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-
The differential problem

We are interested in solving
up = L(u) + f(u, t), u=u(x,y,t) with(x,y)eQCR* tecT
with given initial conditions u(x, y,0) = up(x,y) and proper b.c.

> L linear in u (typically 2" order diff operator in space, w/separable coeffs)

» f nonlinear function in u
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The differential problem

We are interested in solving
up = L(u) + f(u, t), u=u(x,y,t) with(x,y)eQCR* tecT
with given initial conditions u(x, y,0) = up(x,y) and proper b.c.

> L linear in u (typically 2" order diff operator in space, w/separable coeffs)

» f nonlinear function in u

Discretization: use tensor bases
(finite differences, conformal mappings, IGA, spectral methods, etc.)
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-
Approaches to time discretization

v = L(u)+ f(u,t), wv=u(x,y,t) with(x,y) €EQCRY d=23,tecT
» Time marching schemes: classical strategies stemming from ODEs

Lead to

Sequence of (matrix) space problems at subsequent time steps J
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Approaches to time discretization

v = L(u)+ f(u,t), wv=u(x,y,t) with(x,y) €EQCRY d=23,tecT
» Time marching schemes: classical strategies stemming from ODEs

Lead to

Sequence of (matrix) space problems at subsequent time steps J

» All-at-once schemes: time discretization similar to space discretization
(tensor basis methods)

Lead to

(Non)linear matrix equations J

This presentation: exploit matrix-matrix computations throughout the time evolution
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L —
Time marching scheme. Matrix-oriented discretization.

up = L(u) + f(u,t), u=u(x,y, t) with (x,y) €EQCR* teT

Linear operator:

L(u) =Au

Standard (vector) discretization in space, n, x n, grid:

> Au= Au A € RMMy XMy

> f(u,t) = f(u,t) (nxn, components, evaluated component-wise)
with lexicographic ordering of the rectangle nodes
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Time marching scheme. Matrix-oriented discretization.

up = L(u) + f(u,t), u=u(x,y, t) with (x,y) €EQCR* teT

Linear operator:

L(u) =Au

Standard (vector) discretization in space, n, x n, grid:

> Au= Au A € RMMy XMy

> f(u,t) = f(u,t) (nxn, components, evaluated component-wise)
with lexicographic ordering of the rectangle nodes

Matrix-oriented discretization in space:

> Au= AU+ UB, AeR™ "™ BeRY" " (U);~ u(x,y)
with A=I®A+BT @]

> f(u,t) = F(U,t) (ne x ny, evaluated component-wise)
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N
Reminder: matrix formulation of tensor discretization

-

%

=t *‘ n }4, =il

Discretization: U;j =~ u(x;, y;), with (x;, y;) interior nodes, so that

U.7 .

U._ .,2U..+U. . 1 i—1,j
(3, ) 0 B = 1, =2, 1] [Uu,-,j]
i+1,j

1
Ujor —2Uij+Uijr 1
uyy (xi, y) & — hzu 2 = 2 lUii—1, Uiy Uil [2}

1
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Reminder: matrix formulation of tensor discretization

-

%

=t *‘ n }4, =il

Discretization: U;j =~ u(x;, y;), with (x;, y;) interior nodes, so that

U.7 .

U._ .,2U..+U. . 1 i—1,j
(3, ) 0 B = 1, =2, 1] [Uu,-,j]
i+1,j

1
Ujo1—2Uij+Uj 1
uyy (X3, yj) & — h2’J = ﬁ[U,-,j,l, Uijs Uijsl [2}

1

Let T = jtridiag(—1,2,—1). Collecting all nodes together,
—Uy = TU, —uy, ~ UT
Therefore, directly from the grid,
—Uxx — Uyy = TU+ UT + b.c. —
T Y, S = (et (e eitEes] (POl 5 /01



-
The matrix differential equation

U(t) = AU(t) + U(t)B + F(U,t), U(0)= Uy
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The matrix differential equation

U(t) = AU(t) + U(t)B + F(U,t), U(0) = Uy
Computational strategies. Time stepping methods:

» Small scale: matrix-oriented IMEX methods, exponential integrators
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-
The matrix differential equation

U(t) = AU(t) + U(t)B + F(U,t), U(0) = Uy
Computational strategies. Time stepping methods:

