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Some matrix equations

e Sylvester matrix equation
AX+XB+ D=0

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati eqn

e Lyapunov matrix equation
AX +XA" + D=0, D=D"

Stability analysis in Control and Dynamical systems, Signal processing,

eigenvalue computations

e Algebraic Riccati equation

AX +XA" = XBB'X+ D =0, D=D'

Lancaster-Rodman '95, Konstantinov-Gu-Mehrmann-Petkov, '02,

Bini-lannazzo-Meini '12
Focus: All or some of the matrices are large (and possibly sparse)
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Approximate X in:
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Solving the Lyapunov equation. The problem

Approximate X in:
AX +XA" +BB" =0

A € R" ™ neg.real B € R"*P, I1<pKn

Time-invariant linear system:
x'(t) = Ax(t) + Bu(t), x(0) = zg
Closed form solution:

X = / e “ABBT et gt
0
= X symmetric semidef.

see, e.g., Antoulas '05, Benner '06



Linear systems vs linear matrix equations
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e Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)
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Large linear matrix equations:
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e No preconditioning - to preserve symmetry

e X is a large, dense matrix = low rank approximation
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Linear systems vs linear matrix equations

Large linear systems:
Ar=b, AeR™"
e Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

e Preconditioners: find P such that
AP 12 = b r =P 17
Is easier and fast to solve

Large linear matrix equations:

AX + XAT + BBT =0

Kronecker formulation:

(ARI+1I®A)xr=>b  x=vec(X)
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Projection-type methods

Given an approximation space /C,
X~ X, col(X,,) € K
Galerkin condition: R:=AX,,+ X,,A' + BB' 1 K
V) RV, =0 K = Range(V;,,)
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Projection-type methods

Given an approximation space K,

X ~ X, col(X,,) € K

Galerkin condition: R:=AX,,+ X,,A' + BB' 1 K

VTIRVm =0 IC = Range(V,,)

Assume VTEVm — 1,, and let X,,, := VmYmVﬂI.

Projected Lyapunov equation:

VAV, Y V) + V.Y, VAT + BBV,
VAV, )Y, + Y, (VAT V) + V. BBV,

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for
K =Km(A, B) = Range(|B, AB,...,A™~1B])



More recent options as approximation space
Enrich space to decrease space dimension

e Extended Krylov subspace

K=Kn(AB)+Kn(A A™'B),

that is, K = Range([B,A"'B,AB,A~2B,A* A=°B, ...

(Druskin & Knizhnerman '98, Simoncini '07)
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More recent options as approximation space
Enrich space to decrease space dimension

e Extended Krylov subspace
K=KnA B)+K,(A A™B),

that is, K = Range([B,A"'B,AB,A 2B, A*, A=5B,...,])
(Druskin & Knizhnerman '98, Simoncini '07)

e Rational Krylov subspace
K = Range([B, (A —s1)"'B,...,(A—s,1)"'B])
usually, {s1,...,8m} C CT chosen a-priori

In both cases, for Range(V,,,) = K, projected Lyapunov equation:

VAV, )Yy + Y (VA V, )+ V! BBV, =0

X =V, Y, V1




Rational Krylov Subspaces. A long tradition...

In general,

K,,(A, B,s) = Range([(A—s11) " 'B,(A—s3I) B, ..., (A—s,1)" ' B])

e Eigenvalue problems (Ruhe, 1984)
e Model Order Reduction (transfer function evaluation)

e In Alternating Direction Implicit iteration (ADI) for linear matrix
equations
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Rational Krylov Subspaces in MOR. Choice of poles.
K,,(A, B,s) = Range([(A—s11) " 'B,(A—s3I) B, ..., (A—s,1) ' B])
cf. General discussion in Antoulas, 2005.

