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Abstract. For large square matrices A and functions f , the numerical approximation of the
action of f(A) to a vector v has received considerable attention in the last two decades. In this
paper we investigate the Extended Krylov subspace method, a technique that was recently proposed
to approximate f(A)v for A symmetric. We provide a new theoretical analysis of the method,
which improves the original result for A symmetric, and gives a new estimate for A nonsymmetric.
Numerical experiments confirm that the new error estimates correctly capture the linear asymptotic
convergence rate of the approximation. By using recent algorithmic improvements, we also show
that the method is computationally competitive with respect to other enhancement techniques.

1. Introduction. Given a large matrix A ∈ R
n×n (or C

n×n when explicitly
stated) and a vector v ∈ R

n, we are interested in the approximation of

u = f(A)v, (1.1)

where f is a function that is sufficiently regular so that f(A) is well defined. More
precise classes of functions will be introduced later. Without loss of generality we also
assume that ‖v‖ = 1. We stress that the problem of approximating the action of f(A)
to a vector is significantly different from that of approximating f(A). In particular,
for large-scale problems the computation of f(A) is not feasible since, although A
may be a sparse matrix, f(A) is dense in general. We refer to the recent monograph
of Higham ([27]) for a detailed account of the algorithmic and theoretical progress in
the computation of f(A).

The development of numerical procedures for approximating the action of f(A) to
a vector has received considerable attention in the last two decades. This is possibly
related to the significant increase of methods for the numerical solution of partial
differential equations that either directly approximate the exact solution (see, e.g.,
[20], [47], [24], [23]), or employ matrix functional integrators; see, e.g., [30], [28],
[29]. In addition, large-scale advanced scientific applications often require function
evaluations of matrices; see, e.g., [5], [43], [55], [17].

For large A, a now standard way of approximating (1.1) consists of projecting the
original problem onto a subspace of much smaller dimension, which for conveniency
reasons is taken to be the Krylov subspace associated with A and v [13], [15], [34], [48].
For particularly challenging problems, however, an unacceptably large approximation
space may be required to obtain a sastisfactory approximation. This difficulty has lead
to the study of enhancement techniques that aim either at enriching the approximation
space or at making the overall procedure less expensive [4], [16], [18], [22], [33], [39],
[40], [41], [46], [54].

In this paper we investigate the Extended Krylov subspace method, a technique
that was proposed in [16]. By using recent algorithmic improvements developed in
[50], we show that the method is competitive with respect to other enhancements
techniques. Moreover, we provide a new theoretical analysis of the method, which
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improves the result in [16] for A symmetric, and gives a new estimate for A nonsym-
metric. We show with numerical experiments that the new error estimates correctly
capture the linear asymptotic convergence rate of the approximation.

Our theoretical analysis considers the class of (Markov) functions f that can be
written as

f(z) =

∫ 0

−∞

dµ(ζ)

z − ζ
, z ∈ C\−]∞, 0], (1.2)

where µ is a (possibly signed) measure such that the absolute convergence of the
integral takes place. The results can also be applied to a linear combination of such
integrals with monomials λℓ, ℓ ∈ Z as coefficients. This is the case, for instance, for
functions such as λα with α ∈ R\Z, exp(−

√
λ), tanh(

√
λ)/
√

λ [13]; see also [21], [33]
for a similar framework and for further examples. Nonetheless, we stress that the
algorithm is also effective when used with other functions that do not belong to this
class, as is the case, for instance, for f(λ) = exp(−λ); see, e.g., [45], [1].

A synopsis of the paper is as follows. In section 2 we describe the method with
some algorithmic details. In section 3 we provide a new convergence analysis of the
Extended Krylov subspace method; in section 3.1 and in section 3.2 we specialize
our theory to the case of A symmetric and nonsymmetric, and we provide numerical
evidence of the accuracy of our asymptotic bounds. In section 4 we compare our
method with the Standard Krylov subspace, and with another acceleration method,
the shift-invert Lanczos.

We end this section with some notation. In the following, ‖x‖ is the standard
Euclidean norm for vectors, induced by the usual inner product. With xT (x∗) we
denote the tranpose (conjugate transpose) of a vector x. With W (A) we denote the
field of values, or numerical range, of an n× n matrix A, that is W (A) = {x∗Ax, x ∈
C

n, ‖x‖ = 1}.
2. The method. Given a space K and a matrix V such that range(V ) =

K, an approximation to (1.1) may be obtained as f(A)v ≈ V f(V T AV )V T v. A
method that has been used since the 1980s employs the Krylov subspace Kk(A, v) =
span{v,Av, . . . , Ak−1v} as approximation space K [42], [13], [53]; note that these
spaces are nested, that is Kk(A, v) ⊆ Kk+1(A, v), so that Kk+1(A, v) may be ob-
tained from Kk(A, v) by adding a single vector to the basis.

Let Vk = [v1, . . . , vk], where the set {v1, . . . , vk} is an orthonormal basis of
Kk(A, v) generated by a Gram–Schmidt process. We thus obtain

f(A)v ≈ Vkf(Hk)e1, (2.1)

where Hk = V T
k AVk is an upper Hessenberg matrix, and V T

k v = e1, in which e1 is
the first column of the identity matrix whose dimension is clear from the context. We
shall refer to the approximation in (2.1) as the Standard Krylov method, and it reduces
to the Spectral Lanczos decomposition method (or SLDM) when A is symmetric (see,
e.g., [13], [48]), so that Hk is also symmetric and thus tridiagonal.

The general description above suggests that the approximation space K could
contain more information than that of the regular Krylov subspace Kk(A, v). To
this end, it was proposed in [16] for A symmetric to generate a sequence of extended
approximation spaces that contain information on both A and A−1, that is

span{v,A−1v,Av,A−2v,A2v,A−3v, . . .}.
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The algorithm [16] proceeds by first running k steps of a Lanczos process with A−1,
and then continuing with m iterations of a Lanczos process with A, while maintain-
ing orthogonalization among all generated vectors in the sequence. Then an approx-
imation to (1.1) is obtained by projection and restriction in the generated space of
dimension k + m− 1.

