
MATRIX FUNCTIONS

ANDREAS FROMMER∗ AND VALERIA SIMONCINI†

1. Introduction. In this chapter, we give an overview on methods to compute
functions of a (usually square) matrix A with particular emphasis on the matrix
exponential and the matrix sign function. We will distinguish between methods which
indeed compute the entire matrix function, i.e. they compute a matrix, and those
which compute the action of the matrix function on a vector. The latter task is
particularly important in the case where we have to deal with a very large (and
possibly sparse) matrix A or in situations, where A is not available as a matrix but
just as a function which returns Ax for any input vector x. Computing the action of a
matrix function on a vector is a typical model reduction problem, since the resulting
techniques usually rely on approximations from small-dimensional subspaces.

This chapter is organized as follows: In section 2 we introduce the concept of a
matrix function f(A) in detail, essentially following [37] and [27]. Section 3 gives an
assessment of various general computational approaches for either obtaining the whole
matrix f(A) or its action f(A)v on a vector v. Sections 4 and 5 then give much more
details for two specific functions, the exponential and the sign functions, which, as we
will show, are particularly important in many areas like control theory, simulation of
physical systems and other application fields involving the solution of certain ordinary
or partial differential equations. The applicability of matrix functions in general, and
of the exponential and the sign functions in particular, is vast. However, we will
limit our discussion to characterizations and to application problems that are mostly
related to Model Order Reduction.

2. Matrix Functions. In this section we address the following general question:
Given a function f : C → C, is there a canonical way to extend this function to square
matrices, i.e. to extend f to a mapping from C

n×n to C
n×n? If f is a polynomial p

of degree d, f(z) = p(z) =
∑d

k=0 akzk, the canonical extension is certainly given by

p : C
n×n → C

n×n, p(A) =

d∑

k=0

akAk.

If f(z) can be expressed by a power series, f(z) =
∑∞

k=0 akzk, a natural next step is
to put

f(A) =

∞∑

k=0

akAk, (2.1)

but for (2.1) to make sense we must now discuss convergence issues. The main result is
given in the following theorem, the proof of which gives us valuable further information
on matrix functions. Recall that the spectrum spec(A) is the set of all eigenvalues of
A.
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Theorem 2.1. Assume that the power series f(z) =
∑∞

k=0 akzk is convergent
for |z| < ρ with ρ > 0 and assume that spec(A) ⊂ {z ∈ C : |z| < ρ}. Then the series
(2.1) converges.

Proof. Let T be the transformation matrix occuring in the Jordan decomposition

A = TJT−1, (2.2)

with

J =




Jm1
(λ1) 0

. . .

0 Jm`
(λ`)


 =: diag(Jm1

(λ1), . . . , Jm`
(λ`) ).

Here, λ1, . . . , λ` are the (not necessarily distinct) eigenvalues of A and mj is the size
of the jth Jordan block associated with λj , i.e.

Jmj
(λj) =




λj 1 0 · · · 0

0 λj 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 λj




=: λjI + Smj
∈ C

mj×mj ,

and
∑`

j=1 mj = n. For each λj , the powers of Jmj
(λj) are given by

Jm(λj)
k =

k∑

ν=0

(
k

ν

)
λk−ν

j · Sν
mj

.

Note that Sν
mj

has zero entries everywhere except for the ν-th upper diagonal, whose
entries are equal to 1. In particular, Sν

mj
= 0 for ν ≥ mj . Therefore,

f(Jmj
(λj)) =

∞∑

k=0

ak

k∑

ν=0

(
k

ν

)
λk−ν

j · Sν
mj

,

and for ν and j fixed we have

∞∑

k=0

ak

(
k

ν

)
λk−ν

j =
∞∑

k=0

1

ν!
· ak · (k · . . . · (k − ν + 1))λk−ν

j =
1

ν!
f (ν)(λj).

Note that the last equality holds in the sense of absolute convergence because λj

lies within the convergence disk of the series. This shows that the series f(Jmj
(λj))

converges. Plugging these expressions into the series from (2.1) we obtain the value
of the original (now convergent) series,

f(A) = Tdiag (f(Jm1
(λ1)), . . . , f(Jm`

(λ`)))) T−1

= Tdiag

(
m1−1∑

ν=0

1

ν!
f (ν)(λ1) · Sν

m1
, . . . ,

m`−1∑

ν=0

1

ν!
f (ν)(λ`) · Sν

m`

)
T−1. (2.3)
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It may happen that a function f cannot be expressed by a series converging in a
large enough disk. If f is sufficiently often differentiable at the eigenvalues of A, then
the right-hand side of (2.3) is still defined. We make it the basis of our final definition
of a matrix function.

Definition 2.2. Let A ∈ C
n×n be a matrix with spec(A) = {λ1, . . . , λ`} and

Jordan normal form

J = T−1AT = diag(Jm1
(λ1), . . . , Jm`

(λ`) ).

Assume that the function f : C → C is mj−1 times differentiable at λj for j = 1, . . . , `.
Then the matrix function f(A) is defined as f(A) = Tf(J)T−1 where

f(J) = diag(f(Jm1
(λ1)), . . . , f(Jm`

(λ`))) with f(Jmj
(λj)) =

mj−1∑

ν=0

1

ν!
f (ν)(λj) · Sν

mj
.

This definition makes explicit use of the Jordan canonical form and of the asso-
ciated transformation matrix T . Neither T nor J are unique, but it can be shown –
as is already motivated by (2.1) – that f(A) as introduced in Definition 2.2 does not
depend on the particular choice of T or J .

As a first consequence of Definition 2.2 we note the following important property.
Proposition 2.3. With the notation above, it holds f(A) = p(A), where p is the

polynomial of degree not greater than n − 1 which interpolates the eigenvalues λj of
A in the Hermite sense (i.e. f (ν)(λj) = p(ν)(λj) for all relevant ν’s and j’s).

The polynomial p in Proposition 2.3 will not only depend on f , but also on A
or, more precisely, on the minimal polynomial of A (of which the multiplicity of an
eigenvalue λ determines the maximal block size mj for the Jordan blocks correspond-
ing to this eigenvalue). When A is normal, T is an orthogonal matrix and all Jordan
blocks have size one, i.e. we have

J = diag(λ1, . . . , λn).

So, in this particular case, we do not need any differentiability assumption on f .
A further representation of f(A) can be derived in the case when f is analytic in

a simply connected region Ω containing spec(A). Let γ be a curve in Ω with winding
number +1 w.r.t. a point z ∈ Ω. The Residue Theorem tells us

f (ν)(z)

ν!
=

1

2πi

∮

γ

f(t)

(t − z)ν+1
dt. (2.4)

Let Jmj
(λj) be a Jordan block associated with λj and let z 6= λj . Then

(zI − Jmj
)−1 = ((z − λj)I − Smj

)−1 =
1

z − λj
·

mj−1∑

ν=0

(
1

z − λj
· Smj

)ν

,

from which we get

1

2πi

∮

γ

f(z)(zI − Jmj
)−1 =

mj−1∑

ν=0

1

2πi

∮

γ

f(z)

(z − λj)ν+1
Sν

mj
dt

=

mj−1∑

ν=0

f (ν)(λj)

ν!
· Sν

mj
,
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the second line holding due to (2.4). Using this for each Jordan block in Definition 2.2
and recombining terms we obtain the following integral representation of f(A),

f(A) =
1

2πi

∮

γ

f(t)(tI − A)−1dt. (2.5)

3. Computational aspects. It is not necessarily a good idea to stick to one
of the definitions of matrix function given in the previous section when it comes to
numerically compute a matrix function f(A). In this section we will discuss such com-
putational issues, describing several numerical approaches having their advantages in
different situations, basically depending on spectral properties of A, on the dimension
and sparsity of A and on whether we really want to obtain the matrix f(A) rather
than “just” its action f(A)v on a vector v.

