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Some matrix equations

e Lyapunov matrix equation

AX +XA" +C =0, C=C'

Stability analysis in Control and Dynamical systems, Signal processing

e Sylvester matrix equation
AX 4+ XD+ F =0

Eigenvalue problems and tracking, Control, MOR, Assignment problems,

Riccati equation

e Algebraic Riccati equation
AX +XA" - XBB'X+C=0, CO=C"

books: Lancaster, Rodman 1995, Bini, lannazzo, Meini 2012

Focus: All or some of the matrices are large (and possibly sparse)




Solving the Lyapunov equation. The problem

Approximate X in:

AX + XA" -+ BBT =0

A € R™ " neg.real B € R"*P, 1<p<Kn




Solving the Lyapunov equation. The problem

Approximate X in:
AX+XA" +BB' =0

A € R™ " neg.real B € R"*P, 1<p<Kn

Time-invariant linear system:

x'(t) = Ax(t) + Bu(t), x(0) = g

Closed form solution:

X = / e " BBTe 4 dt
0
= X symmetric semidef.

see, e.g., Antoulas '05, Benner '06




Linear systems vs linear matrix equations

Large linear systems:

Ar =b, AcR™"

e Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

e Preconditioners: find P such that
AP 17 =b r =P 17

Is easier and fast to solve




Linear systems vs linear matrix equations

Large linear systems:
Axr=b, AeR™"
e Krylov subspace methods (CG, MINRES, GMRES, BiCGSTAB, etc.)

e Preconditioners: find P such that
AP 17 =1b r =P 17
Is easier and fast to solve

Large linear matrix equations:
AX+XA" +BB" =0
e No preconditioning to preserve symmetry

e X is a large, dense matrix = low rank approximation

X~X=27", Ztall




Projection-type methods

Given an approximation space /C,
X~ X,, Xm €K
Galerkin condition: R :=AX,,+ X, A' + BB 1 K

VRV, =0 IC = range(V;,)
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Projection-type methods

Given an approximation space /C,

X~ X,, X,, €K

Galerkin condition: R :=AX,,+ X, A' + BB 1 K

V'RV, =0 K = range(V,,)

Assume V”IVm = 1,, and let X,,, := VmYmVTI.
Projected Lyapunov equation:
Vo (AV, Y, V) + Vi Yo, Voo AT + BBV,
(Vi AV ) Yo + Yoo (Vs A" V,) + V. BBV,

Early contributions: Saad '90, Jaimoukha & Kasenally '94, for
K = Km(A, B) = Range([B, AB, ..., A~ 1 B])




Standard Krylov projection. In quest of a-priori error bounds
AX+XA"+BB'" =0, X~ X,, € K,(A B), BeR"!
A < 0 symmetric, [Amin| < ... < |Amax| eigs of A |B|| =1

Let Kk := Amizfl;)_‘ma". Then

HX o XmH

S\min\/g \/E + 1

Vi + 1 <\/E—1>m

Note: same rate as CG for (A + Apinl)z = b




The case of A symmetric. An example

I I
error norm ||X—Xm||
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A: 400 x 400 diagonal with uniformly distributed eigenvalues in [1,10] (Apin = 1)

11



The case of Field of Values in an ellipse

Assume Field of Values of A in C™

(E ellipse of center (c,0), foci (¢ d,0) and major semi-axis a)

4 m
IX = Xl < k (T)

Then

Omin T2 — T ()

a\ 2 C + Qin
_17 ro =

d d

Qmin €ig. of 2(A+ AT) closest to the origin

Note: same rate as FOM for (A + apinl)z = b



The case of Field of values in an ellipse. An example
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A normal with eigenvalues on an elliptic curve




More recent options as approximation space
Enrich space to decrease space dimension

e Extended Krylov subspace

K=KnA B)+ KA A'B),

that is, K = Range([B,A"'B,AB,A 2B, A*, A=°B, ...
(Druskin & Knizhnerman '98, Simoncini '07)
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e Extended Krylov subspace
K=KnA B)+ KA A'B),

that is, K = Range([B,A"'B,AB,A 2B, A*, A=°B, ...,
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e Rational Krylov subspace

