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The quasi-linear matrix equation problem

Find X € R"*™ such that
AX + XB+f(X)C=D

» f:R"™M™ - R linear or nonlinear function
> AcR™" BeR™™ and C,D € R™™m

For certain f, it may occur that m = n.




-
The quasi-linear matrix equation problem

Find X € R"*™ such that
AX + XB+f(X)C=D

» f:R"™M™ - R linear or nonlinear function
> AcR™" BeR™™ and C,D € R™™m

For certain f, it may occur that m = n.

General hypothesis:

A and —B have no common eigenvalues, so that £ : X — AX + XB is invertible )




L —
Building up complexity in f

f : R™™ — R linear or nonlinear function

0. Exception. f(X)=0;X,j=1,....s

1. f linear:
f(X) = trace(HX), for some H

For instance:

* H=1 f(X) = trace(X)
* H=uvT f(X)=vTXu
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Building up complexity in f

f : R™™ — R linear or nonlinear function

0. Exception. f(X)=0;X,j=1,....s

1. f linear:
f(X) = trace(HX), for some H

For instance:
* H=1 f(X) = trace(X)
* H=uvT f(X) = v Xu

2. f nonlinear. Composition of
» Linear with nonlinear, e.g.

f(X) = trace(exp(—X))

» Nonlinear with linear, e.g.
f(X) = exp(—trace(X))
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L —
The linear problem. 1

Let
AX + XB+f(X)C=D (o)

with f : R"™™ — R a linear function
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The linear problem. 1

Let
AX + XB+f(X)C=D (o)

with f : R"™™ — R a linear function
Closed form solution:

Let M, N be the solutions to the Sylvester equations AM + MB = D and AN + NB = C,
resp. Assume that 1 — f(N) # 0. Then the solution to (e) is given by
f(M)

1 — f(N) = 0 leads to either infinite or no solutions.




L —
The linear problem. 1

Let
AX+XB+f(X)C=D (o)

with f : R"™™ — R a linear function
Closed form solution:

Let M, N be the solutions to the Sylvester equations AM + MB = D and AN + NB = C,
resp. Assume that 1 — f(N) # 0. Then the solution to (e) is given by

f(M)

1 — f(N) = 0 leads to either infinite or no solutions.

Instead of () we can use the mathematically equivalent equation

X =M+ f(X)N, N=—-L"YC),M=L"'(D)

(more appropriate for small rather than large scale problems)



L —
The linear problem. 2

Some examples: N=—-L£7YC),M=L"YD)
1. AX + XB + trace(X)C = D. Then

trace(M)

toll, o 1 — trace(N)



L —
The linear problem. 2

Some examples: N=—-L"YC),M=L"YD)

1. AX + XB + trace(X)C = D. Then

trace(M)
ol o=g — trace(N)
2. AX + XB + (v Xu)M = C. Then
v Mu
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The linear problem. 3

= The approach also solves a seemingly unrelated problem

Let

AX 4+ XB + GG XC, = D, Gy, G, rank-one matrices
Letting C; = u;v;|, i = 1,2, then
GXG = u1v Xupvy = (v X)) vy = F(X)C
& The closed form is just the (vector) Sherman-Morrison formula in disguise

(for general low-rank Cy, G, see Y. Hao, V.Simoncini, 2021)



L —
Other linear generalizations

» Multiterm case
AX+XB+ A4(X)CG+ ...+ f(X)Ce=D

with f; : R™™ = R, j=1,...,¢ linear functions
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Other linear generalizations

» Multiterm case
AX +XB+ A(X)G + ...+ fi(X)C =D
with f; : R™™ = R, j=1,...,¢ linear functions

Closed form solution:

4
X = M—FZU;N;,
i=1

where ¢; = £;(X) are determined by solving the £ x ¢ linear system

1 f(N —A(N e _f(N
,fziﬁ/ly 1,1,%(/?/1) ,éENﬁg r} [ﬂ(M)]

: : . : = o & (- Fo=H,
_Q(Nl) 1_é(NZ) oy fZ(M)

(M.Porcelli, V.S., LAA 2023), application to solid mechanics



L —
First examples of nonlinear setting

f(X) = trace(XP), with peN, p>1
The square power:

f(X) = trace(X?) = trace((M + f(X)N)(M + f(X)N))
= f(M) + 2trace(MN)f(X) + f(X)*f(N).

second order scalar equation in f(X) with roots ry, ra.
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f(X) = trace(X?) = trace((M + f(X)N)(M + f(X)N))
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Closed form:
)((1):/\/I~§-I‘;LN7 X(2):M+r2N.
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» Similar procedure for, e.g., f(X) = ||X||2 = trace(X T X)



L —
First examples of nonlinear setting

f(X) = trace(XP), with peN, p>1
The square power:

f(X) = trace(X?) = trace((M + f(X)N)(M + f(X)N))
= (M) + 2trace(MN)f(X) + f(X)*f(N).
second order scalar equation in f(X) with roots ry, ra.
Closed form:
)((1):/\ﬂ~§-l‘;L/\/7 X(z):M—l—rgN.
» Similar procedure for, e.g., f(X) = ||X||2 = trace(X T X)

» For f(X) = trace(X~1), M = mym] rank-one and N invertible.

