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Abstract. Many mathematical models involve flow equations characterized by nonconstant
viscosity, and a Stokes type problem with variable viscosity coefficient arises. Appropriate block
diagonal preconditioners for the resulting algebraic saddle point linear system produce well clustered
spectra, except for a few interior isolated eigenvalues which may tend to approach zero. These outliers
affect the convergence of Krylov subspace system solvers, causing a possibly long stagnation phase.
In this paper we characterize the influence of the spectral properties of the preconditioner on the
final spectrum of the saddle point matrix, by providing accurate spectral intervals depending on the
involved operators. Moreover, we suggest that the stagnation phase may be completely eliminated
by means of an augmentation procedure, where approximate spectral eigenspace information can
be injected. We show that the modifications to the original code are minimal and can be easily
implemented. Numerical experiments confirm our findings.
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1. Introduction. Many mathematical models involve flow equations character-
ized by nonconstant viscosity. They occur, for example, in geophysical and convection
flows, where the viscosity is a function of the temperature (see, e.g., [8, 27]), or in
quasi-Newtonian (non-Newtonian) fluids motion modeling, where the viscosity may
depend on the second invariant of the rate deformation tensor and the pressure [14].
If inertia phenomena are neglected (creeping flows) and/or a linearization is applied
to these models, the following Stokes type problem with variable viscosity coefficient
arises:

−divν(x)Du + ∇p = f on Ω,

−div u = 0 on Ω,

u = 0 on ∂Ω,

(1.1)

with 0 < νmin ≤ ν(x) ≤ νmax < ∞. Here u denotes the velocity vector field, p is the
pressure; Du = 1

2 (∇u + ∇T u) is the rate of the deformation tensor, Ω is a bounded
domain in Rd.

A stable finite element or finite difference method applied to discretize (1.1) leads
to the solution of the following so-called saddle point linear system

{
Ax+BT y = f
Bx = 0

or Au = b, (1.2)

with A ∈ Rn×n and B ∈ Rm×n, m ≤ n. Since the pressure p is defined up to a
constant, the matrix B is one-rank deficient. Correspondingly, if y is sought from
appropriate subspace of Rm then (1.2) has a unique solution. For the clearness of
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presentation we assume in sections 2–3 that B has a full rank and A is nonsingular.
In this example, A is a symmetric positive definite sparse matrix, corresponding to the
diffusion vector problem. Effective preconditioning techniques try to exploit the block
form of the system; see, e.g. [2] for a general discussion on structured preconditioners
for this problem. We consider the following block diagonal preconditioner

P =

[
P 0
0 S

]
, (1.3)

where P and S are symmetric positive definite matrices, suitably chosen so that P ≈ A
and S ≈ BA−1BT . In the literature one can find geometric or algebraic multigrid
(see, e.g., [12, 20]) or domain decomposition [18, 28] iterative algorithms which provide
effective preconditioners P for matrix A if the function ν is sufficiently regular. Other
options to build P include the use of incomplete factorizations or approximate inverses;
see, e.g., [1]. The appropriate and natural choice for the preconditioner S is the
pressure mass matrix with respect to the weighted scalar product (ν−1·, ·)L2(Ω) (finite
elements) or S = diag{ν−1(xi)} (finite differences, with xi for i-th pressure grid
node), cf. [6, 10, 11, 15, 19]. In many cases, such choice of S leads to a well clustered
spectrum of the preconditioned Schur complement matrix BA−1BTS−1. However,
there are situations (cf. section 4) when the eigenvalues of BA−1BTS−1 are well
clustered except for few small outliers.

In this paper we show how the eigenvalue distribution of the preconditioned Schur
complement matrix, and in particular the presence of outliers, is accurately inherited
by the coupled preconditioned matrix AP−1. Although this particular spectral dis-
tribution frequently occurs when S is a quasi-optimal preconditioner for the Schur
complement, its effects on the spectrum of AP−1 do not appear to have been inves-
tigated in the literature. We aim to fill this gap by deriving refined spectral intervals
for AP−1 which highlight the role of all involved matrices (cf. section 2).

In general, the most visible effect of a small number of outliers on the convergence
history of the system solver is a stagnation phase. Based on our spectral analysis, we
show that approximate spectral information associated with the outliers can be very
effectively injected during the approximation by means of a Krylov subspace minimal
residual method. More precisely, we shall employ augmentation with deflation (see,
e.g., the general presentation in [25]), which requires minimal modifications to the
original algorithm (cf. section 3).

Further in section 4, we consider one particular application in the field of numer-
ical visco-plasticity to show the occurrence of outliers in the spectrum. Finally in
section 5, the theory is illustrated by numerical experiments.

