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L —
Algebraic computations. |

Old and new challenges in Scientific Computing

» Solution of block-structured /preconditioned large linear systems,
Ax=0b nxn
» Eigensolver requiring spectral transformations
Ax = AMXx, IIx] =1,
> Large scale matrix function evaluations
x =exp(A)v, x=VAv, etc.
» Matrix and Tensor equations

(AA®BI®@C+...+A @B ®@C)x=>b
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Algebraic computations. Il

Old and new frameworks in Scientific Computing

» Many-dimensional problems (high-dim tensorized form)

- Algebraic formulations
- Memory constraints (for data and solution)

» Finite Precision computations

- Rigorous round-off error analysis vs flexibility
- Accuracy tradeoffs

» Mixed-precision computations

- High performance machines
- Computation lightnening
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N
The framework - iterative methods

> Inexact operator v — A.(v)
where A, — A for e — 0 (e may be tuned)

(e.g., Preconditioning, Schur complements, spectral transformations, etc.)
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N
The framework - iterative methods

> Inexact operator v — A.(v)

where A, — A for e — 0 (e may be tuned)

(e.g., Preconditioning, Schur complements, spectral transformations, etc.)
» Truncated computations:

Inner products, matrix and vector sums

Classical nightmare
Accuracy and optimality properties are lost

Goal: Achieve approximation x,, to x within a fixed tolerance, by using A, (and not A),
with variable €
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-
The important ingredients

> Inexact operator v — A.(v):

y=A(v)=Av+w, [w|=¢)

> Incremental approximation: growing subspace, with basis Vi, = [v1, ..., V],

m
Xm = VmYm = Z Vi()/m)i

i=1

= The whole of y,, may change at each iteration, but

crucial property
The components of y,, have a decaying pattern
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-
The exact approach. Application of an operator.

To focus our attention: A = A.

Km = span{v,Av,..., A" v} Krylov subspace

& Vi, =|[wv,...,vn|, orth basis, obtained with Arnoldi (Gram-Schmidt) process
v “ v
=, 0=Avm— Y Vi(v/Avm), Vi1 =
I 2 S

= Arnoldi relation:

Hm
AV = Vi H,, v=Vnef H, = [ h T :|

m+1,m€m
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-
The exact approach. Application of an operator.

To focus our attention: A = A.
Km = span{v,Av,..., A" v} Krylov subspace
& Vi, =|[wv,...,vn|, orth basis, obtained with Arnoldi (Gram-Schmidt) process

v

i=——
v’

m A~
~ v
0= Avn— > vi(v] Avin), Vmi1 = Tel

i=1 v
= Arnoldi relation:

Hm
AV = Vi H,, v=VpaeaB H,= [ h T }

m+1,m€m

System: Xm €EKm = Xm= VmVm (x0=0)

Eigenpb: (0, y) eigenpair of H,, = (0, Vi,y) Ritz pair for (X, x)
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-
The inexact key relation

A is not available

A=A — A ~A
eg., Acv = Av + f, IIf]] =€
AVyp =V H, +  Fn Frm error matrix, ||fi]] = O(¢;)
—

[A,f,. fm]

How large is F,, allowed to be?
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-
The inexact key relation

A is not available

A=A — A ~A

eg., Av:i=Av+f, Ifll =€
AVyp =V H, +  Fn Frm error matrix, ||fi]] = O(¢;)
~
[fisfaseeefim]
How large is F,, allowed to be?
system:
rm = b-— Avm}/m =b-— Vm+1ﬂm)/m -

Vm+1(elﬂ - ﬂm}/m) _Fm)/m

computed residual =:7y,
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-
The inexact key relation

A is not available

A=A — A ~A

eg., Av:=Av+Tf, IIf]] =€
AVyp =V H, +  Fn Frm error matrix, ||fi]] = O(¢;)
[fi, 250y fm]
How large is F,, allowed to be?
system:
rm = b-— Avm}/m =b-— Vm+1ﬂm)/m — FonyYm
= Vm+1(elﬂ - ﬂm}/m) _Fm)/m
computed residual =:7y,
eigenproblem: (6, Vimy)

rm=0Vny — AV,y = Vm+1hm+1,mel.y — Fmy



L —
A dynamic setting

‘true (unobservable) residual = computable residual —F,,y
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L —
A dynamic setting

