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Some common elliptic operators
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Some common elliptic operators
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Given 2 C R? bounded, open domain,

I' = 0f2. Poisson equation

9*u . 9%u
ox?  Oy?

:f7 (Cb,y)EQ

. =g

equipped with boundary conditions, that is, for (x,y) on I'; e.g.:

Dirichlet conditions: u(z,y) = ¢(x,y)
Neumann conditions: gu — (Vu-n =0)
Cauchy conditions: g—ﬁ + a(z,y)u(z,y) = v(x,y)

Note: possibly mixed conditions on parts of the domain

(e.g., ' =T'1 U2, with Dirichlet cond. on I'y, Neumann cond on I'3)



Some common elliptic operators

More general,

0 0 0 0
et b= g () gy ()

(or, more compactly, L =V - (a-V))

In case of an anisotropic and inhomogeneous medium. In general

Lu=V-(AV)u, AR

A: tensor acting on both components of V

The (steady-state) convection diffusion equation:

—V-(aV)u+b -Vu=f

the magnitude of the vector b is a measure of non-selfadjointness of the

equation.



Finite difference: basic approximations

du u(z+h)—u(z) h d?u(x)

+O(h?), h—0

da h 2 da?

du  u(x) —u(x—h) hd?u(x) 5

o ° O(h?), h—0
dx h i 2 dx? +Oh)

Centered approximation: Combining these two approximations,

du  u(x+h)—u(z—h) 2
i o +O(h"), h—=0

second order accuracy!

= T'wo-point stencils



Some common elliptic operators

Approximating the second derivative:

612_u _ Ug(x+ h) — ux(z)
de? h ’

Combining forward and backward approximation of u,,

h>0,h—0

v u(z +h) —2u(z) +u(z — h) 2
3 = 7 +O(h"), h—0

= Three-point stencil

More general second order operator:

_ 2

d ( du) ;1 (Wir — i) —a; 1 (u; — ui—1)
h2

where u;+1 = u(x + h), ;1 = a(x + 1h), etc.



Difference schemes for the 2D Laplace operator

Using h; in z-direction and h2 in y-direction,

Au = Uzy + Uyy
_u(z+h,y) = 2u(z,y) +ulx — hi,y)
~ 2
L@yt ha) — 2u(@,y) + u(@,y — ho)

h3
that is, for hy = ho = h,

1
Aum o (u(n+ hyy) + ule — hy) +ul@,y + h) +uz,y — h) — 4u(z,y))



Actual implementation. 1D

Consider the 1D problem

—u"(z) = f(z), =€(0,1),
u(0) =u(l) =0

Discretization of interval [0, 1] with n 4+ 2 nodes:
x; =1th,t=0,1,....,n+1
L 1
Note: h = ntl
Note: Dirichlet b.c., u(0) = u(xo) and u(1) = u(xp4+1) known

Write u(z;) = u;. Then the discrete version of the diff.equation is

2 .
—u¢_1+2ui—ui+1:h fi, 1=1,...,n



Actual implementation. 1D
(—ui_1+2ui—ui+1) :thi, 1=1,...,n

Collecting all ¢’s, we obtain Au = f with

0 ] i :
1 2 -1 fo+ul(0)
1 2 -1 S
A= o f=
1 2 -1 I
1 5 _fn+1 + u(l)_




Neumann boundary conditions

Assume: u'(0) = 0. Therefore u(z1) — u(xo) = 0 < u(xo) = u(w1)

In the generic equation h—12 (—wi—1 +2u; —Uir1) = fi, 1 =1,...,n

For : = 1 we obtain h% (—u1 + 2u1 —ug) =

Therefore,

10

(u1 — u2)

Jo
J1

In

_fn+1 T u(l)_



Actual implementation. Poisson equation in a square

j=l

!
4 %
) i=1 _..‘h}* i=il
oo —1
SO that: A — ~—~
1,7—1

ul1

lexicographic order : u = | Y2,1

11
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2D Poisson equation. The coefficient matrix
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Spectral properties of discretized operators in 2D

M: “mass” matrix, discretization of O-order operator

A: “diffusion” matrix, discretizazion of self-ajdoint 2nd-order operator

2 2
e Finite Differences: n nodes each direction, A € R™ *™" h = -

n—1
M=1, wM)=1
A such that ch? < \i(A) < C, k(A) = O(%) (c, C constants)

h2

e L'inite Elements:
M such that ch? < \i(M) < Ch?, k(M) = C/c (¢, C constants)
A such that ch < X\i(A) < +C, k(A) = O(+%) (¢, C constants)

h2

13



2 2
Finite Differences: n nodes each direction, A € R™ *" | h =

n Amin Amax K

10  1.6203e-01  7.8380e+00 4.8374e+01
20 4.4677e-02  7.9553e+00 1.7806e+02
30 2.0523e-02 7.9795e+4+00 3.8881e+02
40 1.1737e-02  7.9883e+00 6.8062e+02
50  7.5867e-03 7.9924e+00 1.0535e+03
60 5.3036e-03 7.9947e+00 1.5074e+03
70  3.9151e-03 7.9961e+00 2.0424e+03