2. The analysis. We analyze the spectral properties of the preconditioned linear
system with coefficient matrix AP−1. Let 0 < λ1 ≤ · · · ≤ λn be the eigenvalues of
AP−1, and let 0 < µ1 ≤ · · · ≤ µm be the eigenvalues of BA−1BTS−1. For the latter
we assume the following clustering property: With some ℓ, 0 < ℓ < m, it holds

µℓ ≤ ε0 and µℓ+1 > c0. (2.1)

Specifically, we focus on the case when ε0 ≪ c0 and ℓ≪ m. Consider the generalized
eigenvalue problem

Az = λPz. (2.2)

We are interested in the analysis of (2.2) when the preconditioned Schur complement
shows a strong clustering of eigenvalues, together with a few outlying eigenvalues close
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to zero, i.e. property (2.1). To this end, consider the equivalent eigenvalue problem

by setting w = P
1

2 z and Ã = P− 1

2AP− 1

2 :

Ãw = λw, with Ã =

[
Ã B̃T

B̃ 0

]
,

where, clearly, Ã = P− 1

2AP− 1

2 and B̃ = S− 1

2BP− 1

2 . We start with a lemma describ-
ing the spectral distribution of the matrix B̃B̃T = S− 1

2BP−1BTS− 1

2 in terms of that
of S− 1

2BA−1BTS− 1

2 .
Lemma 2.1. Let the eigenvalues of BA−1BTS−1 and of BP−1BTS−1 be ordered

increasingly. Then we have

λ1µj ≤ λj(BP
−1BTS−1) ≤ λnµj .

Proof. We can write A− 1

2BTS− 1

2 = (A− 1

2P
1

2 )P− 1

2BTS− 1

2 . Analogously, we have

P− 1

2BTS− 1

2 = (P− 1

2A
1

2 )A− 1

2BTS− 1

2 . Using standard singular value inequalities (see,
e.g., [13, Th.3.3.16]) we have

σi(P
− 1

2BTS− 1

2 ) ≤ ‖P− 1

2A
1

2 ‖σi(A
− 1

2BTS− 1

2 )

and

σi(A
− 1

2BTS− 1

2 ) ≤ ‖A− 1

2P
1

2 ‖σi(P
− 1

2BTS− 1

2 ),

where σi(X) denotes the ith singular value of X, decreasingly ordered. Recalling

that µm−i+1(BA
−1BTS−1) = σi(A

− 1

2BTS− 1

2 )2 and that λm−i+1(BP
−1BTS−1) =

σi(P
− 1

2BTS− 1

2 )2, the result follows.
Let Θ > 0 be the diagonal matrix of eigenvalues of BP−1BS−1 or, equivalently,

of B̃B̃T . The previous lemma shows that if the eigenvalues of AP−1 do not signifi-
cantly deviate from one, that is P is a good preconditioner for A, then the clustering
properties of spec(BA−1BTS−1) are inherited by spec(BP−1BTS−1). In light of this
we consider the decomposition Θ = blkdiag(Θ1,Θ2) where Θ1 > c0λ1 and Θ2 ≤ ε,
with some ε ≤ ε0λn. In particular, we can also assume that the dimensions of the
two blocks Θi, i = 1, 2 are ℓ and m− ℓ, respectively. Let

B̃T = [U1, U2]

[
Θ

1

2

1

Θ
1

2

2

]
V T

be the skinny singular value decomposition of B̃T , so that [U1, U2] is rectangular.

Then we can write the eigenvalue problem Ãw = λw as1




Ã U1Θ
1

2

1 U2Θ
1

2

2

Θ
1

2

1 U
T
1 0 0

Θ
1

2

2 U
T
2 0 0


u = λu, with u =

[
In

V T

]
w.

1We recall that in some applications B could be rank deficient. The proposed formulation could

still be exploited by using the decomposition B̃T = [U1, U2, U3] = blockdiag(Θ
1

2

1
, Θ

1

2

2
, 0)V T , and

then restricting the analysis to the first two block rows and columns of eA. Since the subsequent
steps would be the same, we directly work with the full rank case, while keeping in mind the extra
zero columns and rows in eA if needed.
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We define

M̃ =




Ã U1Θ
1

2

1 0

Θ
1

2

1 U
T
1 0 0

0 0 0


 =:

[
M

0

]

with spec(M̃) = spec(M) ∪{0}, so that

Ã = M̃ + E .

The eigenvalues of the “perturbation” matrix E can be bounded as follows.
Lemma 2.2. With the previous notation,

spec(E) ⊆ [−‖Θ2‖
1

2 , ‖Θ2‖
1

2 ] ⊆ [−ε
1

2 , ε
1

2 ].

We next use the decomposition of Ã and Lemma 2.2 to derive estimates for the
spectral interval of Ã as a perturbation of the spectral interval of M̃.