In [50] an alternative implementation of this method was proposed. Starting
with the pair {v,A−1v}, in [50] a block Arnoldi-type method is used to generate an
orthonormal basis of the extended subspace, by adding two vectors at the time, one
multiplied by A, and one by A−1. The new procedure is very general and it also
applies for A nonsymmetric. Let the columns of Vm span the extended subspace of
dimension 2m, and let Tm = VT

mAVm. Once the approximation space is built, the
approximate solution may be obtained as

um = Vmf(Tm)e1.

It is important to realize that the matrix Tm may be constructed iteratively, without
additional multiplications by A; see [50, Proposition 3.2]. The iterative update of Tm

makes the algorithm much more efficient, compared with the original implementation
in [16], where the number of applications of A−1 was fixed a-priori and presumably
small. We remark that such an implementation was proposed in [50] as an accelera-
tion procedure for solving the Lyapunov equation, therefore its use in the context of
matrix functions was not explored.

An outline of the Extended Krylov Subspace Method (EKSM) is given next. Here
gram sh implements the Gram–Schmidt procedure to orthogonalize the columns of the
given matrix.

Given v, A, set V1 = gram sh([v,A−1v]), V0 = ∅.
For m = 1, 2, . . . ,
1. Vm = [Vm−1,Vm]
2. Set Tm = VT

mAVm

3. Compute ym = f(Tm)e1

4. If converged then um = Vmym and stop
5. V′

m+1 = [AVme1, A
−1Vme2]

6. V̂m+1 ← orthogonalize V′
m+1 w.r.to Vm

7. Vm+1 = gram sh(V̂m+1)

At each iteration of this process, two new vectors are added to the space. Unless
breakdown occurs (cf. Proposition 2.1), at the mth iteration the method has con-
structed an orthonormal basis of dimension 2m, given by the columns of the matrix
Vm = [V1,V2, . . . ,Vm], Vi ∈ R

n×2, and Km := Range(Vm). The orthogonalization
is performed first with respect to the previous basis vectors, and then within the new
block of 2 vectors. It is also interesting that the matrices Vk, k = 1, 2, . . . formally
satisfy the following Arnoldi-like recurrence,

AVm = VmTm + Vm+1τττm+1,mET
m, (2.2)

where Em contains the last 2 columns of the identity matrix of dimension 2m, and
τττm+1,m = VT

m+1AVm; see [16] for a similar relation. At each iteration (cf. step 3),
the function of a small 2m×2m matrix is computed with methods for dense matrices.
In the absence of a method specifically developed for these purposes, and if Tm is
diagonalizable, the eigenvalue decomposition of the matrix Tm is used to compute
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f(Tm); see, e.g., [27], [32]. Only at convergence (step 4), the approximate solution is
constructed as

um = Vmym. (2.3)

Next Proposition shows that in exact arithmetic, the full rank of the costructed
basis is ensured as long as the associated space keeps growing.

Proposition 2.1. Let Vj = [v
(1)
j , v

(2)
j ], j = 1, . . . ,m. With the previous nota-

tion, if

dim(span{A−mv, . . . , Am−1v}) = 2m,

then for 1 ≤ j ≤ m

v
(1)
j = pj−1(A)v + qj−1(A

−1)v, v
(2)
j = rj−1(A

−1)A−1v + sj−1(A
−1)v,

where deg pj−1 = deg rj−1 = j − 1, deg qj−1 ≤ j − 1, deg sj−1 ≤ j − 1, and no
premature termination takes place.

Proof. In the following we use the notation l.c.{Akv, . . . , Ajv} with k ≤ j to
denote any linear combination of the given vectors with (possibly negative) powers of
A from k to j. Analogously, we use l.c.{v1, . . . , vk} to denote a linear combination of
k given vectors.

We proceed by induction on m. For m = 1 we have v
(1)
1 = v = p0(A)v and

v
(2)
1 = cA−1v +l.c.{A0v} = r0(A

−1)A−1v +s0(A)v, with c 6= 0. This proves the claim
for m = 1.

We proceed with m + 1. We have

Av(1)
m = Apm−1(A)v + Aqm−1(A

−1)v = cAmv + l.c.{A−m+2v, . . . , Am−1v},
with c 6= 0 since deg pm−1 = m − 1. Orthogonalization with respect to the previous

vectors v
(1)
j , v

(2)
j , j = 1, . . . ,m gives

cAmv + l.c.{A−m+2v, . . . , Am−1v}+ l.c.{v(1)
1 , . . . , v(2)

m }
= cAmv + l.c.{A−mv, . . . , Am−1v} 6= 0,

owing to linear independence. Thus v
(1)
m+1 = pm(A)v + qm(A−1)v, with deg pm = m.

Analogously, we obtain

A−1v(2)
m = A−1rm−1(A

−1)A−1v + A−1sm−1(A)v

= cA−m−1v + l.c.{A−mv, . . . , Am−2v}, c 6= 0.

Orthogonalization with respect to v
(1)
j , v

(2)
j , j = 1, . . . ,m and to v

(1)
m+1 gives

cA−m−1v + l.c.{A−mv, . . . , Am−1v}+ l.c.{pm(A)v + qm(A−1)v}
= cA−m−1v + l.c.{A−mv, . . . , Amv} 6= 0,

owing to linear independence, again. Therefore, v
(2)
m+1 = rm(A−1)A−1v + sm(A)v,

with deg rm = m.
We remark that the proof of Proposition 2.1 also implies that if breakdown occurs,

then it is a happy breakdown, that is, an invariant subspace of A associated with v is
found, containing the exact solution of the given problem.

It remains to decide how convergence is detected. This is discussed in the next
section.
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2.1. Stopping criteria. Following the classical proposal in [48], a possible sim-
ple stopping criterion is given by the quantity:

‖τττm+1,mET
mf(Tm)e1‖, (2.4)

which can be cheaply computed during the iteration since all the quantities are avail-
able. A natural motivation for this quantity stems from a few application problems.
For istance, assume the following boundary value problem is given:

Au− uzz = 0, u(0) = v, u(+∞) = 0,

with A positive definite. It may be readily shown that u(z) = f(A)v = exp(−z
√

A)v
is the solution to this problem. Moreover, writing um(z) = Vmf(Tm)e1 and using
(2.2), we obtain

Aum − (um)zz = Vm+1τττm+1,mET
mf(Tm)e1.