14
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Structured and Sparse matrices

Finite Difference/Element discretization of 1D operator: banded matrices
= Exploiting banded structure with banded solvers

However: higher degree operators and general domains determine

matrices with different structure = Sparse matrices

15



Sparse matrices. I

Matrices stemming from discretizations have special pattern:

. . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
nz = 460 nz = 460

Same matrix, different ordering of the unknowns

large dimensions, only low percentage of nonzero elements per row

16



Sparse matrices. An Example

Matrix market. matrix CAN_1072 (structure problem in aircraft design)

Original sparsity pattern symamd reordering
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Sparse matrices. An Example

Factor U in LU factorization A = LU:

A with original sparsity pattern A with symamd reordering
Factor U, original ordering Factor U, symamd permutation
0 ; —— ; 0 ; ; ; ; ; —
il . . i £
1 1 m EHEl EE
100 100 i - \ i iii #ii
r -
. S | l..= . ‘l
200} 200} S T ’ ;
e .
I 'y |
300 300 Hidile RS MRS i g =3
i w0 i TN
Nimm i 0
500 500 -1 HH
— 1 N T .
] 1] mn
i
v
fi ma
800} 800} Go, 1 imms
900} 200}
1000 1000
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
nz = 302697 nz = 62823
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Solution methods for large matrices
Discretization of 2D and 3D problems leads to large matrices A
(size O(10%), k =5 — 8)

= (Optimized) LU decomposition too expensive

e Iterative methods: Projection-type methods (*)
e Geometric multigrid methods
e Algebraic multigrid methods

e Problem-related optimized methods

19



Discretization and linear system solves

A symmetric and positive definite.

CG: Number of iterations k depends on cond(A) := Jmax()

A 2D Poisson operator:

number of nodes cond(A) # its
per dimension tol = 1010
23 32.16 10

24 116.46 31

2° 440.69 66

20 1711.17 132

Stopping criterion: 7 := b — Axi small enough in some norm

20



Preconditioning techniques
Determine matrix P such that
(PA)x = Pb

is “easier” to solve than Ax = b, that is

e Takes less CPU time

e P is cheap to construct

e P is reasonably cheap to apply
Note: Typically, P used in operators such as y < Pv

21



Preconditioning techniques
Determine matrix P such that
(PA)x = Pb

is “easier” to solve than Ax = b, that is

e Takes less CPU time

e P is cheap to construct

e P is reasonably cheap to apply
Note: Typically, P used in operators such as y < Pv

Choice criteria :

o Pst. PA= al, with I identity matrix
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Preconditioning techniques
Determine matrix P such that
(PA)x = Pb

is “easier” to solve than Ax = b, that is

e Takes less CPU time

e P is cheap to construct

e P is reasonably cheap to apply
Note: Typically, P used in operators such as y < Pv

Choice criteria :
o Pst. PA= al, with I identity matrix

e P s.t. P spectral properties similar to those of A™!
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Preconditioning techniques
Determine matrix P such that
(PA)x = Pb

is “easier” to solve than Ax = b, that is

e Takes less CPU time

e P is cheap to construct

e P is reasonably cheap to apply
Note: Typically, P used in operators such as y < Pv

Choice criteria :
o Pst. PA= al, with I identity matrix
e P s.t. P spectral properties similar to those of A™!
e P “mimicks” the operator behind A

. DAY

24



Preconditioning. 2

(PA)x = Pb

Classical strategy:
Determine P as P=P ' con P~ A

P Az =P b

25



Preconditioning. 2

(PA)x = Pb

Classical strategy:
Determine P as P=P ' con P~ A

P Az =P b
hoping that:
= P~ Athen P '~ A ' sothat P"'A~ 1T
= P! cheap to apply (via y < 73_1?)), that is, solving
Py =wv

is far less expensive than Ax = b

* Example: P = diag(A): cheap, but little effective....