3.1. Normal matrices. A matrix A ∈ C
n×n is said to be normal if it commutes

with its adjoint, AAH = AHA. Normal matrices may also be characterized as being
unitarily diagonalizable, i.e. we have the representation

A = QΛQH with Q−1 = QH , Λ = diag(λ1, . . . , λn), spec(A) = {λ1, . . . , λn}.

This representation is also the Jordan decomposition of A from (2.2), so that

f(A) = Qf(Λ)QH , f(Λ) = diag(f(λ1), . . . , f(λn)). (3.1)

Normal matrices have the very attractive property that their eigenvalues λi and the
corresponding invariant subspaces are well conditioned (see [16], for example), i.e.
small changes in A yield only small changes in Λ and Q. Therefore, if we use a
numerically (backward) stable algorithm to compute Λ and Q, like, for example,
the standard Householder reduction to upper Hessenberg form followed by the QR-
iteration, we may safely use the so computed Λ and Q to finally compute f(A) via
(3.1). The computational cost of this approach is O(n3) due to the various matrix-
matrix multiplications and to the cost for computing the eigendecomposition.

If A is not normal, its eigenvalues are not necessarily well conditioned, the con-
dition number being related to ‖T‖2 · ‖T−1‖2 with T from the Jordan decomposition
(2.2). It is also important to realize that the size of the Jordan blocks may widely vary
under infinitesimal perturbations in A. Therefore, if A is not normal, Definition 2.2
does not provide a numerically stable means for computing f(A).

3.2. Quadrature rules. Assume that f is analytic in Ω and that γ and Ω are
as in (2.5) so that we have

f(A) =
1

2πi

∮

γ

f(t)(tI − A)−1dt.

We apply a quadrature rule with m nodes tj ∈ γ and weights ωj to the right-hand
side to get

1

2πi

∮

γ

f(t)

t − z
dt =

m∑

j=1

ωj
f(tj)

tj − z
+ r.

This shows that we can approximate

f(A) ≈
m∑

j=1

ωjf(tj) · (tjI − A)−1. (3.2)
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For such quadrature rules, the approximation error r can be expressed or bounded
using higher derivatives of f . Actually, since we integrate over a closed curve, taking
the right nodes the quadrature error is usually much smaller than what one would
expect from quadrature formulas over finite (real) intervals, and the accuracy often
increases exponentially with the number of nodes, see [14],[15]. In principle, this can
then be used to obtain bounds on the approximation error in (3.2), but to do so we
usually need some knowledge about the norms of T and T−1 in (2.2), as well as on
the size of the eigenvalues of A. See also section 3.6.

For specific functions, other integral representations may be used. For example,
for z ∈ C, z not on the non-positive real line, we have (see [14])

log(z) =

∫ 1

0

(z − 1)[t(z − 1) + 1]−1dt,

so that using a quadrature rule for the interval [0, 1], we can use the approximation

log(A) ≈
m∑

j=1

ωj · (A − I)[tj(A − I) + I]−1.

As another example, for z > 0 we can write

z−1/2 =
2

π
·
∫ ∞

0

1

t2 + z
dt,

and use a quadrature rule on [0,∞] to approximate A−1/2 when spec(A) ⊂ (0,∞].
Similar approaches have been proposed for various other functions like the p-th

root or the sign function, see [6], [57], for example.
Within this quadrature framework, the major computational cost will usually be

due to the inversion of several matrices. As is explained in [14], this cost can often
be reduced if we first compute a unitary reduction to upper Hessenberg form (which
can be done in a numerically stable manner using Householder transformations), i.e.

A = QHQH , Q unitary , H zero below the first subdiagonal.

Then, for example,

(tjI − A)−1 = Q · (tjI − H)−1 · QH for all j,

with the inversion of the matrix tjI − H having cost O(n2) rather than O(n3).

3.3. Matrix iterations. Sometimes, it is convenient to regard f(z) as the solu-
tion of a fixed point equation gz(f) = f with gz being contractive in a neighbourhood
of the fixed point f(z). The method of successive approximations

fk+1 = gz(fk) (3.3)

can then be turned into a corresponding matrix iteration

Fk+1 = gA(Fk). (3.4)

Approaches of this kind have, for example, been proposed for the matrix square root
[31], [32], where Newton’s method

fk+1 =
1

2
·
(

fk +
z

fk

)
(3.5)
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to compute
√

z results in the iteration

Fk+1 =
1

2
·
(
Fk + A · F−1

k

)
. (3.6)

Similar other iterations, not always necessarily derived from Newton’s method, have
been proposed for the matrix p-th root [6] or for the matrix sign function [40]. A
major catch with these approaches is that numerical stability of the matrix iteration
(3.4) is not always guaranteed, even when the scalar iteration (3.3) is perfectly stable.
Then, some quite subtle modifications, like e.g. the coupled two-term iteration for the
square root analyzed in [31] must be used in order to achieve numerical stability. The
iteration (3.4) is usually also quite costly. For example, (3.6) requires the inversion
of Fk at every step, so that each step has complexity O(n3). Therefore, for these
methods to be efficient, convergence should be fast, at least superlinear.

3.4. Rational approximations. Polynomial approximations for a function f
often require a quite high degree of the approximating polynomial in order to achieve
a reasonable quality of approximation. Rational approximations typically obtain the
same quality with substantially fewer degrees of freedom.

Assume that we have the rational approximation

f(z) ≈ Nµν(z)

Dµν(z)
,

where Nµν ,Dµν are polynomials of degree µ and ν, respectively. (The use of the
two indices µ and ν in both polynomials may appear abusive at this point, but it
will be very convenient when discussing Padé approximations to the exponential in
section 4.2). Then

f(A) ≈ Nµν(A) · (Dµν(A))
−1

.