Since the matrix M is once again in saddle point form, well known results ([21])

provide sharp estimates for its spectral interval. Let θ
(i)
max, θ

(i)
min be the largest and

smallest diagonal values of Θi, that is

√
θ
(i)
max,

√
θ
(i)
min are the largest and smallest

nonzero singular values of UiΘ
1

2

i . Then it holds:

spec(M) ⊆

[
1

2

(
λ1 −

√
λ2

1 + 4θ
(1)
max

)
,
1

2

(
λn −

√
λ2

n + 4θ
(1)
min

)]

⋃[
λ1

1

2

(
λn +

√
λ2

n + 4θ
(1)
max

)]
, (2.3)

where the first interval is negative and the second one is positive.
We next recall in our notation a perturbation bound due to Weyl;, see, e.g., [26].

Theorem 2.3. Let Ã = M̃ + E, and assume all eigenvalues are sorted in de-

creasing order. Then

λi(Ã) ∈ [λi(M̃) + λmin(E), λi(M̃) + λmax(E)]

We thus get the following bound for the eigenvalues of (2.2).
Lemma 2.4. With the previous notation,

spec(Ã) ⊆

[
1

2

(
λ1 −

√
λ2

1 + 4θ
(1)
max

)
,
1

2

(
λn −

√
λ2

n + 4θ
(1)
min

)
+ ε

1

2

]

⋃[
λ1,

1

2

(
λn +

√
λ2

n + 4θ
(1)
max

)]⋃[
−ε

1

2 , λn −

√
λ2

n + 4θ
(2)
min

]

Moreover, for sufficiently small ε at most ℓ eigenvalues of Ã are in the interval[
−ε

1

2 , λn −

√
λ2

n + 4θ
(2)
min

]
.

Proof. Applying Theorem 2.3, Lemma 2.2, (2.3) and recalling that spec(M̃) =
spec(M) ∪{0}, we get the following bounds

spec(Ã) ⊆

[
1

2

(
λ1 −

√
λ2

1 + 4θ
(1)
max

)
− ε

1

2 ,
1

2

(
λn −

√
λ2

n + 4θ
(1)
min

)
+ ε

1

2

]

⋃[
λ1 − ε

1

2 ,
1

2

(
λn +

√
λ2

n + 4θ
(1)
max

)
+ ε

1

2

]⋃[
−ε

1

2 , ε
1

2

]
. (2.4)
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Since 0 is the eigenvalue of multiplicity ℓ for M, at most ℓ eigenvalues of Ã are in
the third interval if there is no intersection with the first interval. The latter holds

for sufficiently small ε such that 4ε
1

2 <

√
λ2

n + 4θ
(1)
min − λn. Further, the standard

estimates ([21]) imply

spec(Ã) ⊆

[
1

2

(
λ1 −

√
λ2

1 + 4θ
(1)
max

)
,
1

2

(
λn −

√
λ2

n + 4θ
(2)
min

)]

⋃[
λ1,

1

2

(
λn +

√
λ2

n + 4θ
(1)
max

)]
.

The intersection of (2.4) and (2.5) yields the result.

Since the clustering property of the modified preconditioned Schur complement is
tightly related to that of the original preconditioned Schur complement, the spectral
intervals can be written in terms of the latter one, yielding our main result.

Theorem 2.5. Let 0 < λ1 ≤ · · · ≤ λn be the eigenvalues of AP−1, and let

0 < µ1 ≤ · · · ≤ µm be the eigenvalues of BA−1BTS−1 and assume that (2.1) holds.

The following inclusion holds

spec(Ã) ⊆

[
1

2

(
λ1 −

√
λ2

1 + 4λnµm

)
,
1

2

(
λn −

√
λ2

n + 4λ1µℓ+1

)
+ (ε0λn)

1

2

]

⋃[
λ1,

1

2

(
λn +

√
λ2

n + 4λnµm

)]⋃[
−(ε0λn)

1

2 , λn −
√
λ2

n + 4λ1µ1

]

For sufficiently small ε0 at most ℓ eigenvalues of Ã are in the third interval.

Proof. From Lemma 2.1 we know that θ
(i)
j ≤ λnµ

(i)
j and θ

(i)
j ≥ λ1µ

(i)
j , j =

1, . . . ,m. The proof follows from substituting these inequalities in the bounds of
Theorem 2.4 and recalling that ε ≤ ε0λn.

Theorem 2.5 shows that if the eigenvalues of AP−1 are well clustered, and if the
eigenvalues of the preconditioned Schur complement satisfy (2.1), then most eigenval-
ues of the preconditioned saddle point matrix are contained in the first two intervals, of
small size and away from zero, whereas only at most ℓ eigenvalues may approach zero,
in a way that depends on the magnitude of the eigenvalues in µk, with k ≤ ℓ. In par-

ticular, for ε0 → 0, the right extreme of the interval
[
−(ε0λn)

1

2 , λn −
√
λ2

n + 4λ1µ1

]

behaves like −µ1, with µ1 ≤ ε0.
It is also important to realize that the clustering of the remaining eigenvalues

strongly depends on the quality of the employed preconditioner. Thus if P is a poor
approximation to A, then, say, small positive eigenvalues may still arise; One such
example is reported in section 5.