‘true (unobservable) residual = computable residual —F,,y

m

2 “
Foy =i b ful | L | =D fimi

: i=1

Tm

© The terms f;n; need to be small:

1
il < —e Vi = [[Fayl <e

olf nismall = f;is allowed to be large
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L —
Linear systems: The solution pattern

Ym = [m1:m2; . .. ; Mm] depends on the chosen method, e.g.

e GMRES:  yn, = argmin,|[e;f — H,,y||,

1
< — = ||F
‘,’7"— o (H )HI’, 1”

min\/1p

Fi_1: GMRES computed residual at iteration i — 1.

Simoncini & Szyld, '03 (see also Sleijpen & van den Eshof, '04, Bouras-Frayssé '05 )

Analogous result for Galerkin methods (e.g. FOM)
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-
Relaxing the inexactness in A

A v; not performed exactly = (A4 E)-v
True (unobservable) vs. computed residuals:

I'm = b— AVmYm = m+1(elﬁ _ﬂm}/m) - mem

GMRES: If (Similar result for FOM)

in(H 1
g < Tt Loy
m o [fiall

then ||Foyml <e = [rm = Vims1(e1B — Hyym)l| <€

fi—1: GMRES computed residual at iteration i — 1
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-
An example: Schur complement

B'S™IBx=0»b yi < BTS™1By;
A

Inexact matrix-vector product:

Solve Sw; = By; Ingxact Approx solve Sw; = By, = w;
Compute y; = BT w; Computey; = BT w;
W = w; + €; €; error in inner solution so that
Av; — B™W,=B"w;,—B"e; = (A+ E)vi
S~ =~
AV,' 7E,'V,'
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L —
Numerical experiment

B'S 'Bx=b at each it. i solve Sw; = By;
N—_——
A 10'

Inexact FOM

magnitude

Om = ”rm - (b - Vm+1ﬂmym)”

L L L
0 20 40 60 80 100 120
number of iterations
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L —
Different problems. Similar setting.

Approximating the evaluation of a matrix function

Given V,,, € R"™™ whose columns are an orthogonal basis of some approximation space,
0#£teR,

f(tA)v = uy, := V,f (tHpy)e,

“Residual” evaluation:

Fm(t) := |Ami1.mel f(tHm)e1l, B t,m = Vi1 AVim

If u(t) = f(tA)v is the solution to the differential equation u(?) = Au for some derivative
d, then

rm(t) = Aup, — uf,‘f) = AV,,f(tHy)e1 — uf,‘f) =, ., = vm+1hm+1’me;f(th)e1
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Different problems. Similar setting.

Approximating the evaluation of a matrix function
Given V,,, € R"™™ whose columns are an orthogonal basis of some approximation space,
0#£teR,

f(tA)v = uy, := V,f (tHpy)e,

“Residual” evaluation:

Fm(t) := |Ami1.mel f(tHm)e1l, B t,m = Vi1 AVim

If u(t) = f(tA)v is the solution to the differential equation u(?) = Au for some derivative
d, then

rm(t) = Aup, — ufg) = AV,,f(tHy)e1 — ufg) =, ., = vm+1hm+1’me;f(th)e1

Distance between exact and computable residuals: for F,, = [f1, ..., fn],

lemll = riml < N, - -, Sl (tHm)er ] < D Il le] F(tHm)es|

j=1

Proof of element-wise decay of f(tHp)e; in Pozza-Simoncini, BIT '19
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-
An example. Matrix pde225 from the Matrix Market repository

Approximation of e "v with v = 1 (normalized)

35

* Residual norm ||rj|| with constant accuracy €; = tol/m,
* residual norm ||¥;|| with a variable strategy for the perturbation ; as the inexact Arnoldi
method proceeds
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L —
Multiterm linear matrix equation. 1

A1 XBy + A XBy +...+ AlXB,=C

A € R™" B € R™™ X unknown matrix

Possibly large dimensions, structured coefficient matrices
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L —
Multiterm linear matrix equation. 1