Due to the orthogonality of the basis, it follows that the quantity in (2.4) is the
residual norm of the differential equation; similar reasonings were used for instance
in [12].

Another possibility, first suggested for the exponential function in [31], is given
by the following estimate

‖u− um‖
‖um‖

≈ δm+j

1− δm+j
, (2.5)

where δm+j = ‖um+j − um‖/‖um‖, namely the norm of the difference between two
computed approximations, so that after m + j iterations it is possible to compute an
estimate of the error at step m. We next give an algebraic proof for this approximation.

Proposition 2.2. Assume that m + j iterations of the Extended Krylov method
have been taken. With the notation above, let um+j = Vm+jf(Tm+j)e1. Then

‖u− um‖
‖u‖ ≤

δm+j +
εm+j

‖um‖

1− δm+j − εm+j

‖um‖

,

where εm+j = ‖u− um+j‖. If εm+j ≪ εm and ‖u‖ ≈ ‖um‖ then (2.5) follows.
Proof. We write ‖um‖ ≤ ‖um − um+j‖ + ‖u − um+j‖ + ‖u‖, so that ‖u‖ ≥

‖um‖ − εm+j − ‖um+j − um‖. Therefore

‖u− um‖
‖u‖ ≤ ‖um+j − um‖+ ‖u− um+j‖

‖um‖ − εm+j − ‖um+j − um‖
.

Collecting ‖um‖ at the numerator and denominator of the right-hand side, we obtain
the inequality. The approximation readily follows.

We note that for A symmetric and positive definite, it holds that ‖um‖ ≤ ‖u‖ for
all m (cf. [21]; see an analogous earlier result for the exponential in [11]), so that only
the hypothesis on εm remains.

A third option fully exploits the theoretical information on the a-priori rate of
convergence, namely that the rate is aqm for some q and a to be estimated; see, e.g.,
[14], for a similar approach. We use the ideal equalities

‖um+j − um‖ = cqm, ‖um+2j − um+j‖ = cqm+j .
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We set χm := log ‖um+j − um‖, χm+j := log ‖um+2j − um+j‖, from which we obtain

q = exp

(
−1

j
(χm − χm+j)

)
, c = exp

(
j + m

j
χm −

m

j
χm+j

)
. (2.6)

Our albeit limited experience showed that the last two estimates are quite reliable.
Given a fixed tolerance, we have used them as stopping criterion for the considered
methods, which for (2.5) reads as follows:

if
δm+j

1−δm+j
≤ tol then stop (2.7)

In the case of EKSM the two criteria provided graphically undistinguishable con-
vergence curves.

Both stopping criteria require saving the last j (resp. 2j) solution vectors for
(2.5) (resp. (2.6)). However, we noticed that a very small value of j (j = 2 and j = 1
respectively) was sufficient for the analysis. Moreover, since the basis is orthogonal,
we only needed to store much shorter vectors (e.g., vector ym in (2.3)) to compute
‖um+j − um‖ = ‖ym+j − ŷm‖, where ŷm is the vector ym padded with j zeros at the
bottom.

3. Convergence theory. In this section we derive a new estimate for the con-
vergence rate of the Extended Krylov subspace method. The estimate is based on a
very general approximation result, which can be applied to symmetric and nonsym-
metric matrices, and to a quite large class of functions. We stress that the derivations
of these results are new, and that these derivations significantly differ from those used
in [16] in the symmetric case. In particular, the new approach allows us to improve
the original convergence estimate even in the symmetric case.

We consider the class of Markov type functions, which can be written in integral
form as in (1.2) or as linear combination with monomials. For a > 0, we split the
integral in (1.2) as

f = f1 + f2, f1(z) =

∫ −a

−∞

dµ(ζ)

z − ζ
, f2(z) =

∫ 0

−a

dµ(ζ)

z − ζ
. (3.1)

In our analysis the integrals f1 and f2 are conveniently written as Faber series expan-
sions and then the error of this series truncation of these series are evaluated. This
idea was originally proposed in [16] for the symmetric case. Technically speaking, the
main difference in this new approximation result is the way the expansion errors for
f1 and f2 are derived. The tools are very general, so that the proof applies as is to
nonsymmetric matrices.

We define W1 := W (A), and1 W2 = (W (A))−1 := {z−1|z ∈W1}, and we assume
that both Wj are symmetric with respect to the real axis R and (strictly) lie in
the right half-plane. Let D denote the closed unit circle, and let Ψj : C̄\D → C̄\Wj ,
Φj = Ψ−1

j be the direct and inverse Riemann mappings for Wj , for j = 1, 2. Moreover,
Fj,k, k ∈ N, j = 1, 2 denote the corresponding Faber polynomials of degree k; see,
e.g., Suetin [52].

We start with an approximation result.

1We remark that W2 is not necessarily the same as W (A−1). This definition will be crucial in
the proof of Theorem 3.4.
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Lemma 3.1. Let f be defined by (1.2) and satisfy (3.1) for some a > 0. With the
notation above, for any m ∈ N, m > 1 it holds

∣∣∣∣∣f1(z)−
m−1∑

k=0

γ1,kF1,k(z)

∣∣∣∣∣ ≤ c1|Φ1(−a)|−m, z ∈W1

∣∣∣∣∣f2(z)−
m∑

k=0

γ2,kF2,k(z−1)

∣∣∣∣∣ ≤ c2|Φ2(−a−1)|−m, z ∈W1,

where c1, c2 are positive real constants independent of m, n, and where γj,k, j = 1, 2
are some real numbers.

Proof. By using the splitting in (3.1), we next approximate f1(A) as a function of
A with a polynomial in A, which corresponds to a truncated Faber series expansion
of f1 built on W1. Morever, we approximate f2

[
(A−1)−1

]
as a function of A−1 with

a truncation of a Faber series in A−1 built on W−1
1 .

The generating relation for Faber polynomials is (see, e.g., [52, Ch. 2, § 2, for-
mula (1)])

1

z − ζ
= − 1

Ψ′[Φ(ζ)]

∞∑

k=0

Fk(z)

Φ(ζ)k+1
, z ∈W, ζ 6∈W. (3.2)

Exploiting (3.2) for W = W1 and definition (3.1), we derive

f1(z) = −
∫ −a

−∞

1

Ψ′
1[Φ1(ζ)]

∞∑

k=0

Φ1(ζ)−k−1F1,k(z)dµ(ζ)

= −
∞∑

k=0

F1,k(z)

∫ −a

−∞

dµ(ζ)

Ψ′
1[Φ1(ζ)]Φ1(ζ)k+1

.

