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Approximation problem

Given v € R™ and A symmetric and negative semidefinite, approximate
y g pp

xr = exp(A)v

e Focus: A large dimension

e General approach: Tm € Ky Krylov subspace




Problem in context
Wide range of applications. Here we focus on

e Numerical solution of Time-dependent PDEs

e (Analysis of) Low dimensional models of dynamical systems:

approximate solution to Lyapunov equation

AX -+ XAT - BBT =0

e Flows on constraint manifolds
Qt — H(Qat)Q7 Q(t)‘t:() — QO ~ Vk(Rn)

V. Stiefel manifold (computation of a few Lyapunov exponents)




Numerical approximation

A large dimension:

Polynomial approximation, v = 0

Padé (rational f.) approximation, e.g., u = v

Chebyshev (rational f.) approximation, = v

Restricted Denominator (RD, rational f.) approximation




Approximation using Krylov subspace

K = Km(A,v) =span{v, Av, ..., A" 1}

Vin  s.t. range(Vy,) = Kp(A,v) and ViV, =1

Arnoldi relation

Avm — VmHm + hm—kl,mvm—l—le;@

A common approach

exp(A)v =~ m,, = Vi, exp(H,y,)er, lv]| =1

T, derived from interpolation problem in Hermite sense (Saad '92)




Approximation of exp(A)v in Krylov subspace. |

Typical convergence bounds (Hochbruck & Lubich '97)

| exp(A)v — Vi exp(HpJer|| < 10e7™ /6P \/ap <m < 2p,

10 m
| exp(A)v — Vi, exp(Hop)en| er (@) o om>2

0 m

where o(A) C [—4p, 0]

see also Tal-Ezer '89, Druskin & Knizhnerman '89, Stewart & Leyk '96




A typical picture
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Predicts superlinear convergence




Approximation of exp(A)v in Krylov subspace. |l

Typical a-posteriori estimate

| exp(A)v — Vi exp(Hp)er|| = O(hpm+1.mle, exp(Hpy)eil)

Note: for Az(t) — 2'(t) =0, z(0) = v

homt1,m| €5, €Xp(tHm )e1] = [| Az (8) — 27, ()]

plays role of residual norm

(see, e.g., Druskin & Greenbaum & Knizhnerman '98)




Exploring Krylov subspace approximation

exp(A)v = V,, exp(H,,)eq |v]| =1

Rational function approx

e Increase our understanding of approximation in IC,,, (A4, v)

e Set up the stage for acceleration procedures

Mostly taken from: Lopez & S., Tr. '05




Projection of Rational functions onto Krylov subspaces

Basic fact:

If, for instance, x,, ~ R, (A)v rational approx. then

| exp(A)v — x| < [[exp(A)v — RL(A)v

Focus: R, Padé and Chebyshev approximation
(W, (A) positive definite)




Projection onto Krylov subspace

U, (A) e, (A)v <& 1z, solves W, (A)z

Galerkin approximation in C,, (A, v):

Solve V W, (A)V,y=V_ ®,(A)v,

Minimization property:

. B _ G
CUGI??:?A,U) ||x* xH\I/V(A) ||x* me\Ify(A)
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Linear bounds for convergence rate

Using Partial Fraction expansion:

Y N 1
( N L) (e )
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Galerkin approximation

10*

10"

W (A)—norm of error
W (A)—norm of error

dimension of Krylov subspace dimension of Krylov subspace

A = diag(log(linspace(0.2,0.99,100))), v=1

Left: Padé and upper bound for v = 7,11
Right: Chebyshev and upper bounds for v = 7, 14




Krylov approximation

Vin exp(Hyy,)ep &
Viyk = VU, (H,) 1®,(H,,)e

ViyX is a term-wise Galerkin projection: (van der Vorst, '87)




A-posteriori estimate and residual

“toxV, | e + ZTj(Hm — §jI)_1el
j=1

Defining rk = ijfr%) (r%) single residuals) we have
1=1

*

Rt 1m €Y | = Nl |




Comparison with Galerkin approximation

Galerkin and Krylov solutions “hand in hand” convergence:

If m > v, then

Iy = vl <Y @) vl v = O s1 )

* - 75| '
eiym| <> — (HJ _g.])HT’iﬁlH’ l<k<m
j=1 “miniHm j

7“,(21 residual of system (A — &;1)x = v after k — 1 iterations

7; partial fraction coeff’s Omin (+) smallest singular value




* Similar (linear) convergence estimates as for Galerkin

* Relation to convergence of systems (A —¢; 1)z =v,5=1,...,v
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Recovering superlinear convergence
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A € R1001X1001 “diagonal, uniform distr. in [—40, 0]




Acceleration strategies |

Hochbruck & van den Eshof ('05)

T € Ko (I —~vA)™1,0)
x = f(A)v

for f(A) = exp(A)

However:

If f(A) =R.,(\), axn, corresponds to preconditioning (A —&;)d = v:

r = ToU + Zj Tj(A —fjl)_l’l)

(A—¢;1)d =v preconditioned with

(Popolizio & S., in preparation)




Acceleration strategies ||

Eiermann & Ernst (Tr. '05)

Restarting procedure (small m)

However:

If f(A) =R.,(\), restarted procedure corresponds to restarted FOM
on each (A —¢&;)d = v:

Tr = ToU + Zj Tj(A — §jl)_1v

FOM(m) for (A—-¢I)d=v




Structure preserving approaches

Motivational problem:

Approximate k largest Lyapunov exponents of
7' (t) = Alt)z, ze€R",
This can be accomplished by using the associated system
Q: = AQ,)Q, QeR™ A skew-sym

() orthonormal columns (Stiefel manifold)

Goal:

numerical method that preserves orthogonality for long time intervals

% A skew-sym. =  exp(tA) unitary, @Q = exp(tA)Q® orthogonal




Preserving orthogonality in Krylov subspace

0
,...,ql(f)]

Regular Krylov subspaces IC,, (A, q(O)), i=1,...,k

1

A skew-sym = H,,; skew-sym = exp(tH,, ;) unitary

This is not enough:

exp(tA)g)”  ~ g = Vi exp(tHpi)er

{q1,...,qx} not orthogonal (though unit norm)




Block Krylov methods come to rescue

Block Krylov subspace IC,, (A4, Q) Q) = [q§0>

e )/, orthonormal columns,

H, = VI AV, skew-sym

e V,, exp(tH,,)E; orthonormal columns

e V,,wR,(tH,,)E1 orthonormal columns (Padé approx)




Further generalizations
A skew-symmetric and Hamiltonian

0 I
-7 0

e exp(tA) ortho-symplectic - w.r.to J =

o Q9 ortho-symplectic then exp(tA)Q(®) ortho-symplectic

Block Krylov approximation:

e Choose some of the columns Q© of QO

~0)  ~3(0)
1 2

~ (0 ~ (0
) Q)

V = K (A, V)

columns of an ortho-symplectic matrix




Conclusions and Outlook

Rational function approximation as insightful framework for

acceleration procedures

Natural generalizations (A nonsymmetric, other functions, etc.)

Appropriate variants allow structure preservation

A Hamiltonian? (but not skew-symmetric)