Many contributions:

Gallivan, Grimme, Van Dooren (1996—, ad-hoc poles)

Penzl (1999-2000, ADI shifts - preprocessing, Ritz values)

Sabino (2006 - tuning within preprocessing)
IRKA — Gugercin, Antoulas, Beattie (2008)

Druskin, Lieberman, Simoncini, Zaslavski (adaptive greedy
procedure)

Guttel, Knizhnerman (black-box for matrix functions)




Alternating Direction Implicit iteration (ADI) - Wachspress

(see, e.g., Li 2000, Penzl 2000)

Xo=0,X;, = —2p;(A+p;)"'BB' (A+p,I)"" j=1,....¢
+H(A+p; )N (A—pi)X; 1 (A—p D) (A4 p D)~ "

with

V4
Gu(t) = H(t —pi), A{p1,...,pe} = argmin max

Pu(t) ‘
teA(A) | po(—1)

J=1

Implementation aspects: Benner, Saak, Quintana-Orti?, ....

Convergence depends on choice of poles {p;}

More advanced approach: Galerkin-Projection Accelerated ADI (Benner,
Saak, tr 2010)




ADI and Rational Krylov subspaces

Let B = b (vector). Main consideration (see, e.g., Li, Wright 2000)
col(XAPDY € K, (A, b, s)
and also, for U,, = [(A — s1I)"'b,..., (A — s,,1)" 0],
XUPD — (0 U,

with a Cauchy matrix
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ADI and Rational Krylov subspaces

Let B = b (vector). Main consideration (see, e.g., Li, Wright 2000)
col(XAPDY € K, (A, b, s)

and also, for U,, = [(A — s1I)"'b,..., (A — s,,1)" 0],

X{APD = U071,

with a Cauchy matrix

Equivalence between ADI and RKSM:

ADI coincides with the Galerkin solution X, in Rational Krylov space
if and only if

Sj = —)\j
where \; = eigs(V,; AV,,,) Ritz values (suitably ordered)

Druskin, Knizhnerman, S. '11, Beckermann '11, Flagg '09, Gugercin, Flagg '12




Typical behavior of ADI and generic RKSM for the same poles

Operator: L(u)

4

= —Au+ (502uy), + (50yuy ), on [0,1]7
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Same non-optimal 20 poles, repeated cyclically.
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Expected performance (from Oberwolfach Collection)
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Left: rail problem, A symmetric.
Right: flow_meter_model_v0.5 problem, A nonsymmetric.

ADI and RKSM use 10 non-optimal poles cyclically (computed a-priori with
lyapack, Penzl 2000)
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A minimal residual approach for AX + XA' + BB' =0, B=b

X ~ XME v YMEY T \where

yMBE _ arg  min 1AV, Y, V. + V.Y,V A" + BB | .
mE mXxXm

Equivalent to a “Petrov-Galerkin” condition on residual matrix

Hu-Reichel (1992), Jaimoukha-Kasenally (1994), Lin-Simoncini (2013)
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A minimal residual approach for AX + XA'" + BB' =0, B=b»
X~ XME —y YMEY T \where

yME arg  min 1AV, Y, V! +V,, Y, V.' AT + BB || 5.
me mXxXm

An extreme example:
| the ISS matrix
i K,, = Rational Krylov space

relative residual

-67 7MR

—»— Galerkin

50 100 150 200
subspace dimension
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A minimal residual approach for AX + XA'" + BB' =0, B=b»
X~ XME —y YMEY T \where

yME arg  min 1AV, Y, V! +V,, Y, V.' AT + BB || 5.
me mXxXm

An extreme example:
the ISS matrix
K,,, = Rational Krylov space

[
=]
e
(%]
0
S
)
2
o=
u
0
S

—MR

—»— Galerkin

100
subspace dimension

Cause: Origin close or inside field of values of A




The numerical solution of the minimum residual problem
If V,,, is such that AV,, = V,, ;1 H, and B =V Rp
(Vin, Vin41 with orth.columns, H = [H,;h])

Then

min || AV, YV + Vi Yo Vi AT+ BBT | 5

is equivalent to

YH,, +

min | H,,Y |1, 0| +

= Reduced matrix least squares problem
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The numerical solution of the matrix least squares problem