Assume that A is diagonalizable. If we know

∣∣∣∣f(z) − Nµν(z)

Dµν(z)

∣∣∣∣ ≤ ε for z ∈ spec(A),

we get

‖f(A) −Nµν(A) · (Dµν(A))
−1 ‖2 ≤ ε · ‖T‖2 · ‖T−1‖2

which further simplifies when A is normal, since then T is unitary so that ‖T‖2 ·
‖T−1‖2 = 1. Rational functions can be expressed as partial fraction expansions.
Simplifying our discussion to the case of single poles, this means that we can expand

Nµν(z)

Dµν(z)
= p(z) +

ν∑

j=1

ωj

z − τj
,

with p(z) being a polynomial of degree µ − ν if µ ≥ ν and p ≡ 0 if µ < ν. This
representation is particularly useful if we are interested only in f(A)v for some vector
v, as we will discuss later in section 3.6. Note also that the quadrature rules from
(3.2) immediately give a partial fraction expansion, so that the two approaches are
very closely related. For a recent investigation, see [65].
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3.5. Krylov subspace approaches. When A has large dimension, the action of
f(A) on a vector v, namely f(A)v, may be effectively approximated by projecting the
problem onto a subspace of possibly much smaller dimension. The Krylov subspace

Kk(A, v) = span{v,Av, . . . , Ak−1v}

has been extensively used to this purpose, due to its favourable computational and
approximation properties, see, e.g., van der Vorst [67], [68] for a discussion for general
f . Let Vk be a full column rank n × k matrix whose columns span Kk(A, v), and
assume the following Arnoldi type recurrence holds for Vk,

AVk = Vk+1Hk+1,k = VkHk + hk+1,kvk+1e
T
k . (3.7)

An approximation to x = f(A)v may be obtained as

xk = Vkf(Hk)e1‖v‖. (3.8)

The procedure amounts to projecting the matrix onto the much smaller subspace
Kk(A, v), by means of the representation matrix Hk and v = Vke1‖v‖. If Vk has
orthonormal columns then Hk = V T

k AVk. If in addition A is Hermitian, the iteration
(3.7) reduces to the Lanczos three-term recurrence, in which case Hk is tridiagonal
and Hermitian.

The functional evaluation is carried out within this reduced space, and the ob-
tained solution is expanded back to the original large space. Assume now that k = n
iterations can be carried out, so that the square matrix Vn is orthogonal. Then (3.7)
gives AVn = VnHn and thus A = VnHnV T

n . Using this relation, for k < n, the ap-
proximation in Kk(A, v) may be viewed as a problem order reduction to the first k
columns of Vn and corresponding portion of Hn as

x = f(A)v = Vnf(Hn)V T
n v ≈ Vkf(Hk)V T

k v.

For k small compared to n, the quality of the approximation strongly depends on the
spectral properties of A and on the capability of Kk(A, v) to capture them. A first
characterization in this sense is given by the following result, which can be deduced
from Proposition 2.3 applied to the matrix Hk and the fact that p(A)v = Vkp(Hk)v
for all polyomials of degree less than or equal to k − 1; see [60, Proposition 6.3]. This
is a generalization of [59, Theorem 3.3].

Proposition 3.1. Let the columns of Vk, with V T
k Vk = Ik span Kk(A, v) and

let Hk = V T
k AVk. Then, the approximation Vkf(Hk)e1‖v‖ represents a polynomial

approximation p(A)v to f(A)v, in which the polynomial p of degree k− 1 interpolates
the function f in the Hermite sense on the set of eigenvalues of Hk.

Other polynomial approximations have been explored, see, e.g., [18]; approaches
that interpolate over different sets have been proposed for the exponential function
[52]. Note that the projection nature of the approach allows to derive estimates for
‖f(A)‖ as ‖f(A)‖ ≈ ‖f(Hk)‖ which may be accurate even for small k when A is
Hermitian.

All these results assume exact precision arithmetic. We refer to [17] for an analysis
of finite precision computation of matrix functions with Krylov subspace methods
when A is Hermitian.

It should be mentioned that the projection onto a Krylov subspace does not
require A to be stored explicitly, but it only necessitates a function that given v,
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returns the action of A, namely y = Av. This operational feature is of paramount
importance in applications where, for instance, A is the (dense) product or other
combination of sparse matrices, so that the operation y = Av may be carried out by
a careful application of the given matrix combination.

Another practical aspect concerns the situation where k, the dimension of the
Krylov subspace, becomes large. Computing f(Hk) with one of the methods presented
in the previous sections can then become non-negligible. Moreover, we may run into
memory problems, since approximating f(A)v via (3.8) requires the whole matrix Vk

to be stored. This is needed even when, for istance, A is Hermitian, in which case
(3.7) is the Lanczos recurrence and Hk is tridiagonal. In such a situation, however, we
can resort to a “two–pass” procedure which crucially reduces the amount of memory
needed: In the first pass, we run the short-term recurrence Lanczos process. Here,
older columns from Vk can be discarded, yet the whole (tridiagonal) matrix Hk can
be built column by column. Once f(Hk) has been generated, we compute yk =
f(Hk)e1 · ‖v‖. Then we run the short-term recurrence modification of the Lanczos
process once again to recompute the columns of Vk and use them one at a time to
sum up Vkf(Hk)e1 = Vkyk. Of course, this two-stage approach essentially doubles
the computational work.

For a general matrix A the Arnoldi process cannot be turned into a short-term
recurrence, so one must search for alternatives in the case that k gets too large.
Recently, Eiermann and Ernst [20] have developed an interesting scheme that allows
to restart Krylov subspace methods for computing f(A)v, in the same flavour as
with linear system solvers; in fact, the two approaches are tightly related; see [46].
Having computed a not yet sufficiently good approximation xk via (3.8), the idea is to
start again a Krylov subspace approximation based on the error xk − f(A)v which is
expressed as a new matrix function of A. The algorithmic formulation is non-trivial,
particularly since special care has to be taken with regard to numerical stability, see
[20].

Other alternatives include acceleration procedures, that aim at improving the
convergence rate of the approximation as the Krylov subspace dimension increases.
Promising approaches have been recently proposed in the Hermitian case by Druskin
and Knizhnerman [19], by Moret and Novati [51] and by Hochbruck and van den
Eshof [36].

3.6. Krylov subspaces and rational approximations. As a last contribution
to this section, let us turn back to rational approximations for f which we assume to
be given in the form of a partial fraction expansion (no multiple poles for simplicity)

f(z) ≈ p(z) +

ν∑

j=1

ωj

z − τj
.

Then f(A)v can be approximated as

f(A)v ≈ p(A)v +

ν∑

j=1

ωj(A − τjI)−1v. (3.9)

Since evaluating p(A)v is straightforward, let us assume p ≡ 0 in the sequel.
The computation of (A− τjI)−1v means that we have to solve a linear system for

each j, where all linear systems have the same right-hand side, while the coefficient
matrix only differs for the shift. In general, shifts may be complex even for real and
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symmetric A, although they appear in conjugate pairs. Interestingly, the particular
“shifted” structure of these systems can be exploited in practical computation. If we
solve each system iteratively using a Krylov subspace method with initial zero guess
for all j, the kth iterate for each system lies in Kk(A − τjI, v) which is identical to
Kk(A, v). The fact that Krylov subspaces are invariant with respect to shifts can now
be exploited in various Krylov subspace solvers like CG, BiCG, FOM and QMR (and
also with modifications in BiCGStab and restarted GMRES) to yield very efficient
procedures which require only one matrix-vector multiplication with A, and possibly
with AT , in order to update the iterates for all m systems simultaneously; see [62] for
a survey of these methods for shifted systems and also [21], [22], [23], [24]. Denote by

x
(j)
k the iterate of the Krylov solver at step k for system j. Then the linear combination

xk =
ν∑

j=1

ωjx
(j)
k ∈ Kk(A, v) (3.10)

is an approximation to f(A)v. In fact, it is an approximation to the action of the
rational function approximating f(A). Therefore, what we obtained in (3.10) is an
approximation to f(A)v in Kk(A, v), which is different from (3.8) presented before.
A special case is when f is itself a rational function. In such a situation, the two
approaches may coincide if, for instance, a Galerkin method is used to obtain the

approximate solutions x
(j)
k . Indeed, for f = Rµν = Nµν/Dµν ,

f(A)v = Nµν(A)(Dµν(A))−1v =

ν∑

j=1

ωj(A − τjI)−1v (3.11)

≈
ν∑

j=1

ωjVk(Hk − τjI)−1e1‖v‖ = Vkf(Hk)e1‖v‖.

