Acceleration strategies and applications

Outline

- Some common elliptic operators
- Finite Difference schemes for 2D operators
- Sparse matrices
- General preconditioning strategies
- Saddle point problems

Some common elliptic operators

Given $\Omega \subset \mathbb{R}^{2}$ bounded, open domain, $\Gamma=\partial \Omega$. Poisson equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f, \quad(x, y) \in \Omega
$$

equipped with boundary conditions,

Some common elliptic operators

Given $\Omega \subset \mathbb{R}^{2}$ bounded, open domain, $\Gamma=\partial \Omega$. Poisson equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f, \quad(x, y) \in \Omega
$$

equipped with boundary conditions, that is, for (x, y) on Γ, e.g.:
Dirichlet conditions: $\quad u(x, y)=\phi(x, y)$
Neumann conditions: $\quad \frac{\partial u}{\partial \mathbf{n}}=0 \quad(\nabla u \cdot \mathbf{n}=0)$
Cauchy conditions: $\quad \frac{\partial u}{\partial \mathbf{n}}+\alpha(x, y) u(x, y)=\gamma(x, y)$

Note: possibly mixed conditions on parts of the domain (e.g., $\Gamma=\Gamma_{1} \cup \Gamma_{2}$, with Dirichlet cond. on Γ_{1}, Neumann cond on Γ_{2})

> Some common elliptic operators

More general,

$$
L u=f, \quad L=\frac{\partial}{\partial x}\left(a_{1} \frac{\partial}{\partial x}\right)+\frac{\partial}{\partial y}\left(a_{2} \frac{\partial}{\partial y}\right)
$$

(or, more compactly, $L=\nabla \cdot(\mathbf{a} \cdot \nabla)$)
In case of an anisotropic and inhomogeneous medium. In general

$$
L u=\nabla \cdot(\mathbb{A} \nabla) u, \quad \mathbb{A} \in \mathbb{R}^{2 \times 2}
$$

A: tensor acting on both components of ∇
The (steady-state) convection diffusion equation:

$$
-\nabla \cdot(\mathbf{a} . \nabla) u+\mathbf{b} \cdot \nabla u=f
$$

the magnitude of the vector \mathbf{b} is a measure of non-selfadjointness of the equation.

Finite difference: basic approximations

$$
\begin{array}{ll}
\frac{d u}{d x}=\frac{u(x+h)-u(x)}{h}-\frac{h}{2} \frac{d^{2} u(x)}{d x^{2}}+O\left(h^{2}\right), & h \rightarrow 0 \\
\frac{d u}{d x}=\frac{u(x)-u(x-h)}{h}+\frac{h}{2} \frac{d^{2} u(x)}{d x^{2}}+O\left(h^{2}\right), & h \rightarrow 0
\end{array}
$$

Centered approximation: Combining these two approximations,

$$
\frac{d u}{d x}=\frac{u(x+h)-u(x-h)}{2 h}+O\left(h^{2}\right), \quad h \rightarrow 0
$$

second order accuracy!
\Rightarrow Two-point stencils

Some common elliptic operators
Approximating the second derivative:

$$
\frac{d^{2} u}{d x^{2}}=\frac{u_{x}(x+h)-u_{x}(x)}{h}, \quad h>0, h \rightarrow 0
$$

Combining forward and backward approximation of u_{x},

$$
\frac{d^{2} u}{d x^{2}}=\frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}}+O\left(h^{2}\right), \quad h \rightarrow 0
$$

\Rightarrow Three-point stencil

More general second order operator:

$$
\frac{d}{d x}\left(a(x) \frac{d u}{d x}\right)=\frac{a_{i+\frac{1}{2}}\left(u_{i+1}-u_{i}\right)-a_{i-\frac{1}{2}}\left(u_{i}-u_{i-1}\right)}{h^{2}}+O\left(h^{2}\right), \quad h \rightarrow 0
$$

where $u_{i+1}=u(x+h), a_{i+\frac{1}{2}}=a\left(x+\frac{1}{2} h\right)$, etc.

