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Model Order Reduction

Given the continuous time-invariant linear system

x'(t) = Ax(t) + Bu(t),

y(t) = Cx(t), x(0)=xg

Analyse the construction of a reduced system

B

S
C

with A of size m < n



Projection methods and Linear Dynamical Systems

Time-invariant linear system:

x'(t) = Ax(t) + Bu(t), x(0) = xg
y(t) = Cx(1)

Emphasis: A large dimensions, W(A) C C~

Projection methods: the general idea

Given space K C R™ of size m and (orthonormal) basis V,,,

A=Ay =V AV,, B—Bn=V'B, C— Cp=CVy,

Reduced problem uses: A,,,, By, Ch,




The Lyapunov matrix equation

AX + XA*+ BB* =0

Galerkin approximation by projection:

K of dim. m, V,, orthonormal basis. X ~ X,,, =V,,YV*

Rn LK V* Ry Vi = 0

that is,

VIAV,Y + YV AV, + V> BB*V,, =0

Small size equation. Solved with dense methods.
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Projection methods: the general idea
Choices of K in the literature:

o Standard Krylov subspace:  K,,(A, B) =span{B,AB,..., A" 'B}

e Shift-Invert Krylov subspace:
Km((A—oI)™,B) =span{B,(A—oI)"'B,...,(A—ol)~(m~UB},

often 0 =0

e Extended Krylov subspace:
EK,, (A, B) = K(A,B) + K, (A", A™'B)

e Rational Krylov subspace:
Km(A, B,s) =span{(A — s11)"'B,(A—sI)"'B,...,(A—s,1)"'B}

usually s = [s1,..., Sm| a-priori




Rational Krylov Subspaces. A long tradition...

K, (A, B,s) =span{(A—s11) 'B, (A—s3I) 'B,...,(A—s,,I) ' B}

e Eigenvalue problems (Ruhe, 1984)
e Model Order Reduction (transfer function evaluation)

e ADI for linear matrix equations




Rational Krylov Subspaces in MOR. Choice of poles.

K, (A, B,s) =span{(A—s 1) 'B, (A—s3I) 'B,...,(A—s,,I) ' B}

cf. General discussion in Antoulas, 2005.

Various attempts:
e Gallivan, Grimme, Van Dooren (1996—, ad-hoc poles)
e Penzl (1999-2000, ADI shifts - preprocessing, Ritz values)

Sabino (2006 - tuning within preprocessing)

IRKA — Gugercin, Antoulas, Beattie (2008)




A new adaptive choice of poles for RKS. B=0b € C"
K (A, b,s) =span{(A — s11) " "b, (A —s2I)"'b, ..., (A—s,1) b}

s = [s1,...,8m] to be chosen sequentially

The fundamental idea: Assume you wish to solve
(A—sl)z =10

with a Galerkin procedure in K,,(A,b,s). Let V,,, be orth. basis.
The residual satisfies:
b— (A—sl)x, = rm(z):HZ J

< — 85
j=1 J

with \; = eigs(V,» AV}, ). Moreover,

(A0 = min | TT(A = 6;1)(A = ;1))
iy, 111

11



A new adaptive choice of poles for RKS. Cont'd

rm(2) = H z_ s]" A =eigs(V,  AV,,)
j=1 ’

For A symmetric:

1
Sm41 = arg ( max )

36[_>\maX7_>\min] ‘fr’m(s)|
P\mina )\max] ~ SpeC(A) (Druskin, Lieberman, Zaslavski (SISC 2010))

For A nonsymmetric:

1
St TS (masi \m(s)!)

where S,,, C CT approximately encloses the eigenvalues of —A




Approximation by projection
X ~ X = Vi YV with
(VEAV)Y + Y (V,EAVR)S 4+ (VEBD) (VD) =0