AL XB; +AXBy +... +AXB, = C
A € R™" B € R™™ X unknown matrix

Possibly large dimensions, structured coefficient matrices

Kronecker formulation| (B ® Ai+...+B] ® Aj)x=c & Ax=c

A e Rrm>nm - |terative methods
(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta,
Raydan, Stoll, Tobler, Wedderburn, Zander, ...)
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L —
Multiterm linear matrix equation. 1

A1 XBy + A XBy +...+ AlXB,=C

A € R™" B € R™™ X unknown matrix

Possibly large dimensions, structured coefficient matrices

Kronecker formulation

(B @®A1+...+ B/ @ A)x=c & Ax=c

A € Rrmxnm - |terative methods

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner, Matthies, Nagy, Onwunta,

Raydan, Stoll, Tobler, Wedderburn, Zander, ...)

& Same framework for multiple Kronecker terms, e.g.,

(AABG+...+ABC)x=d

15 /24



L —
Multiterm linear matrix equation. 2

Iterative methods: matrix-matrix multiplications and rank truncation

AL XBy 4+ A XBy+ ...+ AXBy=C
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L —
Multiterm linear matrix equation. 2

Iterative methods: matrix-matrix multiplications and rank truncation
A1 XBy + A XBy+...+ AlXB,=C

Alternatives to Kronecker form:

> Fixed point iterations (an “evergreen”...)
» Projection-type methods = low rank approximation
» Ad-hoc problem-dependent procedures

> etc.

& Many discretized problems now take this form
(SPDEs, parameter-dep PDEs, space-time PDEs, etc.)

Currently a very active area of research
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-
Iterative methods: matrix-matrix products and rank truncation

A1 XBy + A XBy + ...+ AgXBy = C, C low rank

Kronecker formulation in disguise:

B/ ®Ar+...+B/ ®A)x=c

Conjugate Gradients: Use X instead of x, where x = vec(X),
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X1 = Xk Fopx - = Xigr = Xie + o Pic

v

_ V. Simoncini - On the versatility of Krylov subspaces .. 17 /24



-
Iterative methods: matrix-matrix products and rank truncation

A1 XBy + A XBy + ...+ AgXBy = C, C low rank

Kronecker formulation in disguise:

B/ ®Ar+...+B/ ®A)x=c

Conjugate Gradients: Use X instead of x, where x = vec(X),

Matrix-oriented “thinking". Update:

X1 = Xk Fopx - = Xigr = Xie + o Pic

v

Matrix-oriented “thinking”. Truncate:

X = Uk U,Z— — )~<k+1 = Uk+1 U,L_l - Xky1 = tI‘unC()N(k_H) = Uki1 U,L_l

(here Py also low rank) trunc()N(kH) acts on the SVD of Xy
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|
Truncated matrix-oriented CG (TCG) for Kronecker form

Input: A(X) = A1XB1 + AxXBx + ...+ Ay X By, right-hand side C € R"*" in low-rank format.

Truncation operator trunc.

Output: Matrix X € R"*" in low-rank format s.t. ||A(X) — C||¢/||C||F < tol

1. Xo0=0, Ro=C, Py = Ry, Q = A(Po)

2. & = (Po, Qo), k=0
3. While [|Ryl|¢ > tol
4. wik = (R, Pr) /€

5. Xir1 = Xk + wi Py,
6. Rit1 = C = A(Xk41),
7. Bk = —(Ris1, Qi) /Ex
8. Pi+1 = Riy1 + B P,
9. Qi+1 = A(Pk41),

10. Ekr1 = (Prr1s Quy1)

11. k=k+1

12. end while

(X,Y)=tr(XTY)

Xit1  trunc(Xyy1)

Optionally:  Rg11 < trunc(Ryy1)

Pyy1  trunc(Pyy1)

Optionally: Q41 < trunc(Qx1)
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|
Truncated matrix-oriented CG (TCG) for Kronecker form

Input: A(X) = A1XB1 + AxXBx + ...+ Ay X By, right-hand side C € R"*" in low-rank format.
Truncation operator trunc.
Output: Matrix X € R"*" in low-rank format s.t. ||A(X) — C||¢/||C||F < tol