26



An example: Cholesky incomplete decomposition
A sym.pos.def. A=LL" ~ LoL{

Lo obtained from L by threshold chopping (element values below tol

zeroed out)

L Original approximation Lg

20

30

40

50

60

70+

80

90

100

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
nz = 1009 nz =478

A corresponds to the Poisson operator, and tol = 102

27



A possible strategy for incomplete LU
(ILUT, Algorithm 10.6, Saad)

A n x n, "threshold dropping” strategy

1. for 2=1...n do

2. w = a;,. (with w = (wi,...,wn))
3. for k=1.....—1 and wgx #0 do
4, Wi 1= Wi /ak.k

5. Apply the ¢ ‘dropping rule’’ to wyg

6. If wr #0, w:=w — wug,.,end

7. endfor

8. Apply the ¢ ‘dropping rule’’ to the row w
9. lilii—1 = Wii—1, Uiin = Wi

10. endfor

28



zero threshold: ILU(0) and CHOLINC(0)

A =~ LU such that L and U have the same sparsity pattern as A
(nnz(L + U - speye(size(A))) = nnz(A))

L LL' A
0 0 0
20 20 20
40 40 40
60 60 60
80 80 80
100 100 100
0 50 100 0 50 100 0 50 100
nz = 280 nz = 622 nz = 460

...also other strategies...

THEOREM. If A is a P-matrix, then there exists an incomplete

factorization of A with fixed zero sparsity pattern, such that
A = LU — R with LU non-singular

29



PCG, maintaing symmetry
For A sym pos.def., A~ P = LL"*. The preconditioned problem:

Az =b = 1AL—T r=L""b
- Jv —~—

A b

30



PCG, maintaing symmetry
For A sym pos.def., A~ P = LL"*. The preconditioned problem:

Az =b = 1AL—T — L7 'b,
- Jv —~—
A b

For p(® = #® = p — Az(® = L7Yb— Az®) = L7 we have

(r«(j) ,f«(j))
(Ap(3) ,5(9))

7+ — () + ozjﬁ(j), with o =

FU+Y) — z0() _ o - Ap()

GHD) G+
(T(J) 7"(3))

~(J+1) — #(+1) + B; p ’ con B; = (7

31



PCG, maintaing symmetry
For A sym pos.def., A~ P = LL"*. The preconditioned problem:

Az =b = 1AL‘T — L1,
- J\\,/ ——"
A b

For p(® = #® = p — Az(® = L7Yb— Az®) = L7 we have

(7’»(.7) ,f«(j))
(Ap(3) ,5(9))

7+ — () + ozjﬁ(j), with o =

(L—lr,«(j),L—lr(j))
(L=1AL—Tr—-1,0) L—1,0))

LT G+ — [ T,0G) 4 osz_lp(j), with o =

FU+Y) — z0() _ o - Ap()

L0+ — 1.0 ajL_lAL_TL_lp(j)

(f(j+1) ,f(j+1))
(#(3),#(3))

~(J+1) — fU+D 4 B; p ’ with B; =

(L= 1r0G+1) =1, +1))
(L—1,0) L—1,0))

—1,0+D) — [ =1,.G+D 4 BjL_lp(j), with B =

32



PCG, maintaing symmetry
For A sym pos.def., A~ P = LL"*. The preconditioned problem:

Az =b = L 'AL"L'z=1L""p,
N -~ /\f./ \Y-/
x b

A

For p(© = 7@ =p — Az = L7 (b — Az@) = L7+ we have

~(G+1) _ ~(5) A s @97y
x =V’ + a;p"’, with o = D 5@

G+ — 20 4, =T L1900 wi _ (r@), 0 =Tr=1,0))
x =V’ +a; L L "p"Y/, with o = AL TL 1,0 L TL 1,0

U+ — =) _ Ozjgﬁ(j)

POty — .0 _ ajAL_TL_lp(j)

(G+1) 7(G+1))
(#(3),5(3))

ﬁ(j—l-l) — F+1 /Bjﬁ(j)> with B; = (r

(r(G+1) =T —1,.(+1))

—Trp—1,0G+1) = ,—T—1,.0+1) L Tr—1,0) wi -
L L P L L r —{—ﬁjL L P , with BJ (r(j),L_TL_lr(j))
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PCG, maintaing symmetry
For A sym pos.def., A~ P = LL?. The preconditioned problem:

Az =b = LlAL_T r=L""b,
v J\,./ ——"
A b

For p9 =7 =p — 4z = L71(b — Az(?) = L7179 we have
With @ = LT 150 = p=150) and 20 = [~T[=1,.00) = p=1,0),

20D = 20D 4 o p) with (r0),20))

(ap(d) 5())

Otj:

PGHD — ) o, Ap)