The approach outlined above has several attractive features for a general function f .

Firstly, if we have a bound for the error between x
(j)
k and the solution (A − τj)

−1v
for each j, we can combine these bounds with the approximation error of the rational
approximation to get an overall a posteriori bound for ‖f(A)v−x(k)‖. Sometimes, such
bounds might be obtained quite easily. For example, if A is Hermitian and positive
definite and all shifts τj are real and negative, the norm of the inverse (A− τjI)−1 is

bounded by 1/|τj |. Since the residuals r
(j)
k = (A − τjI)x

(j)
k − v are usually available

in the Krylov solver in use, we can use the bound

‖x(j)
k − (A − τjI)−1v‖2 ≤ 1

|τj |
‖r(j)

k ‖2.

Similar bounds that require estimates of the spectrum of A may be obtained also for
complex poles τj , see [46].

Secondly, in the Hermitian case, the memory requirements of this approach only
depend on m, the number of poles in the rational approximation, but not on k, the
dimension of the Krylov subspace. Indeed, the symmetry of the problem can be
exploited to devise a short-term recurrence which dynamically updates the solution
xk without storing the whole Krylov subspace basis. So even if k has to be sensibly
large in order to get a good approximation, we will not run into memory problems.
This is in contrast to the approach from section 3.5, although the two approaches are
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strictly related. Indeed, using xk in (3.10), by the triangle inequality we have

| ‖f(A)v − xk‖ − ‖f(A)v − Vkf(Hk)e1‖v‖ ‖ | ≤ ‖Vkf(Hk)e1‖v‖ − xk‖
= ‖ (f(Hk) −Rµν(Hk)) e1‖‖v‖ .

Therefore, whenever the chosen rational function Rµν accurately approximates f , the
two approaches evolve similarly as the Krylov subspace dimension increases.

4. The exponential function. We next focus our attention on methods specif-
ically designed to approximate the matrix exponential, exp(A), and its action on a
vector v. We start by briefly discussing the role of this function within Model Or-
der Reduction applications. Depending on the setting, we shall use either of the two
equivalent notations exp(A) and eA. Finally, we explicitly observe that Definition 2.2
ensures that exp(A) is nonsingular for any matrix A.

4.1. The exponential matrix in model order reduction applications. In
this section we briefly review some application problems whose numerical solution
benefits from the approximate computation of the exponential.

Numerical solution of time-dependent differential equations. The numerical solu-
tion of ordinary and time-dependent partial differential equations (ODEs and PDEs,
respectively) may involve methods that effectively employ the matrix exponential.
Recent developments in the efficient approximation of exp(A)v have increased the use
of numerical “exponential-based” (or just “exponential”) techniques that allow one
to take larger time steps. More precisely, consider the system of ODEs of the form

u′(t) = Au(t) + b(t), u(0) = u0,

where A is a negative semidefinite matrix. The analytic solution is given by

u(t) = etAu0 +

∫ t

0

e(τ−t)Ab(τ)dτ,

Whenever a good approximation to the propagation operator esA is available, it is
possible to approximate the analytic solution by simply approximating the integral
above with convenient quadrature formulas, leading to stable solution approximations.
The generalization of this approach to the numerical solution of partial differential
equations can be obtained, for instance, by employing a semidiscretization (in space)
of the given problem. Consider the following self-adjoint parabolic equation

∂u(x, t)

∂t
= div(a(x)∇u(x, t)) − b(x)u(x, t) + c(x),

with x ∈ Ω, Dirichlet boundary conditions and b(x) ≥ 0, a(x) > 0 in Ω, with a, b, c
sufficiently regular functions. A continuous time-discrete space discretization leads to
the ordinary differential equation

E
du(t)

dt
= −Au(t) + c, t ≥ 0,

where A,E are positive definite Hermitian matrices, so that the procedure discussed
above can be applied; see, e.g., [11], [25], [50], [64], [69]. Further attempts to generalize
this procedure to non-selfadjoint PDEs can be found in [25, section 6.2], although the
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theory behind the numerical behavior of the ODE solver in this case is not completely
understood yet.

The use of exponential integrators is particularly effective in the case of certain
stiff systems of nonlinear equations. Consider, e.g., the initial value problem

du(t)

dt
= f(u), u(t0) = u0.

If the problem is stiff, standard integrators perform very poorly. A simple example of
an exponential method for this system is the exponentially fitted Euler scheme, given
by

u1 = u0 + hφ(hA)f(u0),

where h is the step size, φ(z) = ez−1
z , and A = f ′(u0). The recurrence {uk}k=0,1,...

requires the evaluation of φ(hA)v at each iteration, for some vector v; see, e.g., [35].
An application that has witnessed a dramatic increase in the use of the matrix

exponential is Geometric Integration. This research area includes the derivation of
numerical methods for differential equations whose solutions are constrained to belong
to certain manifolds equipped with a group structure. One such example is given by
linear Hamiltonian problems of the form

{
Ẏ (t) = JA(t)Y (t),
Y (t0) = Y0,

where J is the matrix [0, I;−I, 0], A is a continuous, bounded, symmetric matrix
function, and Y0 ∈ R

N×p is symplectic, that is it satisfies Y T
0 J Y0 = J . The solution

Y (t) is symplectic for any t ≥ t0. Using the fact that JA is Hamiltonian, it can
be shown that exp(JA(t)) is symplectic as well. Numerical methods that aim at
approximating Y (t) should also preserve its symplecticity property. This is achieved
for instance by the numerical scheme Yk+1 = exp(hJA(tk))Yk, tk+1 = tk + h, k =
0, 1, . . .. Structure preserving methods associated with small dimensional problems
have received considerable attention, see, e.g., [10], [29], [38], [70] and references
therein. For large problems where order reduction is mandatory, approximations
obtained by specific variants of Krylov subspace methods can be shown to maintain
these geometric properties; see, e.g., [47].

Analysis of dynamical systems. The exponential operator has a significant role in
the analysis of linear time-invariant systems of the form

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(4.1)

where A,B and C are real matrices of size n × n, n × m and p × n, respectively. In
the following we assume that A is stable, that is its eigenvalues are in the left half
plane C

−, and that the system is controllable and observable; see, e.g., [1].
The matrix of the states of the system for impulsive inputs is x(t) = etAB, whereas

in general, for an initial state x0 at time t0, the resulting state at time t ≥ t0 is given
by

x(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−τ)ABu(τ)dτ.