If the matrix equation X = M + f(X)N admits nonsingular solutions, then these are
Xiy=M+rN, i=1,23 where r; are the roots of

r3+772r2+771r+no =0,

with 7o = mJ N=tmy, n; = —f(N) and 19 = m12 + mJ N=2my
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L —
The general linear-nonlinear

f(X) — ¢(¢(X))’ ¢ . Rnxn N R, w . Rnxn N Rnxn’

where ¢ is linear, and % is a (nonlinear) matrix function

Note: in the following, #(Y) = trace(Y) E.g., f(X) = trace(exp(—X))



L —
The general linear-nonlinear

f(X) — ¢(¢(X))’ ¢ . Rnxn N R, ¢ . Rnxn N Rnxn’
where ¢ is linear, and % is a (nonlinear) matrix function
Note: in the following, #(Y) = trace(Y) E.g., f(X) = trace(exp(—X))

Use
X=M+f(X)N

and assume N diag.ble, N = QAQ~". Then
Q7IXQ = Q7'MQ + F(X)A,
Note that (for trace invariance)
f(X) = trace(¥(X)) = trace(¥(Q ' XQ)) = F(Q™'XQ),
so that
Xi =M +f(X)N,  Xi=QIXQ, My =Q'MQ

= Only the diagonal is updated!
_ V. Simoncini - Quasi-linear matrix equations 10/17



N
Numerical solution

Fixed point iteration:

XD = My 4+ F(XDA, for some X(©




N
Numerical solution

Fixed point iteration:
XD = My 4+ F(XDA, for some X(©
Definiteness properties:

Let My = 0 and A =0, and let X* = M.

i) If f is a nonnegative function satisfying f(X) < f(Y) for Y>=X, then Xl(k'H) = Xl(k) for
all ks

i) If f is a nonnegative function satisfying f(X) > f(Y) for Y=X, then the iterates

Xl(k+1) = Xl(k) alternate definiteness at each k




An example

Convergence of the (n/2, n/2) diagonal element of Xl(k)
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Left: £(X) = trace(X'/?) Right: f(X) = trace(exp(—X))
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N
Convergence to exact solution Xj*

Consider f(X) = trace(exp(—X))

Let () = x{0 — x;

Ostrowski-type theorem:

Assume M; = 0 and A = 0.
If trace(Aexp(—X7)) = o < 1 then there exist an Xl(o) and a o7 € [0,1) such that

|ECD] < oy £V,

for k > 0, for any matrix norm || - ||.

Note: A corresponding result holds for f(X) = trace(X?)
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An example
Consider:
& X* =,/aG
& G = (GJ Gy)2, with Gy =randn(n,n) (Matlab seed rng(1))
& N similar to G, and M = X* — f(X*)N

= « influences the magnitude of the Frechet derivative

XE = vy 4 F(XDN, o X9 = my

trace(/\ eXp(le*)) o K ”X(k+1),(/\ﬁj\r/’ﬁl(x(k+1>)N)||
0.079 12.589 3 8.3190e-08
0.176 10.000 6 3.4123e-08
0.335 7.9433 11 3.7944e-08
0.570 6.3096 23 6.9902e-08
0.889 5.0119 117 9.6324e-08
1.296 3.9811 500 3.5943e-01
1.789 3.1623 500 1.2832e+00




Considerations on the large scale problem

> Linear problem. f(X) = trace(X),

where I\7l, N approximate M and N resp.
(easy case)



L —
Considerations on the large scale problem

> Linear problem. f(X) = trace(X),

where I\7l, N approximate M and N resp.
(easy case)

» Linear-nonlinear problem. For fixed point iteration,

X*) = M 4 F(XK)N.

which requires approximating £(X()), e.g., f(X) = trace(y(X)) - a problem in its
own.



N
Conclusions

» Quasi-linear matrix equations are a new source of open problems
» The large scale setting is a challenge

» Generalizations to tensor case is possible
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. See you there

METT X
10th Workshop on Matrix Equations and Tensor Techniques

September 13-15, 2023
RWTH Aachen University (main building)

https://www.igpm.rwth-aachen.de/workshop/mett2023
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Fully (diamond) Open Access without OA charges!
_ V. Simoncini - Quasi-linear matrix equations 17/17