Remark 2.6. In terms of eigenvalues of AP−1 and BA−1BTS−1 the upper bound
for the negative part of spec(Ã) can be slightly improved (cf. [24], eq. (2.18)). Thus

the third interval from theorem 2.5 can be changed to
[
−(ε0λn)

1

2 , λ1 −
√
λ2

1 + 4λ1µ1

]
.

However, we do not see a direct argument enabling us to improve accordingly the
upper bound in the first interval from Theorem 2.5.

3. Augmented Krylov subspace solver. Let P = LLT be the Cholesky fac-
torization of the preconditioner, and let Â = L−1AL−T be the symmetrically pre-
conditioned matrix. We are thus lead to solve the following symmetric indefinite
system

Âû = b̂, b̂ = L−1b, u = L−T û, (3.1)
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by means of the Krylov subspace method MINRES (MINimal RESidual method),
which minimizes the residual norm at each iteration. We next describe how (approx-
imate) eigenspace information associated with outlying eigenvalues may be injected
into the approximation space to possibly eliminate the stagnation phase caused by
the outliers. The analysis in the previous section shows that for the considered prob-
lem an outlying set of eigenvalues may exist; moreover, due to the properties of the
preconditioner, it is possible to identify the eigenspace responsible for the convergence
delay and to construct an effective augmented approximation space; see section 5.

Our approach consists in judiciously augmenting the approximation space by in-
cluding the approximate eigenspace. This procedure is inspired by that for the Con-
jugate Gradient algorithm in [23], although here an indefinite problem is considered,
so that a different approximation strategy is required. We refer to [25] for a discussion
on other augmentation and deflation strategies.

Assume that an approximation to an eigenspace of Â is available, and let the
orthonormal columns of the matrix Y span such space. The augmented-deflated
Lanczos algorithm builds a sequence {vj}, j = 1, 2, ... of vectors such that

vj+1 ⊥ span{Y, v1, v2, ..., vj} (3.2)

with ‖vj+1‖ = 1; In the following we shall use Vj := [v1, . . . , vj ]. To obtain such a
sequence, we apply the standard Lanczos procedure, see, e.g., [9, 22], to the auxiliary
matrix

G := Â − ÂY (Y T ÂY )−1Y T Â,

with the initial vector given by v1 = r0/‖r0‖, where r0 = b̂ − Âû0 is the residual

associated with the starting approximation û0. In case the matrix Y T ÂY is singular,
its pseudoinverse is used in place of the inverse2. To ensure that v1 is orthogonal to
Y , we take as starting approximation

û0 = Y (Y T ÂY )−1Y T b̂, (3.3)

giving Y T r0 = Y T b̂ − Y T Âû0 = 0. It can be shown by induction that vT
j+1Y = 0

so that the obtained basis in (3.2) is indeed orthogonal. The computed augmented

Krylov subspace is denoted by Kj(Â, Y, v1). A Minimal Residual method determines

an approximate solution ûj ∈ û0 + Kj(Â, Y, v1) by requiring that the residual rj =

b̂− Âûj be orthogonal to GKj(Â, Y, v1).
The following result shows how ûj can be computed so as to obtain a residual

minimizing approximate solution.
Proposition 3.1. Under the previous notation, let ûj = û0 + Y z1 + Vjz2. If

z1 = −(Y T ÂY )−1Y T ÂVjz2, then

b̂− Âûj ⊥ GKj(Â, Y, v1) iff z2 = arg

(
min
z∈Rj

‖r0 − GVjz‖

)
.

Proof. Let Wj = [Y, Vj ], so that the columns of Wj span the Krylov subspace

Kj(Â, Y, v1), and let ûj = û0 +Wjζ = û0 + Y z1 + Vjz2. We observe that Y TG = 0

2To cope with round-off errors, it is advisable to include the eigenvector corresponding to the
zero eigenvalue. This is carried out by appropriately modifying the computed pseudoinverse.
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by definition of G, therefore it is sufficient to impose the condition on GVj . Using

z1 = −(Y T ÂY )−1Y T ÂVjz2, we have

0 = V T
j Grj = V T

j G(r0 − ÂY z1 − ÂVjz2) (3.4)

= V T
j G(r0 − (Â − ÂY (Y T ÂY )−1Y T Â)Vjz2) = V T

j G(r0 − GVjz2), (3.5)

which is the solution to the minimization problem minz∈Rj ‖r0 − GVjz‖.
We stress that because the solution is approximated in the space generated by

both Y and Vj , that is the components onto Y are not only simply deflated by using
G, it is not necessary that Y be an extremely good approximation to the critical
eigenvectors. The inclusion of this information to the space appears to be beneficial
even when augmentation is performed with rather poor eigenvector approximations.