Difference schemes for the 2D Laplace operator

Using h_{1} in x-direction and h_{2} in y-direction,

$$
\begin{aligned}
\Delta u & \equiv u_{x x}+u_{y y} \\
\approx & \frac{u\left(x+h_{1}, y\right)-2 u(x, y)+u\left(x-h_{1}, y\right)}{h_{1}^{2}} \\
& +\frac{u\left(x, y+h_{2}\right)-2 u(x, y)+u\left(x, y-h_{2}\right)}{h_{2}^{2}}
\end{aligned}
$$

that is, for $h_{1}=h_{2}=h$,

$$
\Delta u \approx \frac{1}{h^{2}}(u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-4 u(x, y))
$$

Actual implementation. 1D
Consider the 1D problem

$$
\begin{array}{r}
-u^{\prime \prime}(x)=f(x), \quad x \in(0,1) \\
u(0)=u(1)=0
\end{array}
$$

Discretization of interval $[0,1]$ with $n+2$ nodes:
$x_{i}=i h, i=0,1, \ldots, n+1$
Note: $h=\frac{1}{n+1}$
Note: Dirichlet b.c., $u(0)=u\left(x_{0}\right)$ and $u(1)=u\left(x_{n+1}\right)$ known
Write $u\left(x_{i}\right) \equiv u_{i}$. Then the discrete version of the diff.equation is

$$
-u_{i-1}+2 u_{i}-u_{i+1}=h^{2} f_{i}, \quad i=1, \ldots, n
$$

Actual implementation. 1D

$$
\left(-u_{i-1}+2 u_{i}-u_{i+1}\right)=h^{2} f_{i}, \quad i=1, \ldots, n
$$

Collecting all i 's, we obtain $\quad A \mathbf{u}=\mathbf{f}$ with

$$
A=\left[\begin{array}{cccccc}
2 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 2 & -1 \\
& & & & -1 & 2
\end{array}\right], \quad \mathbf{f}=\left[\begin{array}{c}
f_{0}+u(0) \\
f_{1} \\
\vdots \\
f_{n} \\
f_{n+1}+u(1)
\end{array}\right]
$$

Neumann boundary conditions
Assume: $u^{\prime}(0)=0$. Therefore $u\left(x_{1}\right)-u\left(x_{0}\right)=0 \Leftrightarrow u\left(x_{0}\right)=u\left(x_{1}\right)$
In the generic equation $\frac{1}{h^{2}}\left(-u_{i-1}+2 u_{i}-u_{i+1}\right)=f_{i}, i=1, \ldots, n$
For $i=1$ we obtain $\frac{1}{h^{2}}\left(-u_{1}+2 u_{1}-u_{2}\right)=\frac{1}{h^{2}}\left(u_{1}-u_{2}\right)$
Therefore,

$$
A=\left[\begin{array}{cccccc}
1 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 2 & -1 \\
& & & & -1 & 2
\end{array}\right], \quad f=\left[\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{n} \\
f_{n+1}+u(1)
\end{array}\right]
$$

Actual implementation. Poisson equation in a square

2D Poisson equation. The coefficient matrix

$$
A=\left[\begin{array}{c}
\cdots \underbrace{-1}_{i, j-1} \\
\cdots \cdots \underbrace{-1}_{i-1, j} \underbrace{4}_{i, j} \\
\underbrace{-1}_{i+1, j} \cdots 0 \underbrace{-1}_{i, j+1} \cdots]
\end{array}\right]
$$

Spectral properties of discretized operators in 2D

M: "mass" matrix, discretization of 0-order operator
A: "diffusion" matrix, discretizazion of self-ajdoint 2nd-order operator

- Finite Differences: n nodes each direction, $A \in \mathbb{R}^{n^{2} \times n^{2}}, h=\frac{1}{n-1}$

$$
M=I, \quad \kappa(M)=1
$$

A such that $\quad c h^{2} \leq \lambda_{i}(A) \leq C, \kappa(A)=O\left(\frac{1}{h^{2}}\right)(\mathrm{c}, \mathrm{C}$ constants $)$