1. Xo=0, Ro=C, Py =Ry, Q = A(Po)

2. & = (Po, Qo), k=0 (X,Y) =tr(XTY)
3. While ||R||r > tol

4. wik = (R, Pr) /€

5. Xi+1 = Xk + wi Pk, Xit1  trunc(Xyy1)
6. Rit+1 = C — A(Xk+1), Optionally:  Rg11 < trunc(Ryy1)
7. Bk = —(Rut1, Qi) / €k
8. Pit1 = Riy1 + Bk P, Pit1 = trunc(Py1)
9. Qi+1 = A(Pr1), Optionally: Qg1 ¢ trunc(Qy1)

10. Ekr1 = (Prr1s Quy1)

11. k=k+1

12. end while

& lterates kept in factored form! Kressner and Tobler, 2011

(truncation by tolerance and/or max rank)
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L —
A very general reference strategy

This setting can accommodate various strategies:
> Rank and accuracy flexibility in (rhs) data
» Multiprecision and other memory conservative computations
» HPC implementations

» Fault tolerance implementations
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N
Effect of truncation

Let xx = vec(Xk) (and similarly for the other variables). Truncation can be written as

k+1 k+1
x(HD) = (k1) 4 e)((+ ), plkt) = plktt) 4 e,(: +1)
(e)(fﬂ)7 efpkﬂ) local truncation errors)
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N
Effect of truncation

Let xx = vec(Xk) (and similarly for the other variables). Truncation can be written as

k+1 k+1
(k1) Xg:u) + e)(<+ )’ p(k+1) _ pgzﬂ) + e}(j +1)
(e)(<k+1)7 e,(DkH) local truncation errors)

TH: Let Ak = max{]lef”, | el llep ™|, | ef™ ||} and also
S = min{[[ e[|, €[], eSTV ], el ||}, Then there exists i € [0, 1] such that

1 o |r(k+1))Tp(k)|

< Ay
AT G| = D[R]

D

S A

and
(r8FYT Apt) — (Al )T Aph)
()T Apth |

Moreover, with ~ = s + @18, 11 + 185y Dllaptc=D) | + kD) /1K)

Be=—

|r(k+1))Tr(k)| Ay
EGREREGE
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——
An example: AX + XA+ MXM = c¢ic]

A: 2D Laplace operator, M =pentadiag(—0.5, -1, 3.2, —1, —0.5), ¢; random entries

Truncated CG residual norm (blue line) for different truncation values

magnitude

magnitude
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number of iterations
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number of iterations

Also reported: Loss of orthogonality (cosine of the angles) between consecutive residuals
and residual and directions
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N
Conclusions

» Krylov-based approaches are very flexible
» Relaxation properties are versitile wrto problem
» Relaxation properties often arise in disguise

» Handling inexactness — instead of preventing it — is extremely useful in practice

Visit: www.dm.unibo.it/ simoncin

Email address: valeria.simoncini@unibo.it
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L —
Another example. The tough problems may remain so.

A= diag(A, -, An) with A = A1+ {5 (A = M)p" 7, A =01, A, =100

M: diagonal matrix with elements logarithmically distributed in [10~2, 10°]
Convergence history of TCG for two truncation tolerances:

10° . . . . : 10°
—tol=te9 107 —lol=tes

102k = tol=1e-6 = tol=1e-6
E £
o o
c <
© ©
=3 3
o h=l
810+

106

. . . . 108 . . . . .
0 20 40 60 80 100 120 0 20 40 60 80 100 120
number of iterations number of iterations
Left: p=0.4 Right: p=0.8
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L —
Different problems. Similar setting. 2

Large scale Lyapunov equation (also for Sylvester eqn):

AX +XAT +BBT =0 J

Projection-type methods
Given a low dimensional approximation space K,

X~ Xp= VYV col(Xy) €K
Galerkin condition: R := AX,, + XnAT +BBT L K

V)RV, =0 K = Range( V)
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L —
Different problems. Similar setting. 2

Large scale Lyapunov equation (also for Sylvester eqn):

AX +XAT +BBT =0 J

Projection-type methods
Given a low dimensional approximation space K,

X~ Xp= VYV col(Xy) €K
Galerkin condition: R := AX,, + XnAT +BBT L K

V)RV, =0 K = Range( V)

Proofs of element-wise decay in Y

» Standard Krylov (Simoncini '15)

» Rational Krylov (Pozza-Simoncini 19, see also Freitag-Kiirschner '20)
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