The following properties are valid for any continuum W symmetric with respect
to R and lying in the right half-plane (due to the symmetry and bijectivity, Ψ mono-
tonically maps ]−∞,−1[ onto ]−∞,min R ∩W [):

|Φ(ζ)| ≥ c3|ζ|, ζ ∈]−∞, 0], (3.3)

|Φ(ζ)| ≥ |Φ(−b)|, ζ ∈]−∞,−b], b > 0,

|Ψ′[Φ(ζ)]| ≥ c4, ζ ∈]−∞, 0],

where ci are positive constants depending on W .
Utilizing (3.3) with W = W1 and b = a, we obtain

∣∣∣∣−
∫ −a

−∞

dµ(ζ)

Ψ′
1[Φ1(ζ)]Φ1(ζ)k+1

∣∣∣∣ ≤
∫ −a

−∞

|dµ(ζ)|
c4c3|ζ| |Φ1(−a)|k ≤ c5|Φ1(−a)|−k,

where c5 > 0 depends on W1 and a. Thus, since maxz∈W1
|F1,k(z)| ≤ 2 (see [52,

Ch. IX, § 3, theorem 10]),

∣∣∣∣∣f1(z) +
m−1∑

k=0

F1,k(z)

∫ −a

−∞

dµ(ζ)

Ψ′
1[Φ1(ζ)]Φ1(ζ)k+1

∣∣∣∣∣ ≤ c5

∞∑

k=m

|Φ1(−a)|−k|F1,k(z)|

≤ c1|Φ1(−a)|−m, z ∈W1.
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As to f2, we consider the change of variables y = z−1. Analogously to what was
done for f1, we have

f2(z) = f2

(
y−1

)
=

∫ 0

−a

dµ(ζ)

y−1 − ζ
=

∫ 0

−a

y dµ(ζ)

1− ζy
= y

∫ 0

−a

dµ(ζ)

ζ (ζ−1 − y)

= y

∫ 0

−a

dµ(ζ)

ζΨ′
2 [Φ2 (ζ−1)]

∞∑

k=0

F2,k(y)

Φ2(ζ−1)k+1

= y

∞∑

k=0

F2,k(y)

∫ 0

−a

dµ(ζ)

ζΨ′
2 [Φ2 (ζ−1)] Φ2(ζ−1)k+1

and

∣∣∣∣
∫ 0

−a

dµ(ζ)

ζΨ′
2 [Φ2 (ζ−1)] Φ2(ζ−1)k+1

∣∣∣∣ ≤
∫ 0

−a

|dµ(ζ)|
|ζ| · c6 · |ζ−1| · |Φ2(−a−1)|k

≤ c7|Φ2(−a−1)|−k.

Since the conformal mapping z 7→ z−1 preserves angles and preserves the order of
arc lengths on ∂W1, ∂W2 = ∂W−1

1 is a finite rotation (Radon) curve. Therefore,
Theorem 11 from [52, Ch. IX, § 3] ensures that maxy∈W−1

1

|F2,k(y)| ≤ c8. Hence, for

y ∈W−1
1 ,

∣∣∣∣∣f2

(
y−1

)
− y

m−1∑

k=0

F2,k(y)

∫ 0

−a

dµ(ζ)

ζΨ′
2 [Φ2 (ζ−1)] Φ2(ζ−1)k+1

∣∣∣∣∣ ≤ c2|Φ2(−a−1)|−m.

Remark 3.2. The proof strongly relies on the splitting f = f1 + f2, and the
effectiveness of the bound depends on the value of a, which drives the integral splitting.
In particular, it becomes readily apparent that the expansion of f1 allows one to derive
an error bound for the Standard Arnoldi method (for a = 0), whereas the error bound
for the expansion of f2 has connections with the convergence analysis of Shift-Invert
Lanczos method (a =∞); see also [39].

Next lemma ensures that polynomials in A and in A−1 up to a certain degree
are exactly represented in the extended Krylov space; see [16] for a proof for the
symmetric case which is valid for the nonsymmetric case as well.

Lemma 3.3. Matrix polynomials in A (resp. in A−1) of degree k ≤ m− 1 (resp.
of degree k ≤ m) are exact in Km. In particular, pk(A)b = Vmpk(Tm)e1 ∈ Km,
k ≤ m− 1, and pk(A−1)b = Vmpk(T −1

m )e1 ∈ Km, k ≤ m.

Next theorem provides an error estimate for the approximation with the extended
Krylov subspace method.

Theorem 3.4. Let A ∈ R
n×n be nonsingular with W (A) ⊂ C

+, and let f satisfy
(1.2). There exists a > 0 such that it holds

‖f(A)v − Vmf(Tm)e1 ‖ ≤
c9

|Φ1(−a)|m , (3.4)

where c9 is a positive constant depending on W (A) and on the measure µ but inde-
pendent of n and m.



Extended Krylov method 9

Proof. Define the functions

g(z) = f1(z)−
m−1∑

k=0

γ1,kF1,k(z), h(z) = f2(z)−
m∑

k=0

γ2,kF2,k(z−1). (3.5)

Using the decomposition in (3.1) and Lemma 3.3, we have

‖f(A)v − Vmf(Tm)e1‖ =

∥∥∥∥∥f1(A)v −
m−1∑

k=0

γ1,kF1.k(A)v − Vmf1(Tm)e1

+Vm

m−1∑

k=0

γ1,kF1,k(Tm)e1 + f2(A)v −
m∑

k=0

γ2,kF2,k(A−1)v

− Vmf2(Tm)e1 + Vm

m∑

k=0

γ2,kF2,k(T −1
m )e1

∥∥∥∥∥

= ‖g(A)v − Vmg(Tm)e1 + h(A)v − Vmh(Tm)e1‖
≤ ‖g(A)‖+ ‖g(Tm)‖+ ‖h(A)‖+ ‖h(Tm)‖. (3.6)

Since both functions in (3.5) are analytic in W1 and since W (Tm) ⊆ W1, we deduce
from [8, Theorem 2 and formula (1)]:

max{‖g(A)‖, ‖g(Tm)‖} ≤ 11.08 max
z∈W1

|g(z)|, (3.7)

max{‖h(A)‖, ‖h(Tm)‖} ≤ 11.08 max
z∈W1

|h(z)|. (3.8)

These inequalities combined with (3.6) and Lemma 3.1, give (3.4). Here a is chosen
so that

|Φ1(−a)| = |Φ2(−a−1)| . (3.9)

Remark 3.5. We wish to stress that the use of (3.7) from [8] is crucial for our
bound, without which we obtained a less sharp result in the nonsymmetric case; see
also [2, 3] for more inspiring results in this direction.

