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The quasi-linear matrix equation problem

Find X ∈ Rn×m such that
AX + XB + f (X )C = D

▶ f : Rn×m → R linear or nonlinear function

▶ A ∈ Rn×n, B ∈ Rm×m, and C ,D ∈ Rn×m

For certain f , it may occur that m = n.

General hypothesis:

A and −B have no common eigenvalues, so that L : X 7→ AX + XB is invertible
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Building up complexity in f

f : Rn×m → R linear or nonlinear function

0. Exception. f (X ) = σjX , j = 1, . . . , s

1. f linear:
f (X ) = trace(HX ), for some H

For instance:
⋆ H = I f (X ) = trace(X )
⋆ H = uvT f (X ) = vTXu

2. f nonlinear. Composition of
▶ Linear with nonlinear, e.g.

f (X ) = trace(exp(−X ))

▶ Nonlinear with linear, e.g.
f (X ) = exp(−trace(X ))
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The linear problem. 1

Let
AX + XB + f (X )C = D (•)

with f : Rn×m → R a linear function

Closed form solution:

Let M,N be the solutions to the Sylvester equations AM +MB = D and AN + NB = C ,
resp. Assume that 1− f (N) ̸= 0. Then the solution to (•) is given by

X = M + σN, σ =
f (M)

1− f (N)

1− f (N) = 0 leads to either infinite or no solutions.

Instead of (•) we can use the mathematically equivalent equation

X = M + f (X )N, N = −L−1(C ),M = L−1(D)

(more appropriate for small rather than large scale problems)
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The linear problem. 2

Some examples: N = −L−1(C ),M = L−1(D)

1. AX + XB + trace(X )C = D. Then

X = M + σN, σ =
trace(M)

1− trace(N)

2. AX + XB + (vTXu)M = C . Then

X = M + σN, σ =
vTMu

1− vTNu
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The linear problem. 3

⇒ The approach also solves a seemingly unrelated problem

Let

AX + XB + C1XC2 = D, C1,C2 rank-one matrices

Letting Ci = uiv
T
i , i = 1, 2, then

C1XC2 = u1v
T
1 Xu2v

T
2 = (vT

1 Xu2)u1v
T
2 ≡ f (X )C

♣ The closed form is just the (vector) Sherman-Morrison formula in disguise

(for general low-rank C1,C2, see Y. Hao, V.Simoncini, 2021)
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Other linear generalizations

▶ Multiterm case
AX + XB + f1(X )C1 + . . .+ fℓ(X )Cℓ = D

with fj : Rn×m → R, j = 1, . . . , ℓ linear functions

Closed form solution:

X = M +
ℓ∑

i=1

σiNi ,

where σj = fj(X ) are determined by solving the ℓ× ℓ linear system


1− f1(N1) −f1(N2) · · · −f1(Nℓ)
−f2(N1) 1− f2(N2) · · · −f2(Nℓ)

...
...

. . .
...

−fℓ(N1) · · · · · · 1− fℓ(Nℓ)


σ1

...
σℓ

 =

f1(M)
...

fℓ(M)

 ⇔ (I − F )σ = f,

(M.Porcelli, V.S., LAA 2023), application to solid mechanics
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First examples of nonlinear setting

f (X ) = trace(X p), with p ∈ N, p > 1

The square power:

f (X ) = trace(X 2) = trace((M + f (X )N)(M + f (X )N))

= f (M) + 2 trace(MN)f (X ) + f (X )2f (N).

second order scalar equation in f (X ) with roots r1, r2.

Closed form:
X(1) = M + r1N, X(2) = M + r2N.

▶ Similar procedure for, e.g., f (X ) = ∥X∥2F = trace(XTX )

▶ For f (X ) = trace(X−1), M = m1m
T
2 rank-one and N invertible.

