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Some matrix equations

e Sylvester matrix equation
AX+XB+ D=0

Eigenvalue pbs and tracking, Control, MOR, Assignment pbs, Riccati egn

e Lyapunov matrix equation
AX +XA" + D=0, D=D"

Stability analysis in Control and Dynamical systems, Signal processing,

eigenvalue computations

e Multiterm matrix equation
A1 XB; + A2XBsy + ...+ Ay XBy=C

Control, (Stochastic) PDEs, ...
Focus: All or some of the matrices are large (and possibly sparse)
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The Lyapunov equation.

AX +XA"+ D=0, A stable

A = Mo B e Spa rseE, bUt Tt X dense

Example: For D = I and A symmetric, it holds that X = —%A‘l



The Lyapunov equation. Some characterizations
AX+XA" + BB =0, A € R™™™ gtable

e The Applied Mathematician perspective
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AX+XA" + BB =0, A € R™™™ gtable

e The Applied Mathematician perspective

X holds stability information of time-invariant dynamical system:
x'(t) = Ax(t) + Bu(t), x(0) = xg

e The Analyst perspective. Closed form solution:
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The Lyapunov equation. Some characterizations
AX+XA" + BB =0, A € R™™™ gtable

e The Applied Mathematician perspective

X holds stability information of time-invariant dynamical system:
x'(t) = Ax(t) + Bu(t), x(0) = xg

e The Analyst perspective. Closed form solution:

1 oo 0
(wl — A)'BB'" (wl — A) *dw = / e *'BB e dt

27’(’ — 50 — 00

X =

e The Algebraist perspective. Kronecker formulation:
(ART+I®A)x=0>5 x = vec(X), b = vec(BB")

WithS = AQIT+I®Ac RV X"
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Linear systems vs linear matrix equations

Large linear systems:
Axr=b, AecR™"
e Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

e Preconditioners: find P such that
AP ' = r =P 'z

Is easier and fast to solve
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Linear systems vs linear matrix equations

Large linear systems:
Axr=b, AecR™"
e Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

e Preconditioners: find P such that
AP 12 = b r =P 17
Is easier and fast to solve

Large linear matrix equations:
AX +XA" +BB" =0
e No preconditioning - to preserve symmetry

e X is a large, dense matrix = low rank approximation

X~X=22" Ztall
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Linear systems vs linear matrix equations

Large linear systems:
Axr=b, AecR™"
e Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

e Preconditioners: find P such that
AP 12 = b r =P 17
Is easier and fast to solve

Large linear matrix equations:

AX + XAT + BBT =0

Kronecker formulation:

(ARI+1T®A)x=bb  z=vec(X)
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Projection-type methods

Given an approximation space K,
X~ X, col(X,,) € K
Galerkin condition: R := AX,, + X,,A' + BB' 1 K
V'RV, =0 IC = Range(V,,)
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Projection-type methods

Given an approximation space K,
X~ X, col(X,,) € K
Galerkin condition: R := AX,, + X,,A' + BB' 1 K
V'RV, =0 IC = Range(V,,)

Assume VTIVm — 1,, and let X,,, := VmYmVTI.

Projected Lyapunov equation:

VAV Y V. + V.Y, VAT + BBV, = 0
(V.y AV, ) Yo + Yo (VN ATV, )+ V.V BBTV,, = 0

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for
K = Km(A, B) = Range(|B, AB,...,A™~1B])
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More recent options as approximation space
Enrich space to decrease space dimension

e Extended Krylov subspace

K=Kn(AB)+Kn(A A 'B),

that is, X = Range([B,A'B,AB, A 2B, A*’B,A™°B, ...

(Druskin & Knizhnerman '98, Simoncini '07)
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More recent options as approximation space
Enrich space to decrease space dimension

e Extended Krylov subspace
K=KnA B)+ KA AB),

that is, K = Range([B,A !B, AB,A 2B, A’B, A 3B, ...,])
(Druskin & Knizhnerman '98, Simoncini '07)

e Rational Krylov subspace
K =K := Range([B, (A —s:1)"'B,...,(A—s,I) 'B])

usually, {s1,...,8m} C CT chosen a-priori
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More recent options as approximation space
Enrich space to decrease space dimension

e Extended Krylov subspace
K=KnA B)+ KA AB),

that is, K = Range([B,A !B, AB,A 2B, A’B, A 3B, ...,])
(Druskin & Knizhnerman '98, Simoncini '07)

e Rational Krylov subspace
K =K := Range([B, (A —s:1)"'B,...,(A—s,I) 'B])
usually, {s1,...,8m} C CT chosen a-priori
In both cases, for Range(V,,) = K, projected Lyapunov equation:
(Vo AV ) Yo + Yo (Vs ATV, + V) BBV, = 0
X =V Y Vi)
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Multiterm linear matrix equation

A1 XBy + A XBys + ...+ Ay XBy =C

Applications:
e Matrix least squares

e Control

e (Stochastic) PDEs
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Multiterm linear matrix equation

A1 XBy + A XBys + ...+ Ay XBy =C

Applications:
e Matrix least squares
e Control
e (Stochastic) PDEs
o ..