Due to the preceding derivation, the changes to the standard MINRES code are
minimal and they can be summarized as follows:

1. The initial approximation is given by (3.3);
2. The coefficient matrix is formally given by G, so that matrix-vector products

are computed as Gv = Âv − ÂY (Y T ÂY )−1Y T Âv. To limit the number of

matrix-vector multiplies with Â, the matrices Y1 = ÂY and T = (Y TAY )−1

could be explicitly computed and saved once for all at the beginning;
3. The regular approximate solution update ûj+1 = ûj + pjaj (see3 , e.g., [9,

Algorithm 4]) is modified as follows, to take into account the definition of z1
in Proposition 3.1:

ûj+1 = ûj + pjaj − Y (Y T ÂY )−1Y T Âpjaj .

In many cases, symmetrically preconditioning the problem as in (3.1) may be
unfeasible; this occurs for instance when Multigrid or Multilevel methods are used to
approximate some of the relevant matrix blocks. In this case, a MINRES algorithm
can be implemented that only requires solves with P, rather than with its factors; see,
e.g., [7, 16]. Corresponding modifications to the code may be included to ensure that
the wanted space is deflated. A possible algorithm describing the whole procedure
is given next. The presented version is based on a Matlab implementation of the
MINRES code that can be found at

http://www.stanford.edu/group/SOL/software/minres.html

See also [7, 16]. The additional operations associated with augmentation are reported
in bold face. Note that here, as opposed to the derivation in the symmetrized case,
Y is an approximation to eigenvectors of P−1A to be deflated. If approximations Y0

to selected eigenvectors of L−1AL−T are available, then Y = L−TY0 should be used.

Algorithm Augmented minres

Given A, b, maxit, tol, P , and Y with orthonormal columns
u = Y(YTAY)−1YTb starting approximation
r = b−Au, r1 = r, y = P−1r
β1 =

√
rT y

β = β1, β0 = 0, d̄ = 0, e = 0, φ̄ = β1, χ1 = β1, χ2 = 0
c = −1, s = 0, i = 0, w = 0, w2 = 0, r2 = r1
while (i < maxit)
i = i+ 1

3Note however a shift in the indexing for consistency with our notation.

7



v = y/β;
y = Av −AY(YTAY)YTAv

if i ≥ 2, y = y − (β/β0)r1
α = vT y
y = y − r2α/β
r1 = r2, r2 = y
y = P−1r2
β0 = β, β =

√
rT
2 y

e0 = e, δ = cd̄+ sα ḡ = sd̄− cα e = sβ d̄ = −cβ
γ = max{‖[ḡ, β]‖, e} c = ḡ/γ, s = β/γ, φ = cφ̄, φ̄ = sφ̄
w1 = w2, w2 = w
w = (v − e0w1 − δw2)γ

−1

g = Y(YTAY)−1YTAwφφφ
u = u−g + φw
ζ = χ1/γ, χ1 = χ2 − δz, χ2 = −eζ
Check preconditioned residual norm (φ̄) for convergence

end

4. Variable viscosity and clustering effect. In this section we consider the
particular example of the Stokes type problem with variable viscosity (1.1) and discuss
why outliers may occur in the spectrum of BA−1BTS−1. Numerical examples in
section 5 show that the scenario with few outliers and a well clustered remainder of
spec(BA−1BTS−1) is obtained in practice. Thus assume conforming LBB-stable finite
element spaces Vh ⊂ H1

0(Ω) and Qh ⊂ L2(Ω) for velocity and pressure are employed.
Let {φi}1≤i≤n and {ψj}1≤j≤m be nodal bases of Vh and Qh, respectively. Define the
matrices A = {Ai,j} ∈ Rn×n, B = {Bi,j} ∈ Rm×n, and S = {Si,j} ∈ Rm×m with

Ai,j = (νDφj ,Dφi), Bi,j = −(divφj , ψi), Si,j = (ν−1ψj , ψi).

Here and further (·, ·) denotes the L2(Ω) scalar product.