K = Range([B, (A — s;:1)"'B,..., (A — s,nI)~'B])

usually, {s1,...,8m} C CT chosen a-priori




More recent options as approximation space
Enrich space to decrease space dimension

e Extended Krylov subspace
K=Kn(A B)+ KA A™IB),
that is, K = Range([B,A"'B,AB,A 2B, A*, A=°B, ...,
(Druskin & Knizhnerman '98, Simoncini '07)
e Rational Krylov subspace
K = Range([B, (A —s11)"'B,...,(A—s,,I)"'B])
usually, {s1,...,8m} C CT chosen a-priori

In both cases, for range(V,,,) = K, projected Lyapunov equation:

WAV, ) Yo + Y VATV, + VI BBV, =0




Rational Krylov Subspaces. A long tradition...

In general,

K,,(A,B,s) =span{(A—s,I)"'B,...,(A—s,,1) ' B}

e Eigenvalue problems (Ruhe, 1984)
e Model Order Reduction (transfer function evaluation)

e In Alternating Direction Implicit iteration (ADI) for linear matrix

equations




Rational Krylov Subspaces in MOR. Choice of poles.

K, (A, B,s) =span{(A—s 1) 'B, (A—s3I) 'B,...,(A—s,,I) ' B}

cf. General discussion in Antoulas, 2005.

Various attempts:
e Gallivan, Grimme, Van Dooren (1996—, ad-hoc poles)
e Penzl (1999-2000, ADI shifts - preprocessing, Ritz values)

Sabino (2006 - tuning within preprocessing)

IRKA — Gugercin, Antoulas, Beattie (2008)




Adaptive choice of poles for Rational Krylov space

K, (A b,s) =span{(A — s 1) 'b,...,(A—5,1)""b}, B=0b

s = [$1,...,Sm]| to be chosen sequentially

Greedy procedure. Define:

A; = el * AV,
H Z_S]’ J elgS(Vm V )

(7, residual of a related linear system)




Adaptive choice of poles for Rational Krylov space

K, (A b,s) =span{(A — s 1) 'b,...,(A—5,1)""b}, B=0b

s = [$1,...,Sm]| to be chosen sequentially

Greedy procedure. Define:

H 2—837 >\J elgS(Vm V )

(7, residual of a related linear system)

1
=0 2 )

where S,, C CT approximately encloses the eigenvalues of —A

(Druskin, Lieberman, Zaslavski '10, Druskin, Simoncini '11)




Some numerical experiments

e Adaptive Rational Krylov Subspace method

e Extended Krylov Subspace method (Rational method with fixed poles)

EK,,(A,b) = K,,(A,b) + K,,(A™Y, A71b)

Comparison measures:
e Efficiency (CPU time)
e Memory (space dimension)

e Rank of solution




The RAIL (symmetric) data

Rational
space

direct

Extended
space

direct

CPU time (s)
dim. Approx. Space
Rank of Solution

0.84
21
21

0.36
64
47

CPU time (s)
dim. Approx. Space
Rank of Solution

25
25

CPU time (s)
dim. Approx. Space
Rank of Solution

26
26




The RAIL (symmetric) data set

Rational
space

direct

Extended
space

direct

Rational
space

iterative

Extended
space

iterative

CPU time (s)
dim. Approx. Space
Rank of Solution

0.84
21
21

0.36
64
47

0.96
21
21

1.60
63
45

CPU time (s)
dim. Approx. Space
Rank of Solution

25
25

25
25

201.94
126
75

CPU time (s)
dim. Approx. Space

Rank of Solution

26
26

26
26

2779.95
170
08

Inner solves: PCG with IC(10~2)