3.1. The symmetric case. We derive the optimal value of a in (3.9) by explic-
itly writing the conformal mappings.

Proposition 3.6. Let the spectrum of the symmetric matrix A be contained in
[α, β] ⊂ R

+. Then for a =
√

αβ it holds that

‖f(A)v − Vmf(Tm)e1‖ ≤
c10

|Φ1(−a)|m ≃ O
[
exp

(
−2m 4

√
α/β

)]
,

where the last equality asymptotically holds for large β/α.

Proof. For σ(A) ⊂ [α, β] ⊂ R
+, the mappings are given in terms of the scaled

inverse Zhukovsky function as

Φ1(z) =
z − c

d
+

√(
z − c

d

)2

− 1, Φ2(z
−1) =

z−1 − ĉ

d̂
+

√(
z−1 − ĉ

d̂

)2

− 1,
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with c = (α + β)/2, d = (β − α)/2, ĉ = (1/α + 1/β)/2, d̂ = (1/α− 1/β)/2. Imposing
(3.9) yields

−a− c

d
=
−1/a− ĉ

d̂
,

from which we readily obtain

a =
√

αβ, |Φ1(−a)| = |Φ2(−1/a)| =
∣∣∣z +

√
z2 − 1

∣∣∣ , with z =

√
β +
√

α√
β −√α

.

The result follows from using Theorem 3.4.

The result of Proposition 3.6 should be compared with the estimate appearing in

[16, Theorem 6], namely ‖f(A)v−Vmf(Tm)e1‖ = O
(
m2 exp(−2m 4

√
α/β)

)
, contain-

ing the weakening factor m2.

Example 3.7. In Figure 3.1 we consider the convergence history (solid curve)
of EKSM for f(λ) = λ−1/2 and a real symmetric matrix A of dimension n = 400
with eigenvalues uniformly distributed in [0.01, 0.9] (left plot) and [1, 50] (right plot).
The dashed curve is the asymptotic convergence rate predicted by the estimate above,
namely 1/|Φ1(−a)|m. The agreement of the estimate is very good in both cases.
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Fig. 3.1. Example 3.7. True error (solid line) and its estimate (dashed line) for the function
f(λ) = λ−1/2 and a symmetric matrix with eigenvalues uniformly distributed in [0.01, 0.9] (left plot)
and [1, 50] (right plot).

3.2. The nonsymmetric case. In the nonsymmetric case, the situation is sig-
nificantly complicated by the fact that even assuming that it is possible to analytically
determine a simple curve containing W (A), then little is known about the curve con-
taining (W (A))−1; see, e.g., [32], [25]. It should also be added that even when both
mappings Φ1 and Φ2 can be explicitly derived, then the optimal value of a satisfying
(3.9) is hard to find analytically, and numerical procedures need be adopted for its
estimation. In the following we consider examples where it is possible to enclose W1

and W2 within an explicit conformal mapping, and then we estimate a by numerically
solving the nonlinear equation |Φ1(−a)| − |Φ2(−a−1)| = 0. This allows us to derive
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the asymptotic term of Theorem 3.4. A natural candidate as an approximation to a
is a =

√
λmin(H)λmax(H), where H is the symmetric part of A, H = (A + AT )/2,

since W (H) = W (A)∩R. However, this turns out to be in most cases too optimistic.
In all examples the field of values was approximated with the function fv in

the Matrix Computation Toolbox by N. Higham [26]. The images of the conformal
mappings were obtained with the Schwarz–Christoffel Mapping Toolbox by T. Driscoll
[10].

Example 3.8. For f(λ) = λ−1/2, we consider the normal diagonal 400 × 400
matrix A whose eigenvalues lie on the ellipse with semi-axes a1 = 0.097, a2 = 0.01
and center c = 0.1. The vector v is taken as the normalized vector of ones. The true
convergence rate of EKSM (solid line) and its estimate 1/|Φ1(−a)|m (dashed line)
are reported in Figure 3.2. The agreement is impressive. The optimal (numerically
computed) value of the asymptotic parameter was a = 0.02, whereas a =

√
ℓ1ℓn =√

λmin(H)λmax(H) = 0.0243.
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Fig. 3.2. Example 3.8 with normal matrix. True convergence history of EKSM (solid line) and
its estimate (dashed line).

Example 3.9. We consider the function f(λ) =
√

λ and the 200 × 200 Jordan
block matrix associated with the single eigenvalue λ = 4. The associated field of values
is a disk centered at λ of radius close to 1 (see [32, exercise 9 in § 1.3, exercise 29 in
§ 1.5] and [19]); v is the normalized vector of all ones. In our experiments, f(A) and
f(Tm) are computed by Heron’s method (see [27, formula (4.27)]). Figure 3.3 shows
the convergence rate of the Extended Krylov Subspace Method, together with our
asymptotic estimate, where the optimal parameter a has been determined numerically.
The new estimate perfectly matches the true asymptotic convergence rate.

Example 3.10. We conclude with a diagonalizable 200 × 200 upper triangular
matrix, with diagonal elements uniformly distributed in [50, 400] and second upper
diagonal elements equal to ai,i+2 = −30. The vector v is chosen as v = X[1, . . . , 1]T ,
scaled so as to have unit norm, where X is the matrix of eigenvectors of A. The
considered function is the inverse square root. Figure 3.4 shows the convergence rate of
the Extended Krylov Subspace Method, together with our asymptotic estimate, where
the optimal parameter a has once again been determined numerically. The agreement
is sufficiently satisfactory, taking into account that on this problem adaptation of the
method to the spectrum can be observed [35].
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Fig. 3.3. Example 3.9. True convergence history and its estimate from Theorem 3.4.
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Fig. 3.4. Example 3.10. True convergence history and its estimate from Theorem 3.4.