11



Therefore, an approximation to the state involves the approximation of the matrix
exponential. Moreover, the state function is used to define the first of the following
two matrices which are called the controllability and the observability Gramians,
respectively,

P =

∫ ∞

0

etABBT etAT

dt, Q =

∫ ∞

0

etAT

CT CetAdt. (4.2)

The following result shows that these are solutions to Lyapunov equations.
Theorem 4.1. Given the linear time-invariant system (4.1), let P,Q be as de-

fined in (4.2). Then they satisfy

AP + PAT + BBT = 0, AT Q + QA + CT C = 0.

Proof. The proof follows from substituting the definition of P and Q into the corre-
sponding expressions AP + PAT , AT Q + QA. By using the fact that etAA = d

dt (e
tA)

and integrating, we obtain, e.g., for Q,

QA + AT Q =

∫ ∞

0

(
etAT

CT CetAA + AT etAT

CT CetA
)

dt

=

∫ ∞

0

(
etAT

CT C
detA

dt
+

detAT

dt
CT CetA

)
dt

=

∫ ∞

0

d(etAT

CT CetA)

dt
dt = lim

τ→∞
(etAT

CT CetA)
∣∣∣
τ

0
= −CT C.

It can also be shown that the solution to each Lyapunov equation is unique. In
a more general setting, the matrix M := −(AT Q + QA) is not commonly given in
factored form. In this case, if it can be shown that M is positive semidefinite and
that the pair (A,M) is observable, then Q is positive definite (a corresponding result
holds for P ); see, e.g., [4], [1], [13].

The Lyapunov equation may be used to compute estimates for ‖etA‖, which in
turn provides information on the stability of the original system in the case of CT C
full rank; see, e.g., [13, Th. 3.2.2] for a proof.

Theorem 4.2. Let A be stable and CT C full rank. Then the unique solution Q
to the Lyapunov equation AT Q + QA + CT C = 0 satisfies

‖etA‖ ≤
(

λmax(Q)

λmin(Q)

) 1

2

e−αt,

where α = λmin(Q−1CT C)/2 > 0.
For large problems, other devices can be used to directly approximate ‖etA‖

without first resorting to the solution of a Lyapunov equation; cf. section 3.5. We
also refer to [45] for a general discussion on the norm ‖etA‖ and some of its bounds.

4.2. Computing the exponential of a matrix. Over the years, several meth-
ods have been devised and tested for the computation of the matrix exponential; we
refer to [49] for a recent survey of several approaches and for a more complete biblio-
graphic account. The algorithmic characteristics may be very different depending on
whether the matrix has small or large dimension, or whether it is dense or sparse; the
structural and symmetry properties also play a crucial role; see, e.g., the discussion
in [61]. In this section we discuss the case of small matrices. When A is normal, the
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spectral decomposition discussed in section 3.1 can be employed, namely A = TJTH

with T unitary. This gives exp(A) = T exp(J)TH , once the decomposition of A is
computed.

In the non-normal case, one method has emerged in the last decade, for its ro-
bustness and efficiency: Padé approximation with scaling and squaring. The basic
method employs a rational function approximation to the exponential function as

exp(λ) ≈ Rµν(λ) =
Nµν(λ)

Dµν(λ)
,

where Nµν ,Dµν are polynomials of degree µ and ν, respectively. One attractive feature
of the [µ/ν] Padé approximation is that the coefficients of the two polynomials are
explicitly known, that is

Nµν(λ) =

µ∑

j=0

(µ + ν − j)!µ!

(µ + ν)!(µ − j)!j!
λj , Dµν(λ) =

ν∑

j=0

(µ + ν − j)!ν!

(µ + ν)!(ν − j)!j!
(−λ)j .

These two polynomials have a rich structure. For example, one has the relation
Nµν(λ) = Dνµ(−λ) as well as several other important properties which can be found,
e.g., in [26, section 5.2].

Diagonal Padé approximation (µ = ν), is usually preferred because computing
Rµν with say, µ > ν, is not cheaper than computing the more accurate Rν∗ν∗

where
ν∗ = max{µ, ν}. Nonetheless, because of their stability properties, Padé [ν + 1/ν]
approximations are used, together with [ν/ν] approximations, in the numerical so-
lution of initial value problems with one-step methods. Another attractive property
of the diagonal Padé approximation is that if A has eigenvalues with negative real
part, then the spectral radius of Rνν(A) is less than one, for any ν. In the following,
diagonal rational approximation will be denoted by Rνν = Rν . The accuracy of the
approximation can be established by using the following result.

Theorem 4.3. [26, Theorem 5.5.1] Let the previous notation hold. Then

eλ −Rµν(λ) = (−1)ν µ! ν!

(µ + ν)! (µ + ν + 1)!
λµ+ν+1 + O(λµ+ν+2).

This error estimate shows that the approximation degrades as λ gets away from
the origin. This serious limitation motivated the introduction of the scaling and
squaring procedure. By exploiting the property eA = (eA/k)k, for any square matrix
A and scalar k, the idea is to determine k so that the scaled matrix A/k has norm
close to one, and then employ the approximation

eA/k ≈ Rν(A/k).

The approximation to the original matrix eA is thus recovered as eA ≈ Rν(A/k)k.
The use of powers of two in the scaling factor is particularly appealing. Indeed, by
writing k = 2s, the final approximation Rν(A/2s)2

s

is obtained by repeated squaring.
The scalar s is determined by requiring that ‖A‖∞/2s is bounded by some small
constant, say 1/2. In fact, this constant could be allowed to be significantly larger
with no loss in stability and accuracy; see [33]. The approach oulined here is used in
Matlab 7.1. [48].

A rational function that is commonly used in the case of symmetric negative
semidefinite matrices, is given by the Chebychev rational function. The Chebychev
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approximation R?
µν determines the best rational function approximation in [0,+∞)

to e−λ by solving the problem

min
Rµν

max
λ∈[0,+∞)

∣∣e−λ −Rµν(λ)
∣∣ ,

where the minimum is taken over all rational functions. In particular, the cases
µ = 0 and µ = ν have been investigated in greater detail, and the coefficients of the
polynomials of R?

ν have been tabulated first by Cody, Meinardus and Varga in [12] for
ν ≤ 14 and then in [9] for degree up to 30. Setting Eν = maxλ∈[0,+∞)

∣∣e−λ −R?
ν(λ)

∣∣,
great efforts in the approximation theory community have been devoted to show the
following elegant result on the error asymptotic behavior,

lim
ν→∞

E1/ν
ν =

1

9.28903...
,

disproving the so-called “1/9” conjecture. From the result above it follows that
supλ∈[0,+∞)

∣∣e−λ −Rν(λ)
∣∣ ≈ 10−ν .

Other rational function approximations that have recently received renewed inter-
est are given by rational functions with real poles, such as Rµν(λ) = Nµ(λ)/(1+hλ)ν ;
see, e.g., [7], [51], [54]. An advantage of these functions is that they avoid dealing
with complex conjugate poles.

