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The framework

It is given an operator v — A.(v).

Efficiently solve the given problem in the approximation space

Ko = span{v, A¢, (v), A, (A, (V)), ...},

with dim(/C,,) = m, where A, — A for ¢ — 0 (e may be tuned)

xfor A=A, e=0= K,, =span{v, Av, A%v,..., A" 1y}




Examples of A:

e Solution of (preconditioned) large linear systems,

Axr =b nxXn A=A

e Shift-and invert eigensolvers
Ax =AMz, |z|| = 1, A= (oM —A)"!

e Preconditioned exponential approximation

xr = exp(A)v, A= (I—-A)"

Goal: Achieve approximation x,, to x within a fixed tolerance, by
using A, (and not A), with variable ¢




Many applications in Scientific Computing

A(v) function (linear in v):
e Shift-and-Invert procedures for interior eigenvalues
e Schur complement: A = B'S~1B S expensive to invert

e Preconditioned system: AP~ 'x = b, where

1. p-1




The exact approach

To focus our attention: A4 = A.

K, Krylov subspace Vin  orthogonal basis

Key relation in Krylov subspace methods:

Avm — m—l—lﬂm U = Vm—i—lelﬁ

System: Tm €K,y =

Eigenpb: (0,y) eigenpair of H,, = (0, V,,y) Ritz pair for (A, x)




The inexact key relation
A=A4 — A=~ A
AV =V H,, + F.. F,, error matrix, 1l = O(€;
1 H il =OC(¢;)
[f1,f25,fm]

How large is F), allowed to be?

system:

Vm—|—1(616 - ﬂmym) _mem

\ . 7
~~

computed residual =:7,,

eigenproblem: (0, Viny)

T'm = 9me — Ame — Um+1hm+1,m€?ny — me




A dynamic setting

me:[f17f27"'7fm]

& The terms f;1m; need to be small:

1 :
|fimll < —e Vi = [|Fnyll <e
m

o lf m; small = f; is allowed to be large




Linear systems: The solution pattern

Ym = [N1;72; .. .;Nm] depends on the chosen method, e.g.

e Petrov-Galerkin (e.g. GMRES):  y,,, = argminy|je; 5 — H,,y||,

min - m

ri—1: GMRES computed residual at iteration 7 — 1.

Simoncini & Szyld, SISC 2003 (see also Sleijpen & van den Eshof, SIMAX 2004)

Analogous result for Galerkin methods (e.g. FOM)




Eigenproblem: The structure of the Ritz pair

Ritz approximation:

(0,y) eigenpair of H,,

y=[n1;m2; - Mml,

Om,i quantity related to the spectral gap of 6 with H,,

~

ri—1: Computed eigenresidual at iteration 7 — 1

Analogous results for Harmonic Ritz values and Lanczos approx.

Simoncini, SINUM To appear




Relaxing the inexactness in A
A - v; not performed exactly = (A+ E;)-v;

True (unobservable) vs. computed residuals:

T'm = b — Amem — m—l—l(elﬁ — ﬂmym) — mem

GMRES: If (Similar result for FOM)

O_min(ﬂm> 1
| E:]] <

— g
m |71

1=1,....m

then HmemH <e¢ = HTm — Vm—kl(elﬁ _ ﬂmym)H <e

7i—1: GMRES computed residual at iteration 7 — 1




An example: Schur complement

B'ST'Bx=b y; «— BTS™!Bu,
A

Inexact matrix-vector product:

Solve Sw; = Bwv; Approx solve Sw; = Bu;
=

Computey; = B w; Computey; = B w;

w; = W; + € €; error in inner solution

BT’l/ﬁi — BTwZ- — BTEi — (A + EZ)fUz
S—— =
A’Ui —Eq;vq;
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Numerical experiment

b at each it. 7 solve Sw; = Buv;

Inexact FOM

[0}
ke
3
=
c
o)
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1S

Om = |[Tm — (b— Vm—Hﬂmym)H

|
60
number of iterations




Eigenproblem

Inverted Arnoldi: Ax = Ax  Find min ||
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Problems to be faced

e Make the inexactness criterion practical

1

— g
||

= Bl <

(CERFACS tr's of Bouras, Fraysse, Giraud, 2000, Bouras, Fraysseé SIMAXO05)

e What is the convergence behavior?

e What if original A was symmetric?