Due to the relation 〈BA−1BT y, y〉 = supx∈Rn
〈B x,y〉2

〈A x,x〉 , the bounds on the eigen-

values of preconditioned Schur complement BA−1BTS−1 are given by the constants
c2min and c2max from

c2min〈S y, y〉 ≤ sup
x∈Rn

〈B x, y〉2

〈Ax, x〉
≤ c2max〈S y, y〉 ∀ y ∈ Rm. (4.1)

These relations can be rewritten as

cmin‖qh‖ ≤ sup
vh∈Vh

(divvh, qh)

‖ν
1

2 Dvh‖
≤ cmax‖qh‖ ∀ qh ∈ Qh. (4.2)

One easily finds cmin = 0 and using Cauchy inequality cmax = d. If ν = const and
one considers only such qh ∈ Qh in (4.2) that

∫
Ω
qhdx = 0, then cmin ≥ clbb > 0

with some h-independent constant clbb for finite elements satisfying the LBB stability
condition [5]; here h denotes a mesh-size parameter. Hence, for the variable viscosity
case a similar result easily follows with c2min ≥ νminν

−1
maxc

2
lbb > 0. In practice, however,

the ratio of viscosity variation ν−1
minνmax can be very large leading to a poor spectrum

estimate. A better insight into the spectrum properties can be gained at the contin-
uous level, and it is based on the following result from [11]:
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Assume ν is sufficiently smooth and ∂Ω is sufficiently regular , then the estimate

cν‖ν
− 1

2 q‖ ≤ sup
v∈H1

0
(Ω)

(q,divv)

‖ν
1

2 Dv‖
, (4.3)

holds for any q ∈ L2(Ω) such that

(q, ν−1) = (q, ν−
1

2 ) = 0, (4.4)

with

d = 2 : cν = c0(1 + c ‖ν
1

2 ‖Lk‖∇ν−
1

2 ‖Lr ) ∀ k > 2, r > 2k(k − 2)−1

d = 3 : cν = c0(1 + c ‖ν
1

2 ‖Lk‖∇ν−
1

2 ‖Lr ) ∀ k > 3, r = 3k(k − 3)−1

Here constants c0 and c depend only on Ω and possibly on k, r, cf. [11].
The result in (4.3) is the continuous counterpart of the lower bound in (4.2). Thus

for LBB stable discretizations one may expect that a lower bound in (4.1) holds with
cmin exhibiting similar dependence on (the norms of) ν as cν . In general, this leads to
a better lower bound (much better in some cases, see further discussion) than those
given by νminν

−1
maxc

2
lbb. The side effect is, however, that two orthogonality conditions

(cf. (4.4)) have to be satisfied by the pressure function. By the Courant-Fischer
representation theorem the restriction of the estimate to a subspace of co-dimension
2 means that two outliers (one eventually equals 0) can occur in spec(BA−1BTS−1).
Furthermore, if a decomposition of Ω into subdomains is given and one applies the
result in (4.3) in every subdomain (the resulting constant is the minimum of corre-
sponding constants in subdomains, see Lemma 3.4 in [11]) then the number of the
orthogonality conditions would be twice the number of subdomains. Hence the num-
ber of uncontrolled eigenvalues, i.e. possible outliers, increases accordingly.

We consider the saddle point system resulting from the discretization of the
Bercovier-Engelman regularized model of the Bingham viscoplastic fluid [3, 4]. In
this model, the effective viscosity depends on the rate of deformation tensor as

ν(x) = 2µ+
τs√

ε2 + |Du(x)|2
(4.5)

with plastic viscosity and yield stress constants µ > 0 and τs ≥ 0. For modeling
reasons the regularization parameter ε > 0 should be small enough to ensure that the
quasi-Newtonian fluid described by (1.1) and (4.5) well approximates the viscoplastic
medium. If the problem is linearized (on every non-linear iteration or time step) by
letting u(x) in (4.5) to be a known velocity field, then a stable discretization brings
us to problem (1.2).

Now we can find bounds for eigenvalues of BA−1BTS−1 for a particular example
of viscoplastic Bingham flow in a 2D channel (one of the few viscoplastic flows with
known analytical representation): Let µ = 1, τs ∈ [0, 1

2 ], Ω = (0, 1)2, and u = (u, v)
with

u =





1
8 (1 − 2τs)

2 if 1
2 − τs ≤ y ≤ 1

2 + τs,

1
8

[
(1 − 2τs)

2 − (1 − 2τs − 2y)2
]

if 0 ≤ y < 1
2 − τs,

1
8

[
(1 − 2τs)

2 − (2y − 2τs − 1)2
]

if 1 ≥ y > 1
2 + τs,

v =0, p = −x.

(4.6)
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One can clearly indicate the rigid behavior of a fluid (a constantly moving kernel) for
1
2 − τs ≤ y ≤ 1

2 + τs and a flow region for y < 1
2 − τs and y > 1

2 + τs.
We substitute the velocity from (4.6) in (4.5), so the coefficient ν(x) is now given.