» Small scale: matrix-oriented IMEX methods, exponential integrators
» Large scale: In sequence:

1. Order reduction procedure (= POD-type)

2. Feasible handling of nonlinear term F(U, t) (= matrix DEIM)

3. Time stepping of reduced problem
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-
Small scale time stepping

ue=L(u) + f(u,t), wv=u(x,y,t) with (x,y) €QCR* teT

» Problem is stiff

» Use appropriate time discretizations
» Time stepping constraints

> Possibly long time period (e.g., for pattern detection), with occurrence of transient
unstable phase

» Phenomenon sets in only if domain is well represented

U(t) = AU(t)+ U(t)B+ F(U,t), U(0)= Uy
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-
Time stepping Matrix-oriented methods

IMEX methods

1. First order Euler: u,11 — u, = hy(Aupi1 + f(u,)) so that

(I = heAupiy = Uy + hef(u,), n=0,..

N —1

8/21



-
Time stepping Matrix-oriented methods

IMEX methods
1. First order Euler: u,11 — u, = hy(Aupi1 + f(u,)) so that
(I_htA)un+1 :un+htf(un)7 n=0,...,N; -1

Matrix-oriented form: U,11 — U, = hi(AU,11 + Uny1B) + he F(UL),
so that

(/ - htA)UIH—l + Un-‘rl(*htB) = U, + htF(Un)a n=0,..., Ny — 1.
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Time stepping Matrix-oriented methods

IMEX methods
1. First order Euler: u,11 — u, = hy(Aupi1 + f(u,)) so that

(I_htA)un+1 :un+htf(un)7 n=0,...,N; -1

Matrix-oriented form: U,11 — U, = hi(AU,11 + Uny1B) + he F(UL),
so that

(/ - th)UIH—l + Un-‘rl(*htB) = Un + htF(Un)a n= 0, R Nt - L

2. Second order SBDF, known as IMEX 2-SBDF method

3upio — 4upi1 + uy = 20 Aupyo + 20 (2 (upy1) — f(u,)), n=0,1,... N,
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-
Time stepping Matrix-oriented methods

IMEX methods
1. First order Euler: u,11 — u, = hy(Aupi1 + f(u,)) so that
(I_htA)un+1 :un+htf(un)7 n=0,...,N; -1

Matrix-oriented form: U,11 — U, = hi(AU,11 + Uny1B) + he F(UL),
so that

(/ - htA)UIH—l + Un-‘rl(*htB) = U, + htF(Un)a n=0,..., Ny — 1.

2. Second order SBDF, known as IMEX 2-SBDF method
3upio — 4upi1 + uy = 20 Aupyo + 20 (2 (upy1) — f(u,)), n=0,1,... N,
Matrix-oriented form: for n=0,..., Ny — 2,

(3/ - 2htA) U”+2 + Un+2 (72htB) - 4Un+]_ - U,—, + 2ht(2F(Un+1) - F(Un))
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-
Time stepping Matrix-oriented methods

Exponential integrator

Exponential first order Euler method:

Upi1 = e Au, + hi1(he A)f (uy)

efeA: matrix exponential, ¢1(z) = (e? — 1)/z first “phi" function
That is,
Up 1 = eMu, + hyv,, where Av, = eh‘Af(un) — f(u,) n=20,...,N;— 1.
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-
Time stepping Matrix-oriented methods

Exponential integrator

Exponential first order Euler method:

Upi1 = e Au, + hi1(he A)f (uy)

efeA: matrix exponential, ¢1(z) = (e? — 1)/z first “phi" function
That is,
Up 1 = eMu, + hyv,, where Av, = eh‘Af(un) — f(u,) n=20,...,N;— 1.

. . . T
Matrix-oriented form: since etAu = (eth ® eth> u = vec(ehtAUehtB)
T
1. Compute E; = e"A, E, = eMB

2. For each n

Solve AV, +V,B = E F(U,)E,} — F(U,)
Compute U,i1 = ELULE] + h: V, —
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-
Time stepping Matrix-oriented methods

Computational issues:

» Dimensions of A, B very modest
> A, B quasi-symmetric (non-symmetry due to bc's)

» A, B do not depend on time step

& Matrix-oriented form all in spectral space (after eigenvector transformation)
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-
Time stepping Matrix-oriented methods

Computational issues:

» Dimensions of A, B very modest
> A, B quasi-symmetric (non-symmetry due to bc's)
» A, B do not depend on time step

& Matrix-oriented form all in spectral space (after eigenvector transformation)

Numerical properties:

Structural properties are preserved
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-
A numerical example of system of RD-PDEs

uy = L1(u) + fi(u, v),
vi = Lo(v) + f(u,v), with (x,y) € QCR?, t€]o,T]

Model describing an electrodeposition process for metal growth
fi(u,v) =p(A(l — v)u— A2 u® — B(v — a))

fa(u,v) = p(C(1 + kou)(1 = v)[1 = ¥(1 = v)] = Dv(1 + k3u)(1 +yv)))

Turing pattern

Joint work with M.C. D'Autilia & |. Sgura, Universita di Lecce
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-
A numerical example of system of RD-PDEs

uy = Ly(u) + fi(u,v),

vi = Lo(v) + h(u,v), with (x,y) € QCR2, t€]o,T]
Model describing an electrodeposition process for metal growth
fi(u,v) =p (Al —v)u— Az u® — B(v — a))
f2(u,v) = p(C(1+ kou)(1 = v)[1 = v(1 = v)] = Dv(1 + k3u)(1 +v)))

Turing pattern
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-
Approaches to time discretization

v = L(u)+ f(u,t), wv=u(x,y,t) with(x,y)€QCRY d=23,tecT

» Time marching schemes: classical strategies stemming from ODEs
Lead to

Sequence of (matrix) space problems at subsequent time steps J

» All-at-once schemes: time discretization similar to space discretization
(tensor basis methods)

Lead to

(Non)linear matrix equations )

_ V. Simoncini - time-dependent matrix-oriented PDEs 13/21



-
Space-Time discretizations via tensorized high order methods

» The heat equation:
ur + L(u) = f, u(0) =0, feLlyl,X)
L : X — X' elliptic op. with coercive bilinear form a : X x X — R, X = H}(Q)
Variational formulation:
findueU: b(u,v)=(f,v) forallveV,

where
trial: U := H(lo)(/'X/)ﬂLz(/‘X) test: V := Ly(/; X)
b(u,v) = fo Joq ue(t, x) v(t, x) dx dt + fo (u(t),v(t))dt (f,v):= fo Jo f(t,x) v(t,x) dx dt
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-
Space-Time discretizations via tensorized high order methods

» The heat equation:
ur + L(u) = f, u(0) =0, feLlyl,X)
L : X — X' elliptic op. with coercive bilinear form a : X x X = R, X = H}(Q)
Variational formulation:
findueU: b(u,v)=(f,v) forallveV,

where
trial: U := H(lo)(/'X/) N Ly(1; X) test: V := Ly(/; X)
b(u,v) = fo Jo ue(t, x) v(t, x) dx dt+f0 (u(t),v(t))dt (f,v):= fo Jo f(t,x) v(t,x) dx dt

» The wave equation:
ug + L(u) = f, u(0)=0,u(0)=0
Variational formulation:
findue U: b(u,v)={(f,v) forallveV

trial: U:=Ly(I;H) test: Vi={ve L(liH): ve +L(v) € La(I; H), v(T) = v(T) = 0}
b(u,v) := (u, vie + L(V)) 1,(1:1) —
J. Henning, D. Palitta, V. S., and K. Urban, 2020, 2022.
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-
Wave equation. Petrov-Galerkin discretization

For trial space Us C U, and test space V5 C V,
find us € Us :  b(us,vs) = (f,vs) forallvse VsCV

» Finite elements in time with, e.g., piecewise quadratic splines

» Conformal finite element space, e.g., piecewise quadratic B-splines
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-
Wave equation. Petrov-Galerkin discretization

For trial space Us C U, and test space V5 C V,
find us € Us :  b(us,vs) = (f,vs) forallvse VsCV
» Finite elements in time with, e.g., piecewise quadratic splines
» Conformal finite element space, e.g., piecewise quadratic B-splines
Test space: as the tensor product space’
Vs := Rar ® Zyp = span{p, = oF@¢i k=1, Ny, i=1,...Np,v= (k,i)}

Trial space: apply the adjoint operator B* to each test basis function, i.e., for = (¢, )
and £L=-A

Y= B () = B (0" @ &) = (O + L) © ¢)) = 5" ® ¢ + o' ® L(e)
i.e., (inf-sup-optimal space)