Selecting ¢,,,.: system AP lx =1
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Right: estimated /,,,




Convergence behavior

Does the inexact procedure behave as if |E;|| = 07

The Sleijpen & van den Eshof’s example:

Exact vs. Inexact GMRES

b= €1
FE; random entries

inexact

residual norm

|
10 15
number of iterations




Inexactness and convergence

For general A and b convergence is the same as exact A

Problems for:
e Sensitive A (highly nonnormal)

e Special starting vector / right-hand side

* Superlinear convergence as for A (Simoncini & Szyld, SIREV 2005)




Flexible preconditioning

Flexible:

P~ 1y, — P,L._lvi, Tm Espan{vl,APl_l’Ul,APQ_l’U%

Directly recover x,, (Saad, 1993):

[Pl_lvla P_1U27 < 7P_1Um] — Zm = Lm = LZmYm

m

= |nexact framework but exact residual




A practical example

f I 0
g 0 B'B

Application of P~ corresponds to solves with B! B
Y

P = Use CG to solve systems with B' B

Variable inner tolerance: At each outer iteration m,

A,

HT outeTH

’LTLTLBT’H
I




Electromagnetic 2D problem
Outer tolerance: 108

Cn,.

ol

Il <

Eo = €

Elapsed Time

Pb. Size | Fixed Inner Tol | Var. Inner Tol. | Var. Inner Tol.
e=10"19 | e=10"1/||r|| | e = 10712 /|r|]
33810 17.0 (54) 11.4 (54) 14.7 (54)
9102 82.9 (58) 62.8 (58) 70.7 (58)
14880 198.4 (54) 156.5 (54) 170.1 (54)




Structural Dynamics

(A+oB)x =10

Solve for many o's simultaneously = UBl+olT=0

(Perotti & Simoncini 2002)

Inexact solutions with B at each iteration:

Prec. Fill-in 5 Prec. Fill-in 10

e-time [s| | # outer its | e-time [s| | # outer its
Tol 1076 14066 296 13344 289
Dynamic Tol 11579 301 11365 293

20 % enhancement with tiny change in the code

(see also van den Eshof, Sleijpen and van Gijzen, JCAM 2005)




Inexactness when A symmetric

A symmetric = A + E; nonsymmetric

o Assume VIV, =1 — H,, upper Hessenberg

e Wise implementation of short-term recurr. /truncated methods
(Vin, non-orth. — W, H,, tridiag./banded — T,)

- Inexact short-term recurrence system solvers
(Golub-Overton '88, Golub-Ye '99, Notay '00, Sleijpen-van den Eshof '04, ...)

- Inexact symmetric eigensolvers
(Lai-Lin-Lin 1997, Golub-Ye 2000, Golub-Zhang-Zha 2000, Notay 2002, ...)

- Truncated methods (Simoncini - Szyld, Num. Math. To appear)




A sym. (2D Laplacian)

Preconditioner:

P nonsymmetric perturbation (107°) of Incomplete Cholesky

2
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One more application: Approximation of the exponential

A symmetric negative semidefinite (large dimension), v s.t. ||v|| =1,

eXp(A)U ~ Tm = VmYm, Ym — eXp(Hm>€1

Problem: Find preconditioner for A to speed up convergence
Hochbruck & van den Eshof (SISC, to appear):

Determine z,, ~ exp(A)v as

T = VinYm € K, (] — A)~1,v)  for scalar ~

= Ym = exp(H,,)e1 has a structured decreasing pattern

(Lopez & Simoncini, tr. 2005)




Conclusions

e A may be replaced by A., with increasing €; and still converge

e Stable procedure for not too ill-conditioned problems

Property inherent of Krylov approximation

4

Many more applications for this general setting
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