4. Numerical comparisons. In this section we compare the new version of the
Extended Krylov subspace method with other approaches that have been studied for
the same purposes. In most cases, we compare EKSM with Standard Lanczos, and
with the Shift-Invert Lanczos (SI-Lanczos) method. Given a real parameter γ > 0,
the Shift-Invert Lanczos method constructs the Krylov subspace Km((I + γA)−1, v),
computes the projection and restriction Tm of the shifted and inverted matrix (I +
γA)−1, and then computes an approximation as Qmf(γ−1(T−1

m − I))e1, where the
columns of Qm form an orthonormal basis of Km((I + γA)−1, v). The method was
analyzed in [40] for a class of functions, and in [31] for the exponential function. In
[39] a study of the parameter γ was performed, and in the symmetric non-singular
case the value γ = 1/

√
λminλmax was obtained as a quasi-optimal estimate.

In the following we analyze methods by comparing the dimension of the approx-
imation space required to achieve convergence, and in some cases by also comparing
the CPU time. Other memory requirements may become significant, such as those
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needed to store the matrix factors, for methods that require system solves. We should
add, however, that unless stated otherwise, the factorization of A was neither time
nor memory consuming. All experiments were carried out in Matlab [37] on a a sin-
gle CPU of a 2GB memory PC, running an Intel dual Core System at 2GHz. All
methods were stopped when the error norm was sufficiently small. This forced us
to compute the exact solution, by means of an eigenvalue decomposition, so that
we could not test very large problems. Alternatively, one could consider adopting
a (cheap) a-posteriori stopping criterion, which may vary depending on the method.
Since the early contribution in [48] for the exponential function, stopping criteria have
become an important ingredient of methods that approximate matrix functions, and
it is therefore a current topic of active research; see, e.g., [9], [22], [31], [46]. A simple
although not always reliable stopping criterion for EKSM, as well as for other methods
based on an Arnoldi-like relation, is given by (2.4). Except for Example 4.6 where
(2.7) was used, we decided to measure the true error for all methods to minimize the
influence of the stopping criterion on our comparison.

The implementation of all discussed methods requires the generation of an or-
thonormal basis of the Krylov subspace (in the standard or accelerated versions). If
A is symmetric and if exact arithmetic is assumed, the next basis vector may be ob-
tained with a short-term recurrence which involves only two previous (block) basis
vectors. However, it is important to realize that in finite precision computation, or-
thogonality of the basis is soon lost, unless full reorthogonalization of the basis vectors
is enforced as the subspace grows [12]. In our experiments we explicitly orthogonalized
all vectors only in the nonsymmetric case, and we did not observe any performance
degradation in the symmetric case when no reorthogonalization was performed.
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SI Lanczos(0.1)
SI Lanczos( γ)
Standard Krylov
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Fig. 4.1. Example 4.1. Performance of all methods on the functions in (4.1). Upper plots:
spectrum in [10−1, 10k], with k = 0, . . . , 6. Lower plots: spectrum in [10−4, 10k], with k = −2, . . . , 3.
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Example 4.1. We compare the performance of EKSM, of SI-Lanczos and of the
Standard Krylov method for the following three functions

f(1)(λ) = exp(−
√

λ), f(2)(λ) = λ−1/2, f(3)(λ) = λ−1/4 (4.1)

and a diagonal 500× 500 real matrix whose eigenvalues are log-uniformly distributed
in the interval [10−1, 10k], k = 0, . . . , 6 (case ⋆−1) and [10−4, 10k], k = −2, . . . 3 (case
⋆ − 2). The results are reported in the plots of Figure 4.1. On the abscissa is the
order of magnitude of the largest eigenvalue, while on the y-axis is the dimension of
the approximation space at convergence, for tol=10−8. The first row of plots shows
case 1 − ⋆, while the second row reports case 2 − ⋆, for the three test functions.
Each column plot in the figure refers to the same function. The curves correspond to
Standard Krylov, EKSM, and SI-Lanczos with the quasi-optimal value of γ suggested
in [39], and with γ = 0.1. Except for case 1 for f(1)(λ) = exp(−

√
λ), convergence

deteriorates far less for EKSM than for the other methods, as the condition number of
the matrix worsens, that is, the dimension of the final approximation space grows far
less for EKSM than for the other methods. In case 2, the curve corresponding to SI-
Lanczos with γ = 0.1 fully overlaps that of Standard Krylov, showing a disappointing
behavior of SI-Lanczos for that choice of the parameter. Case 1 and f(λ) = exp(−

√
λ)

deserves a closer look, reporting a particularly good performance for SI-Lanczos with
γ = 0.1. A detailed analysis of the SI-Lanczos(γ) convergence history is described in
Figure 4.2 for σ(A) ⊆ [10−1, 106]. We also report the behavior of SI-Lanczos for other
values of the parameter. Clearly, the behavior of the method is highly sensitive to
the choice of the parameter, and the value of γ suggested by the theory may be far
from optimal. This phenomenon was also discussed in [39], where it is noticed that
the inadequacy of that value of γ is particularly apparent for large λmax [39, Remark
6].
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Fig. 4.2. Example 4.1. Convergence history of all methods for σ(A) ⊆ [10−1, 106] and f(λ) =

exp(−
√

λ) (case 1-1 in Figure 4.1). “SI” stands for SI-Lanczos.