- Finite Elements:
M such that

$$
c h^{2} \leq \lambda_{i}(M) \leq C h^{2}, \kappa(M)=C / c(c, \mathrm{C} \text { constants })
$$

A such that $\quad c h \leq \lambda_{i}(A) \leq \frac{1}{h} C, \kappa(A)=O\left(\frac{1}{h^{2}}\right)(c$, C constants $)$

Finite Differences: n nodes each direction, $A \in \mathbb{R}^{n^{2} \times n^{2}}, h=\frac{1}{n-1}$

n	$\lambda_{\min }$	$\lambda_{\max }$	κ
10	$1.6203 \mathrm{e}-01$	$7.8380 \mathrm{e}+00$	$4.8374 \mathrm{e}+01$
20	$4.4677 \mathrm{e}-02$	$7.9553 \mathrm{e}+00$	$1.7806 \mathrm{e}+02$
30	$2.0523 \mathrm{e}-02$	$7.9795 \mathrm{e}+00$	$3.8881 \mathrm{e}+02$
40	$1.1737 \mathrm{e}-02$	$7.9883 \mathrm{e}+00$	$6.8062 \mathrm{e}+02$
50	$7.5867 \mathrm{e}-03$	$7.9924 \mathrm{e}+00$	$1.0535 \mathrm{e}+03$
60	$5.3036 \mathrm{e}-03$	$7.9947 \mathrm{e}+00$	$1.5074 \mathrm{e}+03$
70	$3.9151 \mathrm{e}-03$	$7.9961 \mathrm{e}+00$	$2.0424 \mathrm{e}+03$

> Structured and Sparse matrices

Finite Difference/Element discretization of 1D operator: banded matrices
\Rightarrow Exploiting banded structure with banded solvers

However: higher degree operators and general domains determine matrices with different structure $\quad \Rightarrow$ Sparse matrices

Sparse matrices. I

Matrices stemming from discretizations have special pattern:

Same matrix, different ordering of the unknowns
large dimensions, only low percentage of nonzero elements per row

Sparse matrices. An Example

Matrix market. matrix CAN_1072 (structure problem in aircraft design)

Original sparsity pattern

symamd reordering

Sparse matrices. An Example
Factor U in LU factorization $A=L U$:
A with original sparsity pattern

A with symamd reordering

Solution methods for large matrices
Discretization of 2D and 3D problems leads to large matrices A (size $\left.O\left(10^{k}\right), k=5-8\right)$
\Rightarrow (Optimized) LU decomposition too expensive

- Iterative methods: Projection-type methods (*)
- Geometric multigrid methods
- Algebraic multigrid methods
- Problem-related optimized methods

Discretization and linear system solves
A symmetric and positive definite.
CG: Number of iterations k depends on $\operatorname{cond}(A):=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$

A 2D Poisson operator:

number of nodes per dimension		cond (A) tol $=10^{-10}$
2^{3}	32.16	10
2^{4}	116.46	31
2^{5}	440.69	66
2^{6}	1711.17	132

Stopping criterion: $r_{k}:=b-A x_{k}$ small enough in some norm

Preconditioning techniques
Determine matrix P such that

$$
(P A) x=P b
$$

is "easier" to solve than $A x=b$, that is

- Takes less CPU time
- P is cheap to construct
- P is reasonably cheap to apply

Note: Typically, P used in operators such as $y \leftarrow P v$

Preconditioning techniques
Determine matrix P such that

$$
(P A) x=P b
$$

is "easier" to solve than $A x=b$, that is

- Takes less CPU time
- P is cheap to construct
- P is reasonably cheap to apply

Note: Typically, P used in operators such as $y \leftarrow P v$

Choice criteria :

- P s.t. $P A \approx \alpha I$, with I identity matrix

Preconditioning techniques
Determine matrix P such that

$$
(P A) x=P b
$$

is "easier" to solve than $A x=b$, that is

- Takes less CPU time
- P is cheap to construct
- P is reasonably cheap to apply

Note: Typically, P used in operators such as $y \leftarrow P v$

Choice criteria :

- P s.t. $P A \approx \alpha I$, with I identity matrix
- P s.t. P spectral properties similar to those of A^{-1}

Preconditioning techniques
Determine matrix P such that

$$
(P A) x=P b
$$

is "easier" to solve than $A x=b$, that is

- Takes less CPU time
- P is cheap to construct
- P is reasonably cheap to apply

Note: Typically, P used in operators such as $y \leftarrow P v$

Choice criteria :

- P s.t. $P A \approx \alpha I$, with I identity matrix
- P s.t. P spectral properties similar to those of A^{-1}
- P "mimicks" the operator behind A
- ...