One easily finds νmin = O(1), νmax = O(ε−1). Furthermore, we decompose Ω into
three subdomains: Ω1 equal to the rigid zone; Ω2 and Ω3 are two flow regions. As
explained earlier, by estimating ‖ν

1

2 ‖Lk and ‖∇ν−
1

2 ‖L∞ in each subdomain for the
constant cν in (4.3) one gets cν ≥ c(s)ε−s for any s > 0 subject to six orthogonality
conditions (two for each subdomain) for the pressure variable q. If we assume that
a similar estimate is enjoyed by the constant from the discrete counterpart of (4.3),
then the Courant-Fischer representation theorem gives

µ1 = 0, c ε < µ2 ≤ µ3 ≤ · · · ≤ µm ≤ d and c(s)ε−s ≤ µ7. (4.7)

Thus the behavior of spec(BA−1BTS−1) in this example becomes clearer: For small
values of ε there can occur at most six small outliers, other eigenvalues are well-
clustered. Numerical calculations in the next section show that estimate (4.7) can
be still non-optimal – in practice the number of outliers is smaller, only 2 outliers
are observed, while other eigenvalues are clustered and µ3 stays well-separated from
0 as ε → 0. Thus (4.7) implies that (2.1) holds with some ℓ < 7 and the result of
Theorem 2.5 can be applied.

5. Experimental evidence. In this section, we show results of few numerical
experiments for the variable viscosity problem described in the previous section. The
goal of these experiments is to illustrate the analysis of the paper and to report on
the performance of the augmented method. For the discretization we apply the finite
element method with isoP2-P1 elements for the velocity-pressure spaces Vh–Qh. This
pair of spaces satisfies the LBB stability condition. The discretization is done in
Ω = (0, 1)2 using uniform triangulation with mesh-size h.

Table 5.1

Eigenvalues of BA−1BT S−1 and of AP−1.

ε µ1 µ2 µ3 µmax δ λmin(AP−1) λmax(AP−1)

10−4 0 7.543 10−3 4.456 10−2 1.687 10−3 0.30768 1.435

10−2 0.06342 1.812

10−5 0 7.725 10−4 4.260 10−2 1.494 10−3 0.31494 1.428

10−2 0.06412 1.753

Table 5.2

Eigenvalues of AP−1.

ε δ λmin λm−2 λm−1 λm λm+1 λmax

10−4 10−3 -0.860 -0.0427 -0.00739 0 0.36043 2.043

10−2 -0.785 -0.0423 -0.00693 0 0.0820 2.357

10−5 10−3 -0.791 -0.0409 -7.7 10−4 0 0.35277 2.021

10−2 -0.712 -0.0406 -7.65 10−4 0 0.07565 2.267

First, we aim to confirm the existence of the outliers in the spectrum of the pre-
conditioned Schur complement matrix for the example of the regularized Bingham
flow in the channel from the previous section for sufficiently small values of parameter
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Fig. 5.1. Convergence histories for preconditioned MINRES with and without deflation for
different values of the regularization parameter ε.

ε. Here and further we set τ = 0.3 and consider two grids: The coarse one corresponds
to h = 1

16 resulting in n = 1922, m = 289, and the fine grid corresponds to h = 1
32

resulting in n = 7938, m = 1089. Few smallest and the largest µ ∈ sp(BA−1BTS−1)
are shown in Table 5.1 for h = 1

16 (similar values were found for the finer mesh).
Although up to six outliers are allowed by the analysis of the previous section, only
two occur in practice. The preconditioner for the velocity block is defined through
the Matlab incomplete Cholesky (IC) routine cholinc(A,δ). The parameter δ spec-
ifies the fill-in of the Cholesky decomposition factors. We use δ ∈ {0, 10−3, 10−2},
where δ = 0 corresponds to the exact factorization. The preconditioning quality for
δ ∈ {10−3, 10−2} can be assessed by inspecting the extreme eigenvalues of AP−1 in
Table 5.1. The resulting distribution of the eigenvalues of the preconditioned coupled
system AP−1 is shown in Table 5.2.

The presence of the outliers may cause the stagnation period in the convergence
history of a Krylov subspace method. Moreover, if the outlying values go to zero (as
happens in our example) the stagnation phase may prolong. Both phenomena are
well visible in Figure 5.1 (left). The stagnation periods form plateaus in the con-
vergence plots for the MINRES method residual with various values of ε. Here and
later on, the iterations were stopped once the ℓ2-norm of the initial residual was re-
duced by 107. To cope with the influence of the outliers on the MINRES convergence
we consider the augmentation strategy from section 3. The deflated MINRES needs
(approximate) eigenvector corresponding to λm−1(AP−1). Although the influence of
λm(AP−1) = 0 is formally avoided by choosing the initial vector from the appropriate
subspace, one may also wish to include the corresponding eigenvector in the augmen-
tation step to dampen the resurgence of that eigencomponent due to round-off. While
the eigenvector for λm(AP−1) is easy to compute (see below), computing accurately
the eigenvector {xm−1, ym−1}

T for λm−1(AP−1) is expensive, in general.