Example 4.2. We consider the matrix A ∈ R
4900×4900, discretization with cen-

tered finite differences of the 2D selfadjoint operator L(u) = − 1
10uxx − 100uyy, in

[0, 1]2 with homogeneous boundary conditions. The spectrum of A is contained in
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[9.6 · 102, 1.96 · 106], and the considered function is f(λ) = λ−1/2. CPU times ob-
tained in Matlab ([37]) for various methods are reported in Table 4.1. We can readily
observe that the Standard Krylov method is very slow, requiring a large approximation
subspace to reach the requested accuracy of 10−8. It is important to realize that for a
large approximation space, also the computation of f on the reduced matrix becomes
expensive, yielding an overall unacceptable timing. SI-Lanczos severely depends on
the accuracy with which the optimal γ (=2e-5) is approximated. The numbers show
that capturing the order of magnitude of the parameter is not sufficient to achieve
comparable performance. We emphasize that in general, the optimal γ is not cheaply
available. The Extended Krylov method performs very well on this problem, and it
is free of parameters. We also report the performance when the Zolotarev rational
approximation with 16 nodes of f(λ) = λ−1/2 is used, and applied to A by means of
a partial fraction expansion [44, Chapter 4]. We recall that the Zolotarev approxima-
tion requires information on the spectral interval of A, which was exactly provided
in this example. Although competitive with respect to the Standard Krylov method,
the rational function approximation does not perform as well as the Extended Krylov
method. Finally, we stress that all linear systems involved in the computation were
solved with direct methods after reordering of the matrix entries to improve fill-in in
the factorization. This cost was taken into account for the methods under considera-
tion.

Table 4.1

Example 4.2. Approximation of A−1/2v where A ∈ R
4900×4900 is the discretization of a self-

adjoint elliptic operator in [0, 1]2 with zero Dirichlet boundary conditions.

Method space dim. CPU Time
Standard Krylov 185 16.02
Rational (Zolotarev) 0.40
SI-Lanczos(0.001) 62 1.00
SI-Lanczos (1e-5) 49 0.60
SI-Lanczos (γ=2.3e-5) 33 0.32
Extended Krylov 32 0.20

Example 4.3. We consider the computation of the following product

sign(Q)v = (Q2)−1/2(Qv)

which arises, for instance, in the theory of Quantum Chromodynamics (QCD) in
quarks strong interaction. We consider a matrix available in the QCD collection
of the Matrix Market as conf5.0-00l4x4-2600.mtx [38]. The complex Hermitian
matrix Q is indefinite and has dimension 3072 × 3072; v is chosen as v = e1. The
spectrum of Q2 is in the interval [1.8 · 10−6, 8.1]. We refer to [6] for more details
on the application and on the specific linear algebra problems associated with the
computation of the sign function. To speed up convergence, it is customary to deflate
the smallest eigenvalues in modulo, which are computed beforehand together with
their eigenvectors. In Figure 4.3 we report the performance of the Standard Krylov
method and of the Extended method for approximating (Q2)−1/2(Qv), when deflation
of the first 20 eigenvalues is carried out. The deflated spectrum of Q2 is contained
in the interval [3.8 · 10−3, 8.1]. Performance is measured in terms of error norm
versus the dimension of the approximation subspace. The final stopping tolerance
was set to 10−6. The plot clearly shows the superiority of the extended method
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Fig. 4.3. Example 4.3. Approximation of the sign function.

Table 4.2

Example 4.3. Approximation of the sign function. Left:Approximation of deflated problem;
γ = 5.68. Right: Approximation without deflation; γ = 259.

Method CPU Space Method CPU Space
Deflated Q time dim No Deflation time dim
SI-Lanczos(1) 16.90 77 SI-Lanczos(10) 51.38 175
SI-Lanczos(10) 11.95 37 SI-Lanczos(100) 22.84 109
SI-Lanczos(γ) 11.98 35 SI-Lanczos(γ) 36.02 153
EKSM 11.19 56 EKSM 12.52 76
Standard Krylov 36.99 226 Standard Krylov - 500

over the Standard method. A more detailed analysis is shown in Table 4.2, where the
performance of SI-Lanczos for various values of the shift parameter is also reported. In
there, CPU time and the dimension of the approximation space are shown, both with
and without deflation of the smallest eigenvalues. We remark that the factorization of
the (reordered) Hermitian positive definite matrix Q2 and of its shifted version costs
about 7 seconds, which is a significant portion of the computation when deflation is
used. SI-Lanczos is sensitive to the choice of the shift parameter, in terms of dimension
of the approximation space, reaching the best performance for the value γ = 5.68.
When no deflation is carried out, so that the cost of pre-computing the eigenspace is
avoided, performance degrades significantly for all methods except for EKSM, whose
costs, especially in terms of CPU time, remain moderate. The theoretical analysis
suggests a value of the shift parameter equal to γ = 259 for SI-Lanczos. The standard
procedure is unable to reach convergence within the maximum allowed number of
iterations, providing a final residual of the order of 10−2.

Example 4.4. We next consider the approximation of A1/2v, in which the matrix
A ∈ R

900×900 is the nonsymmetric matrix stemming from the centered finite difference
discretization of the 2D operator L(u) = −100uxx − uyy + 10xux in [0, 1]2, with
homogeneous Dirichlet boundary conditions. The matrix has real spectrum with
λmin ≈ 9.2 · 102 and λmax ≈ 3.6 · 105. In Figure 4.4 we report the performance of
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the extended Krylov and SI-Lanczos methods, as a function of the dimension of the
approximation space. For SI-Lanczos we used various values of the shift parameter,
since the optimal value, though now known ([3]), is hard to estimate in the general
nonsymmetric case. The results show the much better performance of the extended
method.
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Fig. 4.4. Example 4.4. Approximation of A1/2v where A ∈ R
900×900 is the discretization of a

non-selfadjoint elliptic operator in [0, 1]2 with zero Dirichlet boundary conditions.

Example 4.5. We report on an example where the inner systems with A are
solved iteratively, leading to an inner-outer method. We use GMRES with no precon-
ditioning to solve these inner systems. Such a computation may be efficiently carried
out by relaxing the accuracy with which GMRES solves the inner system at each outer
iteration. More precisely, we use a dynamic inner stopping tolerance, that is inversely
proportional to the error at the previous outer iteration as follows:

ǫ(inner)
m =

tolin

‖u− um−1‖
.