Preconditioning. 2

$$
(P A) x=P b
$$

Classical strategy:

$$
\text { Determine } P \text { as } P=\mathcal{P}^{-1} \text { con } \mathcal{P} \approx A
$$

$$
\mathcal{P}^{-1} A x=\mathcal{P}^{-1} b
$$

Preconditioning. 2

$$
(P A) x=P b
$$

Classical strategy:

$$
\begin{aligned}
& \text { Determine } P \text { as } P=\mathcal{P}^{-1} \text { con } \mathcal{P} \approx A \\
& \mathcal{P}^{-1} A x=\mathcal{P}^{-1} b
\end{aligned}
$$

hoping that:
$\Rightarrow \mathcal{P} \approx A$ then $\mathcal{P}^{-1} \approx A^{-1}$ so that $\mathcal{P}^{-1} A \approx I$
$\Rightarrow \mathcal{P}^{-1}$ cheap to apply (via $y \leftarrow \mathcal{P}^{-1} v$), that is, solving

$$
\mathcal{P} y=v
$$

is far less expensive than $A x=b$
\star Example: $\mathcal{P}=\operatorname{diag}(A):$ cheap, but little effective....

An example: Cholesky incomplete decomposition
A sym.pos.def. $\quad A=L L^{T} \approx L_{0} L_{0}^{T}$
L_{0} obtained from L by threshold chopping (element values below tol zeroed out)

A corresponds to the Poisson operator, and tol $=10^{-2}$

A possible strategy for incomplete LU (ILUT, Algorithm 10.6, Saad)

A $n \times n$, "threshold dropping" strategy

1. for $i=1 \ldots n$ do
2. $\quad w=a_{i,:}\left(\right.$ with $\left.w=\left(w_{1}, \ldots, w_{n}\right)\right)$
3. for $k=1 \ldots . i-1$ and $w_{k} \neq 0$ do
4.

$$
w_{k}:=w_{k} / a_{k, k}
$$

5. Apply the 'dropping rule') to w_{k}
6. If $w_{k} \neq 0, w:=w-w_{k} u_{k,:}$, end
7. endfor
8. Apply the '(dropping rule') to the row w
9. $\quad l_{i, 1: i-1}=w_{1: i-1}, \quad u_{i, i: n}=w_{i: n}$
10. endfor
zero threshold: ILU(0) and CHOLINC(0)
$A \approx L U$ such that L and U have the same sparsity pattern as A $(\operatorname{nnz}(L+U-\operatorname{speye}(\operatorname{size}(A)))=\operatorname{nnz}(A))$

...also other strategies...
Theorem. If A is a P-matrix, then there exists an incomplete factorization of A with fixed zero sparsity pattern, such that $A=L U-R$ with $L U$ non-singular

PCG, maintaing symmetry
For A sym pos.def., $A \approx P=L L^{T}$. The preconditioned problem:

$$
A x=b \Rightarrow \underbrace{L^{-1} A L^{-T}}_{\widetilde{A}} \underbrace{L^{T} x}_{\tilde{x}}=\underbrace{L^{-1} b}_{\tilde{b}},
$$

PCG, maintaing symmetry
For A sym pos.def., $A \approx P=L L^{T}$. The preconditioned problem:

$$
A x=b \Rightarrow \underbrace{L^{-1} A L^{-T}}_{\widetilde{A}} \underbrace{L^{T} x}_{\tilde{x}}=\underbrace{L^{-1} b}_{\tilde{b}},
$$