4.3. Reduction methods for large matrices. In many application problems
where A is large, the action of exp(A)v is required, rather than exp(A) itself, so
that the methods of section 3.5 and of section 3.6 can be used. We first discuss
some general convergence properties, and then show the role of the Krylov subspace
approximation to exp(A)v in various circumstances. Note that time dependence can,
in principle, be easily acommodated in the Krylov approximation as, for instance,
exp(tA)v ≈ Vk exp(tHk)e1‖v‖. In the following, we shall assume that A already
incorporates time dependence. In particular, estimates involving spectral information
on the matrix will be affected by possible large values of t.

An analysis of the Krylov subspace approximation Vk exp(Hk)e1‖v‖ to exp(A)v
was given by Saad [59], where the easily computable quantity

hk+1,k ·
∣∣eT

k exp(Hk)e1‖v‖
∣∣

was proposed as stopping criterion for the iterative Arnoldi process; a higher order
estimate was also introduced in [59]. Further study showed that the convergence rate
of the approximation is often superlinear. In the Hermitian negative semidefinite case,
a complete characterization of this superlinearity behavior can be derived using the
following bounds. We refer to [18], [64] for qualitatively similar, although asymptotic
bounds.

Theorem 4.4 (see Hochbruck and Lubich [34]). Let A be a Hermitian negative
semidefinite matrix with eigenvalues in the interval [−4ρ, 0], with ρ > 0. Then the
error in the approximation (3.8) of exp(A)v is bounded as follows:

‖ exp(A)v − Vk exp(Hk)e1‖ ≤ 10e−k2/(5ρ),
√

4ρ ≤ k ≤ 2ρ,

‖ exp(A)v − Vk exp(Hk)e1‖ ≤ 10

ρ
e−ρ

(eρ

k

)k

, k ≥ 2ρ.
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Other bounds that emphasize the superlinear character of the approximation have
also been proposed in [63], and earlier in [25]. Similar results also hold in the case
when A is skew-symmetric, or when A is non-symmetric, under certain hypotheses on
the location of its spectrum, see [18], [34].

A typical convergence curve of the error together with the bounds of Theorem 4.4
(called HL bound) are shown in Figure 4.1, for a diagonal 1001 × 1001 matrix A
with entries uniformly distributed in [−40, 0] and a random vector v with uniformly
distributed values in [0, 1] and unit norm; this example is taken from [34].
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Fig. 4.1. Typical convergence of Krylov subspace approximation to exp(A)v and upper bounds

of Theorem 4.4.

Rational approximation and partial fraction expansion. When A is large, the
methods of the previous sections can be employed to approximate exp(A)v. In partic-
ular, using diagonal Padé or Chebyshev rational functions and their partial fraction
expansion, one gets

exp(A)v ≈ Nν(A)Dν(A)−1v = ω0v +
ν∑

j=1

ωj(A − τjI)−1v,

where the coefficients and the poles are pairwise complex conjugates. A recent dis-
cussion on the main properties of this approximation and on related references can
be found in [46].

Application to the solution of Lyapunov matrix equations. The approximate solu-
tion of the Lyapunov matrix equation has been addressed in a large body of literature,
in which both the sign function and the exponential function have played a leading
role over the years. Here we focus on low-rank approximations, assuming that B has
few columns and that it is full column rank.

The dependence of P (and Q) on the exponential has classically motivated the
use of quadrature formulas for the approximation of the integral defining P (cf. (4.2)),
together with the use of low degree polynomial or rational function approximations
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to exp(tλ). More precisely, setting X(t) = exp(tA)B, P could be approximated as

P (τ) =

∫ τ

0

X(t)X(t)T dt,

for some τ ≥ 0. Then, by using a quadrature formula with discretization points ti and
weights δi, the integral in [0, τ ] is approximated as P (τ) ≈ ∑k

i=1 X(ti)δiX(ti)
T . The

practical effectiveness of the approach depends on the value of τ , but most notably on
the quadrature formula used, under the constraint that all δi be positive, to ensure that
P (τ) is positive semidefinite; see [58] for some experiments using different quadrature
formulas.

The procedure above determines a low-rank approximation to the correspond-
ing Gramian since the number of columns of B is small. An alternative approach
that bypasses the integral formulation within the low-rank framework, is obtained
by reducing the problem dimension. If an approximation to exp(tA)B is available as
xk = Vk exp(tHk)E, where E and Vk are defined so that B = VkE, then

Pk = Vk

∫ ∞

0

exp(tHk)EET exp(tHT
k )dt V T

k =: VkGkV T
k .

If Hk is stable, Theorem 4.1 ensures that Gk is the solution to the following small
dimensional Lyapunov equation:

HkG + GHT
k + EET = 0. (4.3)

This derivation highlights the theoretical role of the exponential in the approximation
procedure. However, one can obtain Gk by directly solving the small matrix equation,
by means of methods that exploit matrix factorizations [3], [30].

The following result sheds light onto the reduction process performed by this
approximation; see, e.g., [39], [58].

Proposition 4.5. Let the columns of Vk, with V T
k Vk = Ik, span Kk(A,B) =

span{B,AB, . . . , Ak−1B}. The approximate solution Pk = VkGkV T
k where Gk solves

(4.3) is the result of a Galerkin process onto the space Kk(A,B).
Proof. Let Vk be a matrix whose orthonormal columns span Kk(A,B). Let

Rk = APk + PkAT + BBT be the residual associated with Pk = VkGkV T
k for some

Gk and let Hk = V T
k AVk. A Galerkin process imposes the following orthogonality

condition on the residual1

V T
k RkVk = 0.

Expanding Rk and using V T
k Vk = I, we obtain

V T
k AVkGkV T

k + GkV T
k AT Vk + V T

k BBT Vk = 0

HkGk + GkHk + V T
k BBT Vk = 0.

Recalling that B = VkE, the result follows.
Other methods have been proposed to approximately solve large-scale Lyapunov

equations; see [28],[44],[55] and references therein.

1This “two-sided” condition can be derived by first defining the matrix inner product 〈X, Y 〉 =
tr(XY T ) and then imposing 〈Rk, Pk〉 = 0 for any Pk = VkGV T

k
with G ∈ R

k×k.
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5. The matrix sign function. In this section we discuss methods for the matrix
sign function, with the sign function on C defined as

sign(z) =

{
+1 if <(z) > 0,
−1 if <(z) < 0.

We do not define sign(z) on the imaginary axis where, anyway, it is not continuous.
Outside the imaginary axis, sign is infinitely often differentiable, so that sign(A) is
defined as long as the matrix A ∈ C

n×n has no eigenvalues on the imaginary axis. We
first recall a few application problems where the sign function is commonly employed.

5.1. Motivation. The algebraic Riccati equation arises in control theory as a
very fundamental system to be solved in order to compute, for example, certain ob-
servers or stabilizers, see [4], [43]. It is a quadratic matrix equation of the form

G + AT X + XA − XFX = 0, (5.1)

where A,F,G ∈ R
n×n and F and G are symmetric and positive definite. One aims at

finding a symmetric positive definite and stabilizing solution X, i.e. the spectrum of
A − FX should lie in C

−. The quadratic equation (5.1) can be linearized by turning
it into a system of doubled size as

K :=

[
AT G
F −A

]
=

[
X −I
I 0

]
·
[

−(A − FX) −F
0 (A − FX)T

]
·
[

X −I
I 0

]−1

.