. , , ) (et
pUFYD = U+ 4 350 with B, = (r(G+D) L (G+1))

(r(3), z(j))

34



Practical preconditioning strategies

LU-type approx decomposition of A: — Pv=U"'L™ v

Algebraic multigrid (approximate representation of A on smaller

version of the matrix - recursive procedure)
Geometric multigrid (operator and domain dependent)

Functional approximation of the underlying operator

35



A comparison :

Incomplete Cholesky and Algebraic Multigrid

Poisson, 2D problem on [0, 1]®. Matrices of dim n = 2% x 2*

grid incomplete Chol AMG
nodes per dim | # it’s CPU time || # it’s CPU time
24 11 0.008 6 0.18
2° 18  0.007 6 0.20
20 33 0.04 7 0.22
27 58 0.29 7 0.32
2% | 106  2.27 8 0.71

For 2%, dim(A) = 65536 x 65536

I Preconditioned CG with AMG gives grid independent # it’s !!
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A comparison :

Incomplete Cholesky and Algebraic Multigrid

Poisson, 2D problem on [0, 1]®. Matrices of dim n = 2% x 2*

grid incomplete Chol AMG
nodes per dim | # it’s CPU time || # it’s CPU time
2+ | 11 0.008 6 0.18

2° 18  0.007 6 0.20
20 33 0.04 7 0.22
27 58 0.29 7 0.32
2% | 106  2.27 8 0.71

For 2%, dim(A) = 65536 x 65536
I Preconditioned CG with AMG gives grid independent # it’s !!

Remark: For 2%, tic; A\b;toc, gives: Elapsed time is 0.588393

seconds.
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Algebraic Multigrid (AMG)

Consider the original system

A =" (%)
The error vector is split in two parts: an oscillatory component (high
freq.) and a regular component (smooth, low freq.)

A Multigrid (or multilevel) type method for a linear system is made of

two ingredients:

e A smoothing step of the oscillatory portion:

usually a few iterations of a classical method (e.g., Jacobi,
Gauss-Seidel)

e A correction on a coarser grid for the smooth part

The system (%) is approximated by a system on a coarser grid:
A" fH guch that

A = I ALTE,  fP =10 "

38



Conceptually similar to a Galerkin projection type procedure:
I restriction operator, full rank
I prolongation operator, rull rank
with
= (I;LI)T (transposition)
Remark: Geometric Multigrid uses the physical grid. Algebraic Multigrid

use the matrix elements

(matrix indexes = grid nodes)

39



Algebraic Multigrid (AMG)

General procedure (on two grids):

1. Perform n; steps of smoothing (e.g., Jacobi) on Apu” = f"

2. Compute the residual rt = fh — Apu = Ael

3. Project (restrict) to the coarse grid r = I "
4. Solve on coarse grid: Agye =r¥
5. Add (prolong) u" := u" + I} e

6. Take no steps of smoothing on Apul = fh

40



Algebraic Multigrid (AMG). The coarse grid

Determine Ag from Ay, Am is a subset of the rows/columns of Ay

(strong connection among the elements of Ag)

DEF. Let 0 € (0, 1] be a fixed threshold. The variable u; strongly depends
on the variable wu; if

—a;; >0 —a;
aij = 0 max{—ai}
= non-diagonal positive elements have a weak connection
The following steps should be taken (where: node= pair of
indexes)
1. Define a “strength” matrix (A¢) by eliminating the weak connections

2. Choose an independent set of strong nodes of Ay

3. Add possible nodes to have a correct proloungation operator

41



Spectral equivalence

Under particular conditions® on the matrix A, it can be proved that the
AMG preconditioner is spectrally equivalent to A, that is:

There exist a1, as > 0 independent of the dimension of A such that

a1 (z, Pr) < (z, Az) < az(x, Px), Ve #£ 0

%e.g., if A is Hpd is an M-matrix, that is with a;; > 0 Vi and a;; < 0 Vi # 7,
with non-negative inverse - the usual discretization of the Laplacian.

42



Spectral equivalence

Under particular conditions® on the matrix A, it can be proved that the
AMG preconditioner is spectrally equivalent to A, that is:

There exist a1, as > 0 independent of the dimension of A such that

a1 (z, Pr) < (z, Az) < az(x, Px), Ve #£ 0

In our context:

P Y Av = W & Av = \Pv

so that (0, Av) (. Ax) (2. Ax)
v, Av x, Az x, Ax
A\ = ’ n——~2 <\ < A
(v, Pv)’ 230 (x, Px) — — oo (x, Px)
= The spectral interval of the preconditioned problems does not

depend on the problem dimension (or on the grid!)