For $\tilde{p}^{(0)}=\tilde{r}^{(0)}=\tilde{b}-\widetilde{A} \tilde{x}^{(0)}=L^{-1}\left(b-A x^{(0)}\right)=L^{-1} r^{(0)}$, we have

$$
\tilde{x}^{(j+1)}=\tilde{x}^{(j)}+\alpha_{j} \tilde{p}^{(j)}, \text { with } \quad \alpha_{j}=\frac{\left(\tilde{r}^{(j)}, \tilde{\tilde{r}}^{(j)}\right)}{\left(\tilde{\tilde{A}} \tilde{p}^{(j)}, \tilde{p}^{(j)}\right)}
$$

$$
\tilde{r}^{(j+1)}=\tilde{r}^{(j)}-\alpha_{j} \widetilde{A}^{p} \tilde{p}^{(j)}
$$

$$
\tilde{p}^{(j+1)}=\tilde{r}^{(j+1)}+\beta_{j} \tilde{p}^{(j)}, \text { con } \quad \beta_{j}=\frac{\left(\tilde{r}^{(j+1),}, \tilde{\tilde{r}}^{(j+1)}\right)}{\left(\tilde{r}^{(j)}, \tilde{r}^{(j)}\right)}
$$

PCG, maintaing symmetry
For A sym pos.def., $A \approx P=L L^{T}$. The preconditioned problem:

$$
A x=b \Rightarrow \underbrace{L^{-1} A L^{-T}}_{\widetilde{A}} \underbrace{L^{T} x}_{\tilde{x}}=\underbrace{L^{-1} b}_{\tilde{b}},
$$

For $\tilde{p}^{(0)}=\tilde{r}^{(0)}=\tilde{b}-\widetilde{A} \tilde{x}^{(0)}=L^{-1}\left(b-A x^{(0)}\right)=L^{-1} r^{(0)}$, we have

$$
\begin{aligned}
& \tilde{x}^{(j+1)}=\tilde{x}^{(j)}+\alpha_{j} \tilde{p}^{(j)}, \text { with } \quad \alpha_{j}=\frac{\left(\tilde{\tilde{r}}^{(j)}, \tilde{r}^{(j)}\right)}{\left(\tilde{A} \tilde{p}^{(j)}, \tilde{p}^{(j)}\right)} \\
& L^{T} x^{(j+1)}=L^{T} x^{(j)}+\alpha_{j} L^{-1} p^{(j)}, \text { with } \quad \alpha_{j}=\frac{\left(L^{-1} r^{(j)}, L^{-1} r^{(j)}\right)}{\left(L^{-1} A L^{-T} L^{-1} p^{(j)}, L^{-1} p^{(j)}\right)} \\
& \tilde{r}^{(j+1)}=\tilde{r}^{(j)}-\alpha_{j} \widetilde{A} \tilde{p}^{(j)} \\
& L^{-1} r^{(j+1)}=L^{-1} r^{(j)}-\alpha_{j} L^{-1} A L^{-T} L^{-1} p^{(j)} \\
& \tilde{p}^{(j+1)}=\tilde{r}^{(j+1)}+\beta_{j} \tilde{p}^{(j)}, \text { with } \quad \beta_{j}=\frac{\left(\tilde{r}^{(j+1)}, \tilde{r}^{(j+1)}\right)}{\left(\tilde{r}^{(j)}, \tilde{r}^{(j)}\right)} \\
& L^{-1} p^{(j+1)}=L^{-1} r^{(j+1)}+\beta_{j} L^{-1} p^{(j)}, \text { with } \quad \beta_{j}=\frac{\left(L^{-1} r_{r}(j+1), L^{-1} r_{r}(j+1)\right)}{\left(L^{-1} r_{r}(j), L^{-11_{r}(j)}\right)}
\end{aligned}
$$

PCG, maintaing symmetry
For A sym pos.def., $A \approx P=L L^{T}$. The preconditioned problem:

$$
A x=b \Rightarrow \underbrace{L^{-1} A L^{-T}}_{\widetilde{A}} \underbrace{L^{T} x}_{\tilde{x}}=\underbrace{L^{-1} b}_{\tilde{b}},
$$