If we assume that X is a stabilizing solution (such a solution exists under mild condi-
tions, see [4],[43]), a standard approach is to use the matrix sign function to compute
X. We have sign(−(A − FX)) = I and sign(A − FX) = −I. Therefore,

sign

[
−(A − FX) −F

0 (A − FX)T

]
=

[
I Z
0 −I

]
, Z ∈ R

n×n

and we see that

sign(K) − I =

[
X −I
I 0

]
·
[

0 Z
0 −2I

]
·
[

X −I
I 0

]−1

. (5.2)

Split sign(K) − I vertically in its middle as [M |N ], move the inverse matrix to the
left-hand side in (5.2) and then equate the first halves, to get

MX = N.

This is an overdetermined, but consistent linear system for X, and by working with
the second half blocks, it can be shown that M is full column rank. Therefore, the
procedure above outlines a method to derive a stabilizing solution X to (5.1) by means
of the sign function.

As discussed in section 4.3, the Lyapunov equation

AT X + XA + CT C = 0, where A,C ∈ R
n×n

also arises in control theory. It was already shown in [57] that the (Hermitian) solution
X is the (2,1) block of the sign-function of a matrix of twice the dimension, that is

[
0 0
X I

]
=

1

2

(
I + sign

([
A 0

CT C −AT

]))
.
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This follows in a way similar to what we presented for the algebraic Riccati equation;
see also [5] for a generalization.

The matrix sign function also appears in the modelling (and subsequent simu-
lation) of complex physical systems. One example is given by the so-called overlap
fermions of lattice quantum chromodynamics [53], where one has to solve linear sys-
tems of the form

(I + Γ5sign(Q))x = b. (5.3)

Here Γ5 is a simple permutation matrix and Q is a huge, sparse, complex Hermitian
matrix representing a nearest neighbour coupling on a regular 4-dimensional grid
with 12 variables per grid point. Note that here we may situate ourselves in an
order reduction context, since if we solve (5.3) with some iterative method, the basic
operation will be to compute matrix-vector products, i.e. we need the action sign(Q)v
rather than sign(Q) itself.

5.2. Matrix methods. A detailed survey on methods to compute the whole
matrix sign(A) is given in [42], see also [2]. We shortly describe the most important
ones.

The Newton iteration to solve z2 − 1 = 0 converges to +1 for all starting values
in the right half plane, and to −1 for all those from C

−. According to (3.5), the
corresponding matrix iteration reads

Sk+1 =
1

2

(
Sk + S−1

k

)
, where S0 = A. (5.4)

Although the convergence is global and asymptotically quadratic, it can be quite slow
in the presence of large eigenvalues or eigenvalues with a small real part. Therefore,
several accelerating scaling strategies have been proposed [41], for example by using
the determinant [8], i.e.

Sk+1 =
1

2

(
(ckSk) +

1

ck
S−1

k

)
, with ck = det(Sk).

Note that det(Sk) is easily available if Sk is inverted using the LU -factorization. An
alternative which avoids the computation of inverses is the Schulz iteration, obtained
as Newton’s method for z−2 − 1 = 0, which yields

Sk+1 =
1

2
· Sk ·

(
3I − S2

k

)
, S0 = A.

This iteration is guaranteed to converge only if ‖I−A2‖ < 1 (in an arbitrary operator
norm).

In [40], several other iterations were derived, based on Padé approximations of
the function (1 − z)−1/2. They have the form

Sk+1 = Sk · Nµν(S2
k) · Dµν(S2

k)−1, S0 = A.

For µ = 2p, ν = 2p − 1, an alternative representation is

Sk+1 =
(
(I + Sk)2p + (I − Sk)2p

)
·
(
(I + Sk)2p − (I − Sk)2p

)−1
. (5.5)
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In this case, the coefficients of the partial fraction expansion are explicitly known,
giving the equivalent representation

Sk+1 =
1

p
· Sk ·

p∑

i=1

1

ξi

(
S2

k + αiI
)−1

, S0 = A, (5.6)

with ξi =
1

2

(
1 + cos

(2i − 1)π

2p

)
, α2

i =
1

ξi
− 1, i = 1, . . . , p.

Interestingly, ` steps of the iteration for parameter p are equivalent to one step
with parameter p`. The following global convergence result on these iterations was
proved in [40].

Theorem 5.1. If A has no eigenvalues on the imaginary axis, the iteration (5.5)
converges to sign(A). Moreover, one has

(sign(A) − Sk)(sign(A) + Sk)−1 =
(
(sign(A) − A)(sign(A) + A)−1

)(2p)k

,

which, in the case that A is diagonalizable, gives

‖(sign(A)−Sk)(sign(A) + Sk)−1‖ ≤ ‖T‖ · ‖T−1‖ ·
(

max
λ∈spec(A)

sign(λ) − λ

sign(λ) + λ

)2pk

. (5.7)

5.3. Krylov subspace approximations. We now look at Krylov subspace ap-
proximations for

sign(A)v, v ∈ C
n

with special emphasis on A Hermitian. The Krylov subspace projection approach
from (3.8) gives

sign(A)v ≈ Vksign(Hk)e1 · ‖v‖. (5.8)

If one monitors the approximation error in this approach as a function of k, the
dimension of the Krylov subspace, one usually observes a non-monotone, jig-saw like
behaviour. This is particularly so for Hermitian indefinite matrices, where the real
eigenvalues lie to the left and to the right of the origin. This can be explained by
the fact, formulated in Proposition 3.1, that the Krylov subspace approximation is
given as pk−1(A)v where pk−1 is the degree k − 1 polynomial interpolating at the
Ritz values. But the Ritz values can get arbitrarily close to 0 (or even vanish), even
though the spectrum of A may be well separated from 0, then producing a (relatively)
large error in the computed approximation. A Ritz value close to 0 is likely to occur
if k − 1 is odd, so the approximation has a tendency to degrade every other step.
A remedy to this phenomenon is to use the polynomial that interpolates A at the
harmonic Ritz values, since these can be shown to be as well separated from zero as
spec(A). Computationally, this can be done using the same Arnoldi recurrence (3.7)
as before, but applying a simple rank-one modification to Hk before computing its
sign function. Details are given in [66].

An alternative is to use the identity

sign(z) = z · (z2)−
1

2 ,
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then use the Krylov subspace approach on the squared matrix A2 to approximate

(
A2

)− 1

2 v ≈ Vk(Hk)−
1

2 e1 · ‖v‖ =: yk,
sign(A)v ≈ xk = Ayk.

}
(5.9)

Note that in (5.9) the matrix Hk represents the projection of A2 (not of A !),
onto the Krylov subspace Kk(A2, b). Interestingly, this is one of the special cases
when explicitly generating the space Kk(A2, b) is more effective than using Kk(A, b);
see [67] for a general analysis of cases when using the latter is computationally more
advantageous.

