Choice of tolerance:

- Direct method accurate up to machine precision (likely)
- Iterative method accurate up to what is wanted (hopefully)

Choice of tolerance:

- Direct method accurate up to machine precision (likely)
- Iterative method accurate up to what is wanted (hopefully)

Algebraic problem: Discretization of PDEs

error  $\rightarrow O(h)$ 

h discretization parameter...

Choice of criterion and norm:

$$||b - Ax_k||_2$$
 vs.  $||b - Ax_k||_*$ 

Choice of criterion and norm:

$$\|b - Ax_k\|_2$$
 vs.  $\|b - Ax_k\|_*$ 

For instance, CG optimal:  $(||x||_A^2 = x^*Ax)$ 

$$\min_{x_k \in x_0 + K_k(A, r_0)} \|b - Ax_k\|_{A^{-1}} = \min_{x_k \in x_0 + K_k(A, r_0)} \|x - x_k\|_A$$

Available: Cheap, reliable estimates of  $||x - x_k||_A$ 

Choice of criterion and norm:

$$||b - Ax_k||_2$$
 vs.  $||b - Ax_k||_*$ 

For instance, CG optimal:  $(||x||_A^2 = x^*Ax)$ 

$$\min_{x_k \in x_0 + K_k(A, r_0)} \|b - Ax_k\|_{A^{-1}} = \min_{x_k \in x_0 + K_k(A, r_0)} \|x - x_k\|_A$$

Available: Cheap, reliable estimates of  $||x - x_k||_A$ 

For instance, matrix G associated with FE error measure:

$$\min_{x_k} \|b - Ax_k\|_G$$

### Matrix dependence

A may be very ill-conditioned

 $\Rightarrow$  small residual does not necessarily imply small error

$$\frac{1}{\kappa(A)} \frac{\|b - Ax_k\|}{\|b\|} \le \frac{\|x^* - x_k\|}{\|x^*\|} \le \kappa(A) \frac{\|b - Ax_k\|}{\|b\|}$$

Well-known fact, but often not used

$$\frac{\|b - Ax_k\|}{\|b\|} \quad \text{vs} \quad \frac{\|b - Ax_k\|}{\|b\| + \|A\|_{\star} \|x_k\|}$$

(here  $x_0 = 0$ )

### Matrix dependence

Inner-outer methods. e.g. Solve

$$BM^{-1}B^{\top}x = b$$

Each multiplication with  $A=BM^{-1}B^{\top}$  requires solving a system with M

$$\begin{split} \tilde{u} &= B^\top v \\ u &= Av \quad \Leftrightarrow \quad \tilde{\tilde{u}} \text{ solves } M \tilde{\tilde{u}} = \tilde{u} \\ u &= B \tilde{\tilde{u}} \end{split}$$

How accurately should one solve with M?

#### Matrix dependence

Inner-outer methods. e.g. Solve

$$BM^{-1}B^{\top}x = b$$

Each multiplication with  $A=BM^{-1}B^{\top}$  requires solving a system with M

$$\begin{split} \tilde{u} &= B^\top v \\ u &= Av \quad \Leftrightarrow \quad \tilde{\tilde{u}} \text{ solves } M \tilde{\tilde{u}} = \tilde{u} \\ u &= B \tilde{\tilde{u}} \end{split}$$

How accurately should one solve with M?

Note: True residual  $r_k = b - BM^{-1}B^{\top}x_k$  not available!

How accurately should one solve with M?

Typically: Inner tolerance < Outer tolerance

But: if optimal Krylov method is used to solve  $BM^{-1}B^{\top}x = b$  then:

Inner tolerance =  $c \cdot \frac{\text{Outer tolerance}}{\text{current outer residual}}$ 



### Conclusions

- Computational issues for Krylov solvers well understood
- Other tricks can be used (but not usually in black-box routines)
- Many ideas have wider applicability
- Theory is still under development

http://www.dm.unibo.it/~ simoncin
valeria.simoncini@unibo.it