For $\tilde{p}^{(0)}=\tilde{r}^{(0)}=\tilde{b}-\widetilde{A} \tilde{x}^{(0)}=L^{-1}\left(b-A x^{(0)}\right)=L^{-1} r^{(0)}$, we have

$$
\begin{aligned}
& \tilde{x}^{(j+1)}=\tilde{x}^{(j)}+\alpha_{j} \tilde{p}^{(j)}, \text { with } \quad \alpha_{j}=\frac{\left(\tilde{\tilde{r}}^{(j)}, \tilde{r}^{(j)}\right)}{\left(\tilde{A} \tilde{p}^{(j)}, \tilde{p}^{(j)}\right)} \\
& x^{(j+1)}=x^{(j)}+\alpha_{j} L^{-T} L^{-1} p^{(j)}, \text { with } \quad \alpha_{j}=\frac{\left(r^{(j)}, L^{-T} L^{-1} r^{(j)}\right)}{\left(A L^{-T} L^{-1} p^{(j)}, L^{-T} L^{-1} p^{(j)}\right)} \\
& \tilde{r}^{(j+1)}=\tilde{r}^{(j)}-\alpha_{j} \widetilde{A} \tilde{p}^{(j)} \\
& r^{(j+1)}=r^{(j)}-\alpha_{j} A L^{-T} L^{-1} p^{(j)} \\
& \tilde{p}^{(j+1)}=\tilde{r}^{(j+1)}+\beta_{j} \tilde{p}^{(j)}, \text { with } \quad \beta_{j}=\frac{\left(\tilde{r}^{(j+1)}, \tilde{r}^{(j+1)}\right)}{\left(\tilde{r}^{(j)}, \tilde{p}^{(j)}\right)} \\
&\left.L^{-T} L^{-1} p^{(j+1)}=L^{-T} L^{-1} r_{r}^{(j+1)}+\beta_{j} L^{-T} L^{-1} p_{p}^{(j)}, \text { with } \beta_{j}=\frac{\left(r^{(j+1)}, L^{-T} L^{-1} r_{r}(j+1)\right.}{\left(r^{(j)}, L^{-T} L^{-1} r_{r}(j)\right.}\right)
\end{aligned}
$$

PCG, maintaing symmetry

For A sym pos.def., $A \approx P=L L^{T}$. The preconditioned problem:

$$
A x=b \Rightarrow \underbrace{L^{-1} A L^{-T}}_{\widetilde{A}} \underbrace{L^{T} x}_{\tilde{x}}=\underbrace{L^{-1} b}_{\tilde{b}},
$$

For $\tilde{p}^{(0)}=\tilde{r}^{(0)}=\tilde{b}-\widetilde{A} \tilde{x}^{(0)}=L^{-1}\left(b-A x^{(0)}\right)=L^{-1} r^{(0)}$, we have
With $\hat{p}^{(0)}=L^{-T} L^{-1} p^{(0)}=P^{-1} p^{(0)}$ and $z^{(j)}=L^{-T} L^{-1} r^{(j)}=P^{-1} r^{(j)}$:

$$
\begin{aligned}
& x^{(j+1)}=x^{(j)}+\alpha_{j} \hat{p}^{(j)} \text { with } \quad \alpha_{j}=\frac{\left(r^{(j)}, z^{(j)}\right)}{\left(A \hat{p}^{(j)}, \hat{p}^{(j)}\right)} \\
& r^{(j+1)}=r^{(j)}-\alpha_{j} A \hat{p}^{(j)} \\
& \hat{p}^{(j+1)}=z^{(j+1)}+\beta_{j} \hat{p}^{(j)}, \text { with } \beta_{j}=\frac{\left(r^{\left.(j+1), z^{(j+1)}\right)}\right.}{\left(r^{(j)}, z^{(j)}\right)}
\end{aligned}
$$

Practical preconditioning strategies

- LU-type approx decomposition of $A: \rightarrow P v=U^{-1} L^{-1} v$
- Algebraic multigrid (approximate representation of A on smaller version of the matrix - recursive procedure)
- Geometric multigrid (operator and domain dependent)
- Functional approximation of the underlying operator