Main device: Kronecker formulation
(B @ A1+...+ B, ® Ay)x=c

lterative methods: matrix-matrix multiplications and rank truncation

(Benner, Breiten, Bouhamidi, Chehab, Damm, Grasedyck, Jbilou, Kressner,

Matthies, Onwunta, Raydan, Stoll, Tobler, Zander, and many others...)
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Multiterm linear matrix equation

A1 XBy + A XBy + ...+ Ay XBy =C

Applications:
e Matrix least squares
e Control

e (Stochastic) PDEs

Alternative approaches:

low-rank approx in the problem space. Some examples:
- Control problem

- PDEs on uniform discretizations

- Stochastic PDE
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A class of generalized Lyapunov equations

T T T __
AX + XAT +Y N;XN] +BB" =0

j=1
* A € R™ ™ nonsing

* N; € R™™™ low rank

* Be R" < n

Typical applications:
- Model order reduction of bilinear control systems
- Linear parameter-varying systems

- Stability analysis of linear stochastic differential equations
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Stationary iterative methods by splitting

AX + XAT +> N;XN] + BBT =0
j=1

M(X) - N(X)+ BB" =0,
where M(X) = AX + XA’ (Lyapunov operator)

~N(X)=> N;XN/

1=1
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Stationary iterative methods by splitting

AX + XAT +> N;XN] + BBT =0
j=1

M(X) - N(X)+ BB" =0,
where M(X) = AX + XA’ (Lyapunov operator)

~N(X)=> N;XN/

i=1
Assuming that (A, B) is controllable and X sym positive semi-def then
spec(A) C C™, p(M™IN) < 1
Stationary iteration:
M(Xy) =N(Xp_1) — BB, k=1,2,....

(Shank & Simoncini & Szyld, 2016)
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Stationary iterative methods by splitting. Cont'd
AX + XAT +Y N;XN] +BB" =0
j=1
Stationary iteration:

M(Xy) =N(Xp_1) — BB, k=1,2,....

In practice:
Approximately Solve AX + XAT + BBT =0 for X; = ZlZf
for k=2,3,...
Set By = [N1Zk—1, -+ ,NmZr_1, B]

Approximately Solve AX + X AT + BkB;f =0 for X, = Zng

If sufficiently accurate then stop
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Stationary iterative methods by splitting. Cont'd

Approximately Solve AX + XAT + BBT =0 for X; = ZlZf
for k=2,3,...
Set By, = [N1Zkx_1, -+ ,NmZir_1, B]
Approximately Solve AX + X AT + BkB,? =0 for X}, = Zng

If sufficiently accurate then stop

Challenges:

e Inexact solves of Lyapunov equation at each step k
e Increase of B} 's rank
e Computational cost of Lyapunov solves

e Memory effective stopping criterion

28



Matrix equations in PDEs
The Poisson equation - revisited
Uy — Uyy = f, in Q=(0,1)
+ Dirichlet b.c. (zero b.c. for simplicity)

Usual discretization = Au=0>b (withA=TQRI+I®T)
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Matrix equations in PDEs
The Poisson equation - revisited
Uy — Uyy = f, in Q=(0,1)
+ Dirichlet b.c. (zero b.c. for simplicity)

Usual discretization = Au=0>b (withA=TQRI+I®T)

Discretization: U; j & ug,,y;, with (xi,y;) interior nodes, so that h: meshsize
Ui—1,; —2U; ; + U415 1 Vit
Upr (Ti,Yj) = »J h2,j o — s 1, —2,1] Ui
Uit
R
Uyy (T4,Y5) ~ Chi1 s zgéJ . - %[Ui,j—l, Ui,j, Uz',j—l—l] —2
1

TU 4+ UT = F, b = vec(F)

30



_ _ _ 3
Au=1, Q=(0,17 = A=TIRI+ITRI+IRIxT)
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~Au=1, Q=(0,1° = A=TRIQUI+IRQTRXI+IRIRT)
CG for Ax =b vs lterative solver for @ T+ T @ YU+ UT = F
T e R™™ AcRY > p=50

| | | | | | |
0 10 20 30 40 50 60 70 80
number of iterations/ space dim

CG PCG | Matrix Eqn solver
Elapsed Time | 2.91 | 0.56 0.08
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A 3D convection-diffusion equation

—eAu+w-Vu =1, in Q= (0,1)3, with convection term

Sylvester equation:

2

w = (zsinz,ycosy,e® 1)

I Q@ (T +®1B1)+ (T +¥oB2) @ ] U+ U (T3 + B3Y3)=11"

€ | ny | FGMRESH+AGMG GMRES+MI20 Sylv Solver

CPU time (# its) | CPU time (# its) | CPU time (# its)

0.0050 | 100 8.0207 (15) 9.7207 ( 7) 0.5677 (22)
0.0010 | 100 7.6815 (14) 9.4935 ( 7) 0.5446 (22)
0.0005 | 100 7.3914 (14) 9.6274 ( 7) 0.5927 (24)

e Also for more general, separable coeff., operators on uniform grids

e If not separable coeff., use as preconditioner

(Palitta & Simoncini 2016)
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... A classical approach