Some technical issues:

o K,,(A,b,s)=span{b, (A —sI)71b,..., H;.TL:2(A —s; 1)1}
(includes b)

e All real poles (all real arithmetic work)

e Cheap computation of V AV, at each iteration m
(Kimn(A,b,8) C Kpi1(A,b,s))

e Cheap computation of the residual norm

Bl = | AX o + X A™ + 007|]

e Cheap factorized form of solution X,, = X, := Z;,




Some numerical experiments
Closest competitors:
e ADI — problem: computation of parameters

e Extended Krylov Subspace method — outperforms ADI in general

EK,,(A,b) = K,,(Ab) + K,,(A~', A7'b)

Comparison measures:
e Efficiency (CPU time)
e Memory (space dimension)

e Rank of solution




The RAIL (symmetric) data
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The RAIL (symmetric) data set

Rational
space

direct

Extended
space

direct

Rational
space

iterative

Extended
space

iterative

CPU time (s)
dim. Approx. Space
Rank of Solution

0.84
21
21

0.36
64
47

0.96
21
21

1.60
63
45

CPU time (s)
dim. Approx. Space
Rank of Solution

25
25

25
25

201.94
126
75

CPU time (s)
dim. Approx. Space

Rank of Solution

26
26

26
26

2779.95
170
08

Inner solves: PCG with IC(10~2)




More Tests: two nonsymmetric problems

Rational
space

direct

Extended
space

direct

Rational
space

iterative

Extended
space

iterative

CPU time (s)
dim. Approx. Space
Rank of Solution

3.16
16
16

3.06
36
24

3.01
16
16

9.95
36
24

CPU time (s)
dim. Approx. Space
Rank of Solution

15
15

26
22

15
15

26
22

Convective thermal flow problems (FLOW, CHIP data sets)

* All real shifts used




ADI and Rational Krylov subspaces
Main consideration (see, e.g., Li, Wright 2000)

XAPD ¢ K (A, B,s)

and also, for U,,, = [(A — s1I)7'b,..., (A — s,,1)"1b],
X?gnADI) _ Uma_lU;;

with a Cauchy matrix (Druskin, Knizhnerman, Simoncini 2010)
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Main consideration (see, e.g., Li, Wright 2000)

XAPD ¢ K (A, B,s)

and also, for U,,, = [(A — s1I)7'b,..., (A — s,,1)"1b],
XAPD — 17, 07U,

m

with & Cauchy matrix (Druskin, Knizhnerman, Simoncini 2010)

Equivalence of ADI with generic RKSM:

ADI coincides with the Galerkin solution X,,, in Rational Krylov space
if and only if

Sj = _)‘j
where \; = eigs(V,» AV,,) Ritz values (suitably ordered)

Druskin, Knizhnerman, Simoncini 2010,

see also Flagg 2009 for <=, and Beckermann 2011




Typical behavior of ADI and generic RKSM for the same poles
Operator: L(u) = —Au + (50zuy ), + (50yu,), on [0, 1]?
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Same non-optimal 20 poles, repeated cyclically.




Expected performance (from Oberwolfach Collection)
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Left: rail problem, A symmetric.
Right: flow_meter_model_v0.5 problem, A nonsymmetric.

ADI and RKSM use 10 non-optimal poles cyclically (computed a-priori with
lyapack, Penzl 2000)




Other recent approaches and convergence results

e Galerkin-Projection Accelerated ADI (Benner, Saak, tr 2010)

Different aims:

e |IRKA (Gugercin, Antoulas, Beattie, 2008)
e Riemann optimization approach (Vandereycken, Vandewalle, 2010)

3k 3k >k >k 5k 5k >k >k 5k 5k >k >k >k 5k >k >k >k 5k >k >k 5k 5k >k >k >k 5k >k %k >k 5k >k >k k 5k >k

Convergence analysis:

e For the Lyapunov equation (Knizhnerman 2010)

e Improved, and for the Sylvester equation (Beckermann 2011)




Conclusions and outlook

e Adaptive procedure makes Rational Krylov subspace appealing

e Competitive in terms of both reduction space and CPU time

e MOR: b= B7? Balanced Truncation?
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