We refer to [49] for an analysis of this relaxed criterion in the context of linear sys-
tems, and to [31] for a discussion of relaxation in the matrix function setting. To
solely analyze the effect of the relaxed strategy, in the following tests we use the true
error, however in practice some error estimate will substitute the error norm at the
denominator. We report on two different values of tolin: a first value coincides with
the outer tolerance, a second selection is more conservative. In the experiments we
consider the nonsymmetric 1000 × 1000 matrix stemming from the centered finite
difference discretization of the 3D operator L(u) = −uxx−uyy −uzz +50(x+ y)ux in
the unit cube, with homogeneous boundary conditions. The spectrum of the matrix
is complex. We use the function f(λ) = λ−1/3. The outer tolerance was set equal to
10−10. We compare the performance of the Extended Krylov method when GMRES
is used with fixed or with flexible stopping tolerance. Next table shows the final error;
in parentheses are the final dimension of the outer approximation space, and the total
number of inner iterations performed. Convergence curves are not reported as they
visually fully overlap.
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tolin fixed inner tol relaxed inner tol
1e-10 6.97e-11 (24/901) 6.58e-11 (24/559)
1e-12 6.48e-11 (24/1052) 6.48e-11 (24/716)

The digits show that the total number of inner iterations is considerably reduced
with the flexible strategy, with no loss in the overall performance of the outer method.
A complete theoretical justification of the flexible strategy in the computation of gen-
eral matrix functions is substantially an open problem, although better understanding
is available for rational functions [36] and for the exponential [31].

Example 4.6. We conclude with a series of experiments with large-scale ma-
trices, for which the inner systems must be solved with an iterative method; a fixed
inner tolerance was used as stopping criterion. We consider the matrices stemming
from the centered finite difference discretization of the following four non-selfadjoint
elliptic operators

L1(u) = −100ux1x1
− ux2x2

+ 10x1ux1
, (4.2)

L2(u) = −100ux1x1
− ux2x2

− ux3x3
+ 10x1ux1

, (4.3)

L3(u) = − exp(−x1x2)ux1x1
− exp(x1x2)ux2x2

+ 1/(x1 + x2)ux1
, (4.4)

L4(u) = −div(exp(3x1x2)gradu) + 1/(x1 + x2)ux1
, (4.5)

on the unit square or cube, with Dirichlet homogeneous boundary conditions; opera-
tors L1,L3 and L4 are two-dimensional, whereas L2 is three-dimensional. Our results
for SI-Arnoldi, EKSM and Standard Krylov methods are reported in Table 4.3 for var-
ious grid sizes (the matrix dimension n is reported), where the functions f(λ) = λ1/2

and f(λ) = λ−1/3 are used. The table reports the CPU time to reach an accuracy
of 10−7. The vector v is the vector of all ones, normalized so as to have unit norm.
In parentheses is the generated subspace dimension. For the sake of consistency, we
used (2.7) (with j = 2) as stopping criterion for all methods. For Standard Krylov, a
maximum approximation space of size 300 was allowed. An asterisk next to the CPU
time means that no convergence was reached within the maximum subspace dimension
allowed. Inner (shifted and scaled) systems in SI-Arnoldi were solved with IDR(4)
([51]) preconditioned by ILU with fill-in threshold equal to 10−4, requiring on average
4 iterations to converge. Higher thresholds were not as effective in terms of elapsed
times. The same preconditioner was not efficient within EKSM to solve with A. In
this latter case, GMRES with the Algebraic Multigrid Preconditioner HSL-MI20 was
employed [7]; default values were used to build the preconditioner. On average, only
about 5 GMRES iterations were necessary to reach a residual below 10−7. Our nu-
merical experience showed that HSL-MI20 preconditioning within SI-Arnoldi was less
competitive than ILU preconditioning. This justifies the use of different solvers for
SI-Arnoldi and for EKSM.

We would like to stress that both forms of preconditioning are significantly cheaper
than using a sparse direct solver. A full LU decomposition (Matlab function lu) of
the matrix associated with L3 for n = 160, 000 would deliver factors with about 43M
nonzeros each, whereas only a few million nonzeros were necessary for the ILU factors.

The determination of an effective parameter value for SI-Arnoldi was rather dif-
ficult. For f(λ) = λ1/2, we report in Figure 4.5 the number of SI-Arnoldi iterations
as a function of the parameter value for the operator L1 with n = 10 000 (solid line),
and for the operator L3 with n = 40 000 (dashed line). It can be readily noticed that
performance deteriorates considerably for values that are close to the (computation-
ally determined) optimal one. As a consequence, SI-Arnoldi timings shown in Table
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Table 4.3

Example 4.6. Approximation of f(A)v for two functions and different matrix dimensions, for
the operators in (4.2)-(4.5). In the SI-Arnoldi method the values γ = 1.2 · 10−5 and γ = 1.8 · 10−4,
γ = 3.5 · 10−5, for problems L1,2, L3 and L4 respectively, were used. In parenthesis is the total
space dimension. An asterisk indicates that the maximum number of iterations was reached with no
convergence.

f Oper. n SI-Arnoldi EKSM Std Krylov

λ1/2 L1 2500 0.9 (59) 0.6 (48) 7 (193)
10000 4.0 (66) 3.6 (68) *46 (300)

160000 642.9(246) 219.7(122) *458(300)
L2 27000 10.8 (55) 7.4 (40) 6.7(119)

125000 86.7 (60) 65.3 (52) 138.7(196)
L3 40000 26.3 (75) 21.1 (72) *87 (300)

160000 318.5(144) 173.3 (96) *442(300)
L4 40000 41.1(117) 25.4(106) *89 (300)

160000 580.2(442) 231.2(144) *461 (300)

λ−1/3 L1 2500 0.6 (43) 0.4 (30) 2.2(131)
10000 2.6 (46) 1.8 (38) 26.2(252)

160000 79.3 (48) 99.7 (64) *460(300)
L2 27000 7.8 (41) 4.8 (26) 3.1 (82)

125000 64.8 (45) 38.9 (32) 67.5(138)
L3 40000 20.7 (61) 13.7 (48) *88 (300)

160000 116.5 (62) 105.2 (62) *460 (300)
L4 40000 35.8(104) 14.2 (66) *88 (300)

160000 208.1(104) 112.2 (84) *461 (300)

4.3 may provide an optimistic picture of the situation when the parameter cannot be
determined with good accuracy.

Table 4.3 clearly shows that EKSM is competitive with respect to SI-Arnoldi, also
when computing the same approximation space dimension, because it requires half
the number of system solves. On the other hand, we observe that the performance of
EKSM may be affected by the possible difficulty in solving systems with A, whereas
the shift-and-scaling process in the SI-Arnoldi method may alleviate this difficulty.
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