Thus we look for a simple approximation to {xm−1, ym−1}
T . Observe the second

pressure eigenfunction p2 of the (left) preconditioned Schur complement in Figure 5.2,
i.e. S−1BA−1BT p2 = µ2p2. The function is constant in flow regions and varies in
the rigid region on the fluid, suggesting that the following simple approximation to
p2 could be appropriate:

p̃2 =





0 if 1
2 − τs ≤ y ≤ 1

2 + τs,

1 if 0 ≤ y < 1
2 − τs,

−1 if 1 ≥ y > 1
2 + τs.
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Fig. 5.2. Second pressure eigenfunction for S−1BA−1BT .

Note that the particular scaling of p2 is not important. With u2 = (λ2 − 1)A−1BT p2

the vector {u2, p2}
T is the eigenvector of P−1A. Since in practice λ2 is not known,

though small, and A−1 is too expensive to apply exactly, we use

{ũ2, p̃2}
T ≈ {u2, p2}

T , with ũ2 = −P−1BT p̃2

for augmented MINRES. We found this choice particularly effective. We conjecture
that for more general viscoplastic flows the number of outliers matches the number
of flow disconnected regions and the approximate eigenvectors can be built accord-
ingly. Moreover, we note that the second pressure eigenfunction found for coarse grid
problem looks very similar to the fine grid eigenfunction shown in figure 5.2. Thus
in practice, it may be also recommended to take a computable coarse grid pressure
eigenfunction as the approximation on a fine grid. The first augmentation eigenvec-
tor, {u1, p1}

T = {0, 1}T , corresponds to the hydrostatic pressure mode. Figure 5.1
(right) shows convergence histories of deflated MINRES, where the approximate sec-
ond eigenvector is used for the augmentation.
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Fig. 5.3. Convergence histories for preconditioned MINRES with and without deflation for
different values of the fill-in parameter δ in the IC preconditioner for the A block.

Figure 5.3 illustrates the influence of inexact A block preconditioning on the
convergence of the standard and deflated MINRES method. As expected, larger δ,
that is a poorer approximation to A, yields slower convergence. Nevertheless, the
influence of small outliers and the cure by deflation can still be fully appreciated
even for larger δ. Here we used the coarse mesh and approximate eigenvectors for
augmentation. We also compute exact eigenvectors. It appears that the convergence
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Fig. 5.4. Convergence histories for preconditioned MINRES with and without deflation for
different values of δ in the IC preconditioner for the A block on a finer grid (h = 1/32). Left:
deflated and non-deflated MINRES. Right: different numbers of deflation vectors.

curves of deflated MINRES with approximate and exact eigenvectors almost coincide
in this example.

Finally, we repeat the same experiment with varying δ on the finer mesh. The
results are shown in the left plot of Figure 5.4. Compared to the coarse grid, the
following new phenomena are observed in this case: The Cholesky factorization with
δ = 10−2 provides a too poor preconditioner for the A block and in addition to a
small negative outlier a small positive eigenvalue emerges in the spectrum of P−1A.
In this case, the four eigenvalues smallest in magnitude are

−0.0405, −0.000747, 0, 0.0158.

The influence of the small positive eigenvalue becomes apparent in the convergence
history. Thus the right plot in Figure 5.4 shows the convergence of the usual MINRES
and deflated MINRES, where the augmentation is done (i) with two exact eigenvectors
corresponding to λm and λm−1, (ii) with three exact eigenvectors corresponding to
λm, λm+1 and λm−1, and (iii) with two approximate eigenvectors corresponding to λm

and λm−1. It appears that the use of approximate eigenvectors partially ameliorates
the influence of both smallest positive and negative eigenvalues. We note that in
practice, the typical choice of preconditioner for the A block is a multigrid method,
see e.g. [6, 10]. Although less convenient for illustrative spectral analysis of this
section, this choice leads to spectral bounds largely insensitive to the mesh size. In
this case, the algorithm described in section 3 should be employed.

Numerical experiments were also performed using a different regularization model
for the Bingham fluid from [17]. In that model, the effective viscosity is defined
through

ν(x) = 2µ+ τs

(
1 − exp(− |Du(x)|

ε
)

|Du(x)|

)
,

where ε > 0 is the regularization parameter. Since all qualitative results of these
experiments were the same, we do not report them here.

6. Conclusions. We showed that properties associated with clusters and out-
liers in the preconditioned Schur Complement matrix are favorably inherited by the
spectrum of the preconditioned saddle point problem. To this end, we provided a
quantitative description of the refined spectral intervals. We also proposed a strategy
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to deal with the emerging outlying eigenvalues so that their delaying action is com-
pletely removed from the convergence history of an optimal Krylov subspace method.
Numerical experiments fully confirmed our findings while displaying the good perfor-
mance of the MINRES algorithm when approximate eigenvector information associ-
ated with the outlying eigenvalues is included.
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