RgpRL 0
0 0

VAR = argmin |, Y |1, 0|+ | | YH], +

Numerical solution strategies: (Lin-Simoncini, '13)

e Kronecker formulation O(m?*): min,, ||e1 85 + Hyl|,
H=HQI+I1IQH

e Revise Kronecker formulation to exploit structure, O(m?)

e [terative method for normal matrix equation:

H' HY +YH'H+HYH+H'YH' =Cyg

Computational Cost comparable to that of Galerkin method




Multiterm linear matrix equation

A1 XBy +AXBy +...+ A XB,=C

Applications:
e Matrix least squares

e Control

e Stochastic PDEs
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Multiterm linear matrix equation

A1 XBy +AXBy +...+ A XB,=C

Applications:
e Matrix least squares
e Control
e Stochastic PDEs

Main device: Kronecker formulation
(B @ A1+...+ B, ® Ay)x=c

lterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner,

Matthies, Onwunta, Raydan, Stoll, Tobler, Zander, ...)
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Bilinear systems of linear matrix equation

A X+YB =04
As X + Y By = ()

...very few numerical procedures available.

A “special’ case: Constrained Sylvester equation

AlX—I—XAQ—YC:O
XB=0

(X,Y) unknown matrices

(1) constraint
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Constrained Sylvester equation

A1 X+ XA, —YC =0
XB =0

Typically: B low column rank, C' low row rank

New formulation: unconstrained Sylvester eqn  (Shank-Simoncini '13)

For any Y5 # 0, matrix X solves the linear matrix equation
A X + XAy (I — P =Y,QYCll

while Y = [Y7, V5], with Y] = X A,U; R, where

P: projector onto Range(B) and orthogonal to Range(CTCB)
II: orth. projector onto null(B ")

Ui: spans B

R: such that CU; = [Q1, Q2][R; 0]
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Numerics for the unconstrained Sylvester eqn (Shank-Simoncini '13)

For any Ys # 0, matrix X solves the linear equation

A1 X + XAy (I — P)II = YoQ3 CII

Computational considerations:

e Choose Y5 so that YoQ2 CII is low rank !
A X + X Ay(I =PI =didy  with didy = Y2QLCTI

Ve

A;

33



Numerics for the unconstrained Sylvester eqn (Shank-Simoncini '13)

For any Ys # 0, matrix X solves the linear equation

A1 X + XAy(I — P)I=Y,Q5CII

Computational considerations:

e Choose Y5 so that YoQ2 CII is low rank !

A X + X Ay(I — Pl =didy  with didy = YoQL CII

N

A,
o 22 singular and not explicitly available!
For building a rational Krylov subspace, one would have to apply
(Ay + o)™ = (Ay(I — P)IL + o 1)~

which is not available...

= effective alternatives lead to “augmented” methods




A sample plot

T T T T T T T

— Standard
10 —6— Augmented||

Backward error
[e)

10

10-12 i
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Dimension of spaces V and W

Convergence history of standard and augmented Krylov solvers

Ao FLOW dataset, n = 9669, A;: Laplace operator, n = 9604
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Other related matrix equations

More “exotic” linear matrix equations

e Sylvester-like
BX + f(X)A=C
typically (but not only!)

fX)=X, f(X)=X", o f(X)=X"

(Bevis, Braden, Byers, Chiang, De Terdn, Dopico, Duan, Feng, Guillery, Hall,

Hartwig, lkramov, Kressner, Montealegre, Reyes, Schroder, Vorntsov,

Watkins, Wu, ...)
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Conclusions

e Large advances in solving really large linear matrix equations

e Second order (matrix) challenges rely on strength and maturity of

linear system solvers

Reference for a survey:

* V. S., Computational methods for linear matrixz equations,
March 2013, Submitted (currently under revision)

available at www.dm.unibo.it/“simoncin
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