Matrix formulation is not new...

e Bickley & McNamee, 1960: Early literature on difference equations
e Wachspress, 1963: Model problem for ADI algorithm

e Ellner & Wachspress (1980's): interplay between the matrix and

vector formulations (via preconditioning)

Novel solvers for matrix equations allow faster convergence
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PDEs with random inputs

Stochastic steady-state diffusion eqn: Find v : D x 2 — R s.t. P-a.s.,
—V - (a(x,w)Vu(x,w)) = f(x) in D
u(x,w)= 0 on 0D
f: deterministic;

a: random field, linear function of finite no. of real-valued random
variables &, : @ - T, C R

Common choice: truncated Karhunen—Loéve (KL) expansion,

ax,w) = p(x) + 0 >V Ardr(x)ér (W),
r=1

u(x): expected value of diffusion coef. o: std dev.
(Ar, ér(x)) eigs of the integral operator V wrto V(x,x) = 5C(x,x')

(Ar N\ C : D x D — R covariance fun. )
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Discretization by stochastic Galerkin

Approx with space in tensor product form®* &}, x S,

Ax=b, A=Gi®Ki+)» G, ®K, b=gof,

r=1
x: expansion coef. of approx to w in the tensor product basis {p;¢ }
K, € R™= X"z FE matrices (sym)
Gr € R"¢%"™¢ r =0,1,...,m Galerkin matrices associated w/ Sp, (sym.)
go: first column of Gg

fo: FE rhs of deterministic PDE

!
ne = dim(Sp) = % = | ng - ng | huge

2S5y set of multivariate polyn of total degree < p
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The matrix equation formulation

(Go®Ko+GLKi+...+4Gn Ky)x=go®f

transforms into
KoXGo+ K1 XGy + ...+ K XGp = F,  F=fog]
(Go =1)

Solution strategy. Conjecture:

e {K,} from trunc'd Karhunen—Loéve (KL) expansion

4
X ~ X low rank, X = X xt

(Possibly extending results of Gradesyk, 2004)
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Matrix Galerkin approximation of the deterministic part. 1

Approximation space K and basis matrix Vj: X~X,=V.Y

V. R =0, Ry, = Ko Xy + K1 X3G1 + ... + Ky X3.Gy — fogg

Computational challenges:

e Generation of K, involved m + 1 different matrices { K.} !
e Matrices K, have different spectral properties

e n,,n¢ so large that Xy, Ry should not be formed !

Joint project with Catherine Powell, David Silvester, Univ. Manchester
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Example 2. —V - (aVu) =1, D = (—1,1)%. KL expansion.

p=1, & ~U(—V3,v3) and C(Z1,72) = 02 exp (—M) , ng = 65,025,
oc=0.3

m P Ng k inner ng  rank time CG

its | Kg X secs time (its)

2 45 | 17 9.8 | 128 45 32.1 13.4 (8)

8 3 165 | 21 12.2 | 160 129 41.4 56.6 (10)

87% | 4 495 | 24 145 | 183 178  51.1 197.0 (12)
5 1,287 | 27 16.9 | 207 207 64.0 553.0 (13)

2 91 | 15 9.9 | 165 89 47.8 30.0 (8)

12 3 455 | 18 12.2 | 201 196 61.6 175.0 (10)

89% | 4 1,820 | 21 150 | 236 236 86.4 821.0 (12)
5 6,188 | 25 18.6 | 281 281 188.0 3070.0 (13)

2 231 | 16 9.4 | 281 206 111.0 94.7 (8)

20 3 1,771 | 23 123 | 399 399 197.0 845.0 (10)

93% | 4 10,626 | 26 15.4 | 454 454  556.0 Out of Mem

% of variance integral of a
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More applications. Using sparsity in solution strategies

MX + XM = BB"
M = tridiag(—1,4, —1) € R"*", n =100 and B = [es0, . . . , €g0]
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More applications. Using sparsity in solution strategies

MX + XM = BB"
M = tr1d1ag(—1,4, —1) & Ran’ n = 100 and B = [6507 . '7660]

— 10

— 20

— 30

— 40

— 50

— 60

— 70

— 80

— 90

— 100

0 10 20 30 40 50 60 70 80 90 100
nz =219

Left: pattern of X with log scale, nnz(X) = 9724

Right: Sparsity pattern of truncated ver. of X: all entries below 10~° are omitted
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lon strategies. Full rank rhs

Sparsity in solut

)
Inant

D = diag(rand

MX + XM =D,

(—1,2.1,—1) € R"*™, banded

lag.domi

d

lag

trid

M =

o
o
=]

—

= ==

-20

= =

= =
Z= =

=
===
==
==

n = 500

n = 100

Entries of X
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Conclusions

Multiterm (Kron) linear equations is the new challenge
e Great advances in solving really large linear matrix equations

e Linear matrix equation challenges rely on strength and maturity of
linear system solvers

e Low-rank tensor formats is the new generation of approximations

e Sparsity properties a new exploration field

Reference for linear matrix equations:

* V. Simoncini,

Computational methods for linear matrix equations,

SIAM Review, Sept. 2016.
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