> Stopping criterion: Problem dependence

Choice of tolerance:

- Direct method accurate up to machine precision (likely)
- Iterative method accurate up to what is wanted (hopefully)

Stopping criterion: Problem dependence

Choice of tolerance:

- Direct method accurate up to machine precision (likely)
- Iterative method accurate up to what is wanted (hopefully)

Algebraic problem: Discretization of PDEs

$$
\text { error } \quad \rightarrow O(h)
$$

h discretization parameter...

Stopping criterion: Problem dependence
Choice of criterion and norm:

$$
\left\|b-A x_{k}\right\|_{2} \quad \text { vs. } \quad\left\|b-A x_{k}\right\|_{*}
$$

Stopping criterion: Problem dependence
Choice of criterion and norm:

$$
\left\|b-A x_{k}\right\|_{2} \quad \text { vs. } \quad\left\|b-A x_{k}\right\|_{*}
$$

For instance, CG optimal: $\left(\|x\|_{A}^{2}=x^{*} A x\right)$

$$
\min _{x_{k} \in x_{0}+K_{k}\left(A, r_{0}\right)}\left\|b-A x_{k}\right\|_{A^{-1}}=\min _{x_{k} \in x_{0}+K_{k}\left(A, r_{0}\right)}\left\|x-x_{k}\right\|_{A}
$$

Available: Cheap, reliable estimates of $\left\|x-x_{k}\right\|_{A}$

Stopping criterion: Problem dependence

Choice of criterion and norm:

$$
\left\|b-A x_{k}\right\|_{2} \quad \text { vs. } \quad\left\|b-A x_{k}\right\|_{*}
$$

For instance, CG optimal: $\left(\|x\|_{A}^{2}=x^{*} A x\right)$

$$
\min _{x_{k} \in x_{0}+K_{k}\left(A, r_{0}\right)}\left\|b-A x_{k}\right\|_{A^{-1}}=\min _{x_{k} \in x_{0}+K_{k}\left(A, r_{0}\right)}\left\|x-x_{k}\right\|_{A}
$$

Available: Cheap, reliable estimates of $\left\|x-x_{k}\right\|_{A}$
For instance, matrix G associated with FE error measure:

$$
\min _{x_{k}}\left\|b-A x_{k}\right\|_{G}
$$

Matrix dependence

A may be very ill-conditioned
\Rightarrow small residual does not necessarily imply small error

$$
\frac{1}{\kappa(A)} \frac{\left\|b-A x_{k}\right\|}{\|b\|} \leq \frac{\left\|x^{\star}-x_{k}\right\|}{\left\|x^{\star}\right\|} \leq \kappa(A) \frac{\left\|b-A x_{k}\right\|}{\|b\|}
$$

Well-known fact, but often not used

$$
\frac{\left\|b-A x_{k}\right\|}{\|b\|} \text { vs } \frac{\left\|b-A x_{k}\right\|}{\|b\|+\|A\|_{\star}\left\|x_{k}\right\|}
$$

(here $x_{0}=0$)

Matrix dependence

Inner-outer methods. e.g. Solve

$$
B M^{-1} B^{\top} x=b
$$

Each multiplication with $A=B M^{-1} B^{\top}$ requires solving a system with M

$$
u=A v \quad \Leftrightarrow \quad \begin{aligned}
& \tilde{u}=B^{\top} v \\
& \tilde{\tilde{u}} \text { solves } M \tilde{\tilde{u}}=\tilde{u} \\
& u=B \tilde{\tilde{u}}
\end{aligned}
$$

How accurately should one solve with M ?

Matrix dependence

Inner-outer methods. e.g. Solve

$$
B M^{-1} B^{\top} x=b
$$

Each multiplication with $A=B M^{-1} B^{\top}$ requires solving a system with M

$$
u=A v \quad \Leftrightarrow \quad \begin{aligned}
& \tilde{u}=B^{\top} v \\
& \tilde{\tilde{u}} \text { solves } M \tilde{\tilde{u}}=\tilde{u} \\
& u=B \tilde{\tilde{u}}
\end{aligned}
$$

How accurately should one solve with M ?

Note: True residual $r_{k}=b-B M^{-1} B^{\top} x_{k}$ not available!

How accurately should one solve with M ?

Typically: Inner tolerance < Outer tolerance

But: if optimal Krylov method is used to solve $B M^{-1} B^{\top} x=b$ then:

$$
\text { Inner tolerance }=c \cdot \frac{\text { Outer tolerance }}{\text { current outer residual }}
$$

Numerical experiment: Schur complement

$$
\underbrace{B^{T} S^{-1} B}_{A} x=b \quad \text { at each it. } i \text { solve } \quad S w_{i}=B v_{i}
$$

Inexact FOM

$$
\delta_{m}=\left\|r_{m}-\left(b-V_{m+1} H_{m} y_{m}\right)\right\|
$$

- Computational issues for Krylov solvers well understood
- Other tricks can be used (but not usually in black-box routines)
- Many ideas have wider applicability
- Theory is still under development

```
http://www.dm.unibo.it/~ simoncin
valeria.simoncini@unibo.it
```