Us := B*(V5) = span{, : p=1, ..., N5}

1Rac = span{l, ..., o™} C H2, (1), Zp = span{¢1, .., én, } C HA(Q) N H(Q)
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-
The linear system. The stiffness matrix

For spaces induced by :

trial: {¢, =c'®&: p=1,..,Ns}

test: {¢, = 0" @¢;: v=1,...,Ns}

In the inf-sup optimal case ¢, = B*(,.), we get the representation

Bs) ey ki) = (8" ® ¢; + 0" @ L)), 8" @ ¢i + 0" ® L(¢7))n
= (6", ")) (9, D) () + (0" 0F) 1,01y (£(85), £(1)) L)
+ (5% 0") () (855 £(1) o) + (074 8) a0y (£(7): 9i) 1r(9)

so that
Bs=Qa: @ My+Nar @ N +Nay " @ N+ Ma, @ Qp, for ¢, = B*(p,,),

Note: Bs is symmetric and positive definite for £L = —A

Solving Bsus = g5 yields the expansion coefficients of us € Uy
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N
The stiffness matrix

Bs = Qat © My+ Na: @ N +NZ, © Ny+Ma; ® Qp, with ¢, = B*(p,)

Bs is sum of tensor products involving some ill-conditioned components

k(Bs) scales like a stiffness matrix of a 4th order problem J

= ill-conditioned linear system

= Matrices are generally dense
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N
The stiffness matrix

Bs = Qat © My+ Na: @ N +NZ, © Ny+Ma; ® Qp, with ¢, = B*(p,)

Bs is sum of tensor products involving some ill-conditioned components

k(Bs) scales like a stiffness matrix of a 4th order problem J

= ill-conditioned linear system

= Matrices are generally dense

Iterative solver with structure-aware preconditioning )

In particular, @, and?® N;,Mh_lNhT are spectrally equivalent, i.e.,

72 z,;rthh < z,TNhM;lN,Tzh <12 z,Tthh for all z, € R

2with some abuse of notation for spaces...
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-
Preconditioned Conjugate Gradients method

Bs; = Qat ® My+Nae ® Ny + NJ, @ N+ Mae ® Qp, with 1, = B*(¢,,)
Bsus = gs

P Bus; =P g;

_ V. Simoncini - time-dependent matrix-oriented PDEs 18 /21



-
Preconditioned Conjugate Gradients method

Bs; = Qat ® My+Nae ® Ny + NJ, @ N+ Mae ® Qp, with 1, = B*(¢,,)
Bsus = gs

P Bus; =P g;
Preconditioners

» Sylvester operator preconditioner
P = Qa: @ My + Ma: ® Qp
» Spectrally equivalent preconditioner

P=K{M;'Ks Ks=Na; ®My+ Mp, @ Ny, Ms= M @M,
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-
Preconditioned Conjugate Gradients method

Bs; = Qat ® My+Nae ® Ny + NJ, @ N+ Mae ® Qp, with 1, = B*(¢,,)
Bsus = gs

P Bus; =P g;
Preconditioners

» Sylvester operator preconditioner
P = Qa: @ My + Ma: ® Qp
» Spectrally equivalent preconditioner

P=K{M;'Ks Ks=Na; ®My+ Mp, @ Ny, Ms= M @M,

Matrix-oriented formulation of PCG:
AWU) =G with A(U) = M,UQ4, + N, UNJ, + N ,UNp; + Q,UMy, —
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-
An example

Uz = ?Au, u(T)=0, u(l)=uv; Q=1(0,13T=1,

c wave speed, up(r) =1,_ /5,5 (wo/lg, polar coordinates)

u is not continuous in I x Q J
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-
An example

Uz = ?Au, u(T)=0, u(l)=uv; Q=1(0,13T=1,

c wave speed, up(r) =1,_ /5,5 (wo/lg, polar coordinates)

u is not continuous in I x Q }

Comparing:

> Space-time approach with PCG (unconditionally stable discr)

» Crank-Nicolson (with standard PCG at each timestep)
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-
Numerical experiments
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N
Conclusions and outlook

» Matrix-oriented formulations

» make the use of demanding discretizations possible
» provide new perspectives also for NLA

> Multivariable (tensor) versions under consideration
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