES, 6=1e-2
non-deflated

—u— deflated with 2 exact eigs
deflated with 3 exact eigs

- = =deflated with 2 approx. eigs

100 150
iteration number

Here A = IC(A,1072) poor approximation = one small positive eig




A parameter identification problem

o1
min o ||F(q) - 2|17 + aJreq(q)

Blgu=—-V - (cVu) = f

(2): model for groundflow

u: fluid pressure o(x): (spatially dep.) hydraulic conductivity
f(x): in/out-going fluid (incompressible flows)

Parameter of interest:  ¢(x) = log(o(x)), obs from soln: s = Cu
(1): F(q) = CB(q)~!f (parameter-to-obs map, non-linear function)

Jreq regularization functional (e.g. total variation)




PDE-constrained formulation

1
min §||C’u — z||2 + aTreq(q)

Y

B(q)u— f =0.

Space discretization 4 inexact Newton method provide linear systems:

H Bt
B 0

H: Hessian of the operator
B: Jacobian of the constraint

v = |q, u] variables, A: Lagrange multipliers




A similar setting: Monge-Kantorovich mass transfer problem

Pb: Given two density functions ug and up on the set €2, find an
“optimal” mapping from ug to ur

Formulation (time in [0,7]):

1
miniHu(T,X)—uT( )||* + aT// w||ml|?dtdx

u,m

s.t. us + V- (um u(0,x) = ug

x): density field m(t,x): velocity field

A preconditioning technique for a class of PDE-constrained optimization problems

M. BEnzi, E. HABER AND L. TARALLI, Adv. in Comput. Math. '10




A similar setting: Monge-Kantorovich mass transfer problem

Time and space discretization + Gauss-Newton approximation on the
Lagrangian

Sequence of “Newton step-depending” linear systems:

QTQ 0 BT [ux
0 L BT| |y
By By O Dk

with Q7'Q diagonal and highly singular, L > 0 diagonal

B> rank deficient




QTQ 0

0
By

Q'Q
B,

Reduced order problem

L
By

By
—B,L BT

Both Q1'QQ, ByL !Bl pos. semi-definite,

bo
b3

B1 square nonsing.




Augmented Block Diagonal Preconditioning

Q7Q
By

M:

By

—B,L'BT

Both diagonal blocks are singular. Augmented preconditioning:

D >0

C(D) ~ BoL BT + B, D~ BT

Work in Progress




D

0 BoL 'BT + B, D 'BT

Exact preconditioner

0

D=Q'Q+yN(Q'Q)

v = || Ll

no 7

14
15
16
16

CPU time

8.17
33.31
109.25
309.97

n

9000
32000
50000

#  CPU time

21 34.16
21 376.54




Practical preconditioner

D: D=QTQ+N(QTQ), v = || L]

C(D): Algebraic Multigrid of BoL~'B3 + B;D~ B

(routine HSL_M120)




Numerical results with practical P,q
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Approximate smallest eigenvalues
C(D): Algebraic Multigrid of BoL~'BY + B;D~1BY

Eigs of “preconditioned augmented Schur complement”

spec((BoL™'By + B1D~'B{ )C(D)™)

approx A; nge = 10

nge = 30

i=1 9.4632e-04
=2  9.4999e-04
I=3 8.5302e-01
8.5400e-01
8.5722e-01
8.5752e-01
8.6410e-01
8.6825e-01
8.7875e-01
8.8097e-01

1.7676e-05
1.8274e-05
1.5449e-04
1.5484e-04
6.2973e-01
6.3079e-01
6.6089e-01
6.6091e-01
6.6557e-01
6.6674e-01

1.3247e-05
1.3937e-05
4.6116e-05
4.6200e-05
3.7707e-01
3.7791e-01
3.8408e-01
3.8409e-01
4.0425e-01
4.0514e-01




Augmented/Deflated MINRES

MINRES_DEFL

Approximation:
50 its of Arnoldi method of precon’d Schur complement

(at first Newton step)




Complete timings

Pad W/AMG

7 its

time

7 its

Poa w/AMG+DEFL

time

24
52
57
85
81

90

0.29
1.43
4.64
14.64
28.37
65.82
88.63

17
25
21
36

0.26
0.80
1.95
6.68
10.61
27.33
37.82

+ 0.52, 2 eigs
+ 1.53, 5 eigs
+ 4.51, 4 eigs
+ 9.57, 5 eigs
+19.03, 4 eigs
+29.82, 5 eigs
+52.23, 4 eigs




Conclusions

e Construction of Schur complement type preconditioner is

spectrally crucial

e An effective way to overcome an “isolated” difficulty
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