If the matrix equation X = M + f (X )N admits nonsingular solutions, then these are
X(i) = M + riN, i = 1, 2, 3 where ri are the roots of

r3 + η2r
2 + η1r + η0 = 0,

with η2 = m
T
2 N

−1
m1, η1 = −f (N) and η0 = η1η2 +m

T
2 N

−2
m1
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The general linear-nonlinear

f (X ) = ϕ(ψ(X )), ϕ : Rn×n → R, ψ : Rn×n → Rn×n,

where ϕ is linear, and ψ is a (nonlinear) matrix function

Note: in the following, ϕ(Y ) = trace(Y ) E.g., f (X ) = trace(exp(−X ))

Use
X = M + f (X )N

and assume N diag.ble, N = QΛQ−1. Then

Q−1XQ = Q−1MQ + f (X )Λ,

Note that (for trace invariance)

f (X ) = trace(ψ(X )) = trace(ψ(Q−1XQ)) = f (Q−1XQ),

so that

X1 = M1 + f (X1)Λ, X1 ≡ Q−1XQ, M1 ≡ Q−1MQ

⇒ Only the diagonal is updated!
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Numerical solution

Fixed point iteration:

X
(k+1)
1 = M1 + f (X

(k)
1 )Λ, for some X

(0)
1

Definiteness properties:

Let M1 ≻ 0 and Λ ⪰0, and let X
(0)
1 = M1.

i) If f is a nonnegative function satisfying f (X ) ≤ f (Y ) for Y⪰X , then X
(k+1)
1 ⪰ X

(k)
1 for

all ks
ii) If f is a nonnegative function satisfying f (X ) ≥ f (Y ) for Y⪰X , then the iterates

X
(k+1)
1 − X

(k)
1 alternate definiteness at each k
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An example

Convergence of the (n/2, n/2) diagonal element of X
(k)
1

0 2 4 6 8 10 12 14

iteration number

39.7

39.8

39.9

40

40.1

40.2

40.3

v
a

lu
e

 o
f 

X
(n

/2
,n

/2
)

(k
)

0 5 10 15 20 25

iteration number

49.52

49.54

49.56

49.58

49.6

49.62

49.64

49.66

49.68

49.7

49.72

v
a

lu
e

 o
f 

X
(n

/2
,n

/2
)

(k
)

Left: f (X ) = trace(X 1/2) Right: f (X ) = trace(exp(−X ))
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Convergence to exact solution X ⋆
1

Consider f (X ) = trace(exp(−X ))

Let E (k) = X
(k)
1 − X ⋆

1

Ostrowski-type theorem:

Assume M1 ⪰ 0 and Λ ⪰ 0.
If trace(Λ exp(−X ⋆

1 )) = σ < 1 then there exist an X
(0)
1 and a σ1 ∈ [0, 1) such that

∥E (k+1)∥ ≤ σ1∥E (k)∥,

for k ≥ 0, for any matrix norm ∥ · ∥.

Note: A corresponding result holds for f (X ) = trace(X
1
2 )
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An example

Consider:
♣ X ⋆ =

√
αG

♣ G = (GT
0 G0)

1
2 , with G0 =randn(n,n) (Matlab seed rng(1))

♣ N similar to G , and M = X ⋆ − f (X ⋆)N

⇒ α influences the magnitude of the Frechet derivative

X
(k+1)
1 = M1 + f (X

(k)
1 )Λ, for X

(0)
1 = M1

trace(Λ exp(−X ⋆
1 )) α k ∥X (k+1)−(M+f (X (k+1))N)∥

∥M∥
0.079 12.589 3 8.3190e-08
0.176 10.000 6 3.4123e-08
0.335 7.9433 11 3.7944e-08
0.570 6.3096 23 6.9902e-08
0.889 5.0119 117 9.6324e-08
1.296 3.9811 500 3.5943e-01
1.789 3.1623 500 1.2832e+00
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Considerations on the large scale problem

▶ Linear problem. f (X ) = trace(X ),

X̃ ≡ M̃ + σÑ, σ =
f (M̃)

1− f (Ñ)
,

where M̃, Ñ approximate M and N resp.
(easy case)

▶ Linear-nonlinear problem. For fixed point iteration,

X̃ (k+1) ≡ M̃ + f (X̃ (k))Ñ.

which requires approximating f (X̃ (k)), e.g., f (X̃ ) = trace(ψ(X̃ )) - a problem in its
own.
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Conclusions

▶ Quasi-linear matrix equations are a new source of open problems

▶ The large scale setting is a challenge

▶ Generalizations to tensor case is possible
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... See you there
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