It is also remarkable that, in case that A is Hermitian, it is possible to give a
posteriori error bounds on the quality of the approximation xk as formulated in the
following theorem taken from [66].

Theorem 5.2. Let A be Hermitian and non-singular. Then xk from (5.9) satis-
fies

‖sign(A)v − xk‖2 ≤ ‖rk‖2 ≤ 2κ

(
κ − 1

κ + 1

)k

· ‖v‖2, (5.10)

where κ ≡ ‖A‖2‖A−1‖2 and rk is the residual in the k-th step of the CG method
applied to the system A2x = v (with initial residual v, i.e. initial zero guess).

The residual norms ‖rk‖ need not be computed via the CG method since they
can be obtained at almost no cost from the entries of the matrix Hk in the Lanczos
recursion (3.7). This can be seen as follows: Since A2 is Hermitian, Hk is Hermitian
and tridiagonal. If pk−1 is the degree k − 1 polynomial expressing the k-th Lanczos
vector vk as vk = pk−1(A

2)v, the Lanczos recursion gives hk+1,kpk(z) = (z − hk,k) ·
pk−1(z) − hk−1,kpk−2(z). On the other hand, it can be shown that rk = σvk+1 with
‖vk+1‖ = 1 for some scalar σ (see [60, Proposition 6.20]), and since rk = qk(A2)v for
some polynomial qk of degree k satisfying qk(0) = 1, it must be qk = pk/pk(0), so
that rk = pk(A2)v/pk(0) = vk+1/pk(0). Therefore, along with the Lanczos process we
just have to evaluate the recursion pk(0) = −[hk,k · pk−1(0) + hk−1,kpk−2(0)]/hk+1,k

to obtain ‖rk‖ = 1/|pk(0)|.
We do not know of comparable error bounds for the other two approaches outlined

earlier ((5.8) and its variant using harmonic Ritz values). Note also that xk from (5.9)
satisfies xk = Apk−1(A

2)v, where q(z) = z · pk−1(z
2) is an odd polynomial, that is

q(−z) = −q(z), of degree 2k−1 in z. This is a restriction as compared to the other two
approaches where we do not enforce any symmetry on the interpolating polynomials.
However, this restriction will most probably have an effect only if the spectrum of
A is very unsymmetric with respect to the origin. Our computational experience
in simulations from lattice QCD indicates that xk is actually the best of the three
approximations discussed so far. Since, in addition, xk comes with a bound of the
true error norm, we definitely favor this approach.

5.4. Partial fraction expansions. If we have sufficient information on the
eigensystem of A available, we can use (5.7) to estimate a number p ∈ N such that
the first iterate from (5.6) already gives a sufficiently good approximation to the sign
function. As discussed in section 3.6, we can then approximate

sign(A)v ≈ A ·
p∑

i=1

1

pξi
x̃(j),
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with x̃(j) an approximate solution of the linear system

(A2 + αjI)x(j) = v, j = 1, . . . , p.

We already discussed in section 3.6 how we can make efficient use of the shifted nature
of these systems when solving them with standard Krylov subspace methods.

A particularly important situation arises when A is Hermitian and the inter-
vals [−b,−a] ∪ [c, d], with 0 < a ≤ b, 0 < c ≤ d, containing the eigenvalues of A
are available. Under these hypotheses, Zolotarev explicitly derived the best ratio-
nal approximation in the Chebyshev sense; see [56]. The next theorem states this
result for [−b,−a] = −[c, d]. The key point is that for fixed µ = 2p − 1, ν = 2p,
finding the optimal rational approximation Rµν(z) = Nµν(z)/Dµν(z) to the sign
function on [−b,−a]∪ [a, b] is equivalent to finding the best such rational approxima-
tion Sp−1,p(z) = Np−1,p(z)/Dp−1,p(z) in relative sense to the inverse square root on
[1, (b/a)2]. The two functions are then related via R2p−1,2p(z) = az · Sp−1,p(az).

Proposition 5.3. Let R2p−1,2p(z) = N2p−1,2p(z)/D2p−1,2p(z) be the Chebyshev
best approximation to sign(z) on the set [−b,−a] ∪ [a, b], i.e. the function which
minimizes

max
a<|z|<b

|sign(z) − R̃2p−1,2p(z)|

over all rational functions R̃2p−1,2p(z) = Ñ2p−1,2p(z)/D̃2p−1,2p(z). Then the factored
form of R2p−1,2p is given by

R2p−1,2p(z) = az · Sp−1,p((az)2) with Sp−1,p(z) = D

∏p−1
i=1 (z + c2i)∏p

i=1(z + c2i−1)
,

where

ci =
sn2

(
iK/(2p);

√
1 − (b/a)2

)

1 − sn2
(
iK/(2p);

√
1 − (b/a)2

) ,

K is the complete elliptic integral, sn is the Jacobi elliptic function, and D is uniquely
determined by the condition

max
z∈[1,(b/a)2]

(
1 −√

zSp−1,p(z)
)

= − min
z∈[1,(b/a)2]

(
1 −√

zSp−1,p(z)
)
.

For a given number of poles, the Zolotarev approximation is much more accurate
than that of the rational approximation (5.6) and is therefore to be preferred. This
is illustrated in Table 5.1, taken form [66]. However, the use of the Zolotarev approx-
imation is restricted to Hermitian matrices for which lower and upper bounds (a and
b, resp.) on the moduli of the eigenvalues are known.

As a final point, let us again assume that A is Hermitian and that we approxi-
mate sign(A) by some rational approximation R(A) with R having a partial fraction
expansion of the form

R(z) =

p∑

j=1

ωj
z

z2 + αj
, ωj ≥ 0, αj ≥ 0, j = 1, . . . , p.
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Table 5.1
Number of poles necessary to achieve accuracy of 0.01

b/a (5.6) Zolotarev
200 19 5
1000 42 6

Note that this is the case for the Zolotarev approximation from Proposition 5.3 as well
as for the Padé approximations from (5.6). In order to compute R(A)v, let us assume
that we use the (shifted) CG-method to simultaneously solve (A2 + αjI)x(j) = v for

all j of interest, so that we get CG-iterates x
(j)
k with residual r

(j)
k = v−(A2+αjI)x

(j)
k .

Then the following estimate holds [66].
Proposition 5.4. Let gj > 0 be such that

∑p
j=1 gj = 1 and ε > 0. If the CG

iteration for system j is stopped at step kj in which the residual satisfies

‖r(j)
kj

‖2 ≤ εgj

√
αj

ωj
,

then

‖R(A)v −
p∑

j=1

ωjx
(j)
kj

‖2 ≤ ε.

This proposition formulates a computationally feasible stopping criterion. If we
also know the approximation accuracy of the rational approximation, i.e. if we have
an information of the kind

max
z∈spec(A)

|R(z) − sign(z)| ≤ ε2,

then we know that

‖ sign(A)v −
p∑

j=1

ωjx
(j)
kj

‖2 ≤ ε + ε2.

This fact is in agreement with the discussion on rational approximation of section 3.6.
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