A comparison :
Incomplete Cholesky and Algebraic Multigrid

Poisson, 2D problem on $[0,1]^{2}$. Matrices of $\operatorname{dim} n=2^{k} \times 2^{k}$

grid	incomplete Chol		AMG	
nodes per dim	\# it's	CPU time	\# it's	CPU time
2^{4}	11	0.008	6	0.18
2^{5}	18	0.007	6	0.20
2^{6}	33	0.04	7	0.22
2^{7}	58	0.29	7	0.32
2^{8}	106	2.27	8	0.71

For $2^{8}, \operatorname{dim}(A)=65536 \times 65536$
!! Preconditioned CG with AMG gives grid independent \# it's !!

A comparison :
Incomplete Cholesky and Algebraic Multigrid

Poisson, 2D problem on $[0,1]^{2}$. Matrices of $\operatorname{dim} n=2^{k} \times 2^{k}$

grid	incomplete Chol		AMG	
nodes per dim	\# it's	CPU time	\# it's	CPU time
2^{4}	11	0.008	6	0.18
2^{5}	18	0.007	6	0.20
2^{6}	33	0.04	7	0.22
2^{7}	58	0.29	7	0.32
2^{8}	106	2.27	8	0.71

For $2^{8}, \operatorname{dim}(A)=65536 \times 65536$
!! Preconditioned CG with AMG gives grid independent \# it's !!
Remark: For 2^{8}, tic; $A \backslash b$;toc, gives: Elapsed time is 0.588393 seconds.

Algebraic Multigrid (AMG)

Consider the original system

$$
A_{h} u^{h}=f^{h} \quad(\star)
$$

The error vector is split in two parts: an oscillatory component (high freq.) and a regular component (smooth, low freq.)

A Multigrid (or multilevel) type method for a linear system is made of two ingredients:

- A smoothing step of the oscillatory portion:
usually a few iterations of a classical method (e.g., Jacobi, Gauss-Seidel)
- A correction on a coarser grid for the smooth part

The system (\star) is approximated by a system on a coarser grid: A^{H}, f^{H} such that

$$
A_{H}=I_{h}^{H} A_{h} I_{H}^{h}, \quad f^{H}=I_{h}^{H} f^{h}
$$

Conceptually similar to a Galerkin projection type procedure:
I_{h}^{H} : restriction operator, full rank
I_{H}^{h} : prolongation operator, rull rank with

$$
I_{h}^{H}=\left(I_{H}^{h}\right)^{T} \quad(\text { transposition })
$$

Remark: Geometric Multigrid uses the physical grid. Algebraic Multigrid use the matrix elements
(matrix indexes \equiv grid nodes)

Algebraic Multigrid (AMG)

General procedure (on two grids):

1. Perform n_{1} steps of smoothing (e.g., Jacobi) on $A_{h} u^{h}=f^{h}$
2. Compute the residual $r^{h}=f^{h}-A_{h} u^{h} \equiv A e^{h}$
3. Project (restrict) to the coarse grid $r^{H}=I_{h}^{H} r^{h}$
4. Solve on coarse grid: $A_{H} e^{H}=r^{H}$
5. Add (prolong) $u^{h}:=u^{h}+I_{H}^{h} e^{H}$
6. Take n_{2} steps of smoothing on $A_{h} u^{h}=f^{h}$

Algebraic Multigrid (AMG). The coarse grid
Determine A_{H} from A_{h}, A_{H} is a subset of the rows/columns of A_{h} (strong connection among the elements of A_{H})

DEF. Let $\theta \in(0,1]$ be a fixed threshold. The variable u_{i} strongly depends on the variable u_{j} if

$$
-a_{i j} \geq \theta \max _{k \neq i}\left\{-a_{i k}\right\}
$$

\Rightarrow non-diagonal positive elements have a weak connection

The following steps should be taken (where: node= pair of indexes)

1. Define a "strength" matrix $\left(A_{f}\right)$ by eliminating the weak connections
2. Choose an independent set of strong nodes of A_{f}
3. Add possible nodes to have a correct proloungation operator