More Tests: two nonsymmetric problems

Rational
space

direct

Extended
space

direct

Rational
space

iterative

Extended
space

iterative

CPU time (s)
dim. Approx. Space
Rank of Solution

3.16
16
16

3.06
36
24

3.01
16
16

9.95
36
24

CPU time (s)
dim. Approx. Space
Rank of Solution

15
15

26
22

15
15

26
22

Convective thermal flow problems (FLOW, CHIP data sets)

* All real shifts used




Alternating Direction Implicit iteration (ADI) - Wachspress

(see, e.g., Li 2000, Penzl 2000)

Xo=0,X; = 2p;(A+p;)"'BB" (A+p,)"" j=1,....¢
+H(A+p ) (A —p)X; 1 (A—pi ) (A+p; D)~ "

with

14
6u0) =TI =2, (o2} = argmin max ;jj(ﬁ)'

teA(A)

Implementation aspects: Benner, Saak, Quintana-Orti?, ....

Convergence depends on choice of {p;}. For A < 0 sym and one pole:

J4
Radi — 2 )\max
1X — X, ~ (¥ C Kedi =
vV Fadi + 2

>\min




ADI and Rational Krylov subspaces

Main consideration (see, e.g., Li, Wright 2000)
XAPD € K, (A, b, s)

and also, for U,,, = [(A — s1I)7'b,..., (A — s,,1)" 18],

XAPD — U077,

with a Cauchy matrix




ADI and Rational Krylov subspaces

Main consideration (see, e.g., Li, Wright 2000)
XAPD € K, (A, b, s)

and also, for U,,, = [(A — s1I)7'b,..., (A — s,,1)" 18],

XAPD — U077,

with a Cauchy matrix

Equivalence of ADI with RKSM:

ADI coincides with the Galerkin solution X,,, in Rational Krylov space
if and only if

Sj = —>\j
where \; = eigs(V}, AV,,) Ritz values (suitably ordered)

Druskin, Knizhnerman, Simoncini '11, Beckermann '11 (and Flagg '09)




Typical behavior of ADI and generic RKSM for the same poles

Operator: L(u) = —Au + (50zu, ), + (50yu,), on [0, 1]?
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Same non-optimal 20 poles, repeated cyclically.




Expected performance (from Oberwolfach Collection)
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— adaptive RKSM
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Left: rail problem, A symmetric.
Right: flow_meter_model_v0.5 problem, A nonsymmetric.

ADI and RKSM use 10 non-optimal poles cyclically (computed a-priori with
lyapack, Penzl 2000)




Other recent approaches and convergence results

e Kronecker Formulation

e Galerkin-Projection Accelerated ADI (Benner, Saak, tr 2010)

Different aims:
e |IRKA (Gugercin, Antoulas, Beattie, 2008)

e Riemann optimization approach (Vandereycken, Vandewalle, 2010)
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Different aims:
o |IRKA (Gugercin, Antoulas, Beattie, 2008)
e Riemann optimization approach (Vandereycken, Vandewalle, 2010)
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Further Convergence results:

e Extended Krylov for Lyapunov eqn (Knizhnerman, Simoncini 2011)

e Rational Krylov for Lyapunov eqn (Druskin, Knizhnerman, Simoncini '11)

e Improved, and for the Sylvester eqn (Beckermann 2011)




Conclusions
General Considerations:

e Large advances in solving really large linear matrix equations

e Second order difficulties exploit strength of linear system solvers




Conclusions
General Considerations:
e Large advances in solving really large linear matrix equations
e Second order difficulties exploit strength of linear system solvers
On-going projects:
e Tangential adapt. RKSM, rank(B)>> 1 (Druskin, S., Zaslavsky, tr'12)

e Minimal residual methods by projection (Lin, S., tr 2012)

min |[AX + XA" + BB ||
XeKx

e Constrained Sylvester equations (Shank, S., in progress)

AX+XD =YL XB=0

e On Projection methods for (quadratic) Riccati equation

(Heyouni, Jbilou, 2009, S., Szyld, Monsalve tr. 2012)
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