%e.g., if A is Hpd is an M-matrix, that is with a;; > 0 Vi and a;; < 0 Vi # 7,
with non-negative inverse - the usual discretization of the Laplacian.
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Saddle point linear systems

A BT U f
B -C v g

Computational Fluid Dynamics (Elman, Silvester, Wathen 2005)
Elasticity problems

Mixed (FE) formulations of II and IV order elliptic PDEs
Linearly Constrained Programs

Linear Regression in Statistics

Image restoration

... Survey: Benzi, Golub and Liesen, Acta Num 2005

44



The problem. Simplifications

A BT U f
B -C v g

To make things simple:

* A symmetric positive (semi)definite

x BT tall, possibly rank deficient

* C symmetric positive (semi)definite

45



Spectral properties

A A BT O< Ay <---< A eigsof A
B O 0<om<---<o0g; sing. valsof B
o(A) subset of (Rusten & Winther 1992)
1 1 1
[5<An V20D, L - /¥ +4am2>} 0 [An, HEYERVET +4a§)]
A nonsingular |, B full rank

(other hypotheses are possible)

46



Spectral properties

e A BT 0< A <---< A eigsof A
B O O0<om<---<o0g; sing. valsof B
o(A) subset of (Rusten & Winther 1992)

1 1 1
{5@\”— Aa+4a%>,§<xl—¢xf+4a%>} g [/\n,5</\1+ /\§+4a§>]

Good (= slim) spectrum: A\ = \,,, 01 & op
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Spectral properties

A A BT O< A <---< A eigsof A
B O O<om<---<o0; sing. valsof B
o(A) subset of (Rusten & Winther 1992)

1 1 1
{5@\”— Aa+4a%>,§<xl—¢xf+4a%>} g [/\n,5</\1+ /\§+4a§>]

Good (= slim) spectrum: A\ = \,,, 01 & op,

EXAMPLE:
I Ur
A= . UUt =1, Xi(I) =1Vi,0,(U) = 1,5
U O
o(A) € {5 (1~ VBIU[L £ (14 V5)]

48



Which method for this problem?

A is symmetric but indefinite!
= CG will not work...

= GMRES? it is for nonsymmetric problems... however, we said:

If A were Hpd = V. AV} also Hpd = tridiagonal

49



Which method for this problem?

A is symmetric but indefinite!
= CG will not work...

= GMRES? it is for nonsymmetric problems... however, we said:

If A were Hpd = VAV, also Hpd = tridiagonal

This implies (details omitted) that
min |[ro — AViy|| < minle1fo — H,y|
with H, = V7,1 AV} tridiagonal, so that

Tk+1 = Tk + QM

(for some qi, nx) short-term recurrence, MINRES

50



* A nonsing., C' = 0:

Block diagonal Preconditioner

1

51
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Block diagonal Preconditioner

* A nonsing., C' = 0:

A 0
=10 BapT
1 1 I A—%BT(BA—lBT)—
= PO 2./47)0 2 = 1 1
(BA=1BTY"2BA™ 2 0

_1 1
MINRES converges in at most 3 iterations. o(P, 2AP, 2) = {1, 3 *

A more practical choice:

P = spd. A~ A  S~BA'B'

~

A 0 - N
0 S

eigs in [—a, —b] U [c,d], a,b,c,d >0

Still an Indefinite Problem = MINRES

52
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Giving up symmetry ...
e Change the preconditioner: Mimic the LU factors

I O [A BT ] [A BT
=P =

BA-1 T

A =
O BA-1BT 4 (O O BA1BT (O

e Change the preconditioner: Mimic the Structure

A B'
A= =P~A
B -C
, A B
e Change the matrix: FEliminate indef. A_ =
-B C

e Change the matrix: Regularize (C = 0)

A BT
B —W

A+ %BTW_lB BT

or A'y:
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Application of the preconditioners. 1

At each iteration of CG, MINRES or GMRES, compute y = P~ 'z, that

is solve
A 0 ,
P = N that is
o S
- -
7) — N that iS
0 S

P

Y1
Y2

<1

<2

Solve gyl = 21,

Solve §y2 = 2o,

54

§y2 = Z92.

gyl = 21 — BTyQ.



Application of the preconditioners. 2

Indefinite preconditioner:

~ ~

A BT I ol |14 o | |1 A BT
P = | = ~ R = P1DPs
B -S BA~' 1|l 10 =S| 10 I

with S =S + BA~ BT

(In practice S is an approximation to this quantity)

Application of the indefinite preconditioner:

Py=2 <& P1DPy=z
N
\;_1/

:ZQ
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