Spectral equivalence
Under particular conditions ${ }^{\text {a }}$ on the matrix A, it can be proved that the AMG preconditioner is spectrally equivalent to A, that is:

There exist $\alpha_{1}, \alpha_{2}>0$ independent of the dimension of A such that

$$
\alpha_{1}(x, P x) \leq(x, A x) \leq \alpha_{2}(x, P x), \quad \forall x \neq 0
$$

[^0]Spectral equivalence
Under particular conditions ${ }^{\mathrm{a}}$ on the matrix A, it can be proved that the AMG preconditioner is spectrally equivalent to A, that is:

There exist $\alpha_{1}, \alpha_{2}>0$ independent of the dimension of A such that

$$
\alpha_{1}(x, P x) \leq(x, A x) \leq \alpha_{2}(x, P x), \quad \forall x \neq 0
$$

In our context:

$$
P^{-1} A v=\lambda v \quad \Leftrightarrow \quad A v=\lambda P v
$$

so that

$$
\lambda=\frac{(v, A v)}{(v, P v)}, \quad \min _{x \neq 0} \frac{(x, A x)}{(x, P x)} \leq \lambda \leq \max _{x \neq 0} \frac{(x, A x)}{(x, P x)}
$$

$\Rightarrow \quad$ The spectral interval of the preconditioned problems does not depend on the problem dimension (or on the grid!)

[^1]Saddle point linear systems

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

- Computational Fluid Dynamics (Elman, Silvester, Wathen 2005)
- Elasticity problems
- Mixed (FE) formulations of II and IV order elliptic PDEs
- Linearly Constrained Programs
- Linear Regression in Statistics
- Image restoration
- ... Survey: Benzi, Golub and Liesen, Acta Num 2005

The problem. Simplifications

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -C
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

To make things simple:

* A symmetric positive (semi)definite
$\star B^{T}$ tall, possibly rank deficient
$\star C$ symmetric positive (semi)definite

Spectral properties
$\mathcal{A}=\left[\begin{array}{cc}A & B^{T} \\ B & O\end{array}\right] \quad \begin{aligned} & 0<\lambda_{n} \leq \cdots \leq \lambda_{1} \\ & 0<\sigma_{m} \leq \cdots \leq \sigma_{1} \\ & \text { eigs of } A \\ & \text { sing. vals of } B\end{aligned}$
$\sigma(\mathcal{A})$ subset of (Rusten \& Winther 1992)
$\left[\frac{1}{2}\left(\lambda_{n}-\sqrt{\lambda_{n}^{2}+4 \sigma_{1}^{2}}\right), \frac{1}{2}\left(\lambda_{1}-\sqrt{\lambda_{1}^{2}+4 \sigma_{m}^{2}}\right)\right] \cup\left[\lambda_{n}, \frac{1}{2}\left(\lambda_{1}+\sqrt{\lambda_{1}^{2}+4 \sigma_{1}^{2}}\right)\right]$
A nonsingular , B full rank
(other hypotheses are possible)

Spectral properties

$$
\mathcal{A}=\left[\begin{array}{cc}
A & B^{T} \\
B & O
\end{array}\right] \quad \begin{array}{ll}
0<\lambda_{n} \leq \cdots \leq \lambda_{1} & \text { eigs of } A \\
0<\sigma_{m} \leq \cdots \leq \sigma_{1} & \text { sing. vals of } B
\end{array}
$$

$\sigma(\mathcal{A})$ subset of (Rusten \& Winther 1992)
$\left[\frac{1}{2}\left(\lambda_{n}-\sqrt{\lambda_{n}^{2}+4 \sigma_{1}^{2}}\right), \frac{1}{2}\left(\lambda_{1}-\sqrt{\lambda_{1}^{2}+4 \sigma_{m}^{2}}\right)\right] \cup\left[\lambda_{n}, \frac{1}{2}\left(\lambda_{1}+\sqrt{\lambda_{1}^{2}+4 \sigma_{1}^{2}}\right)\right]$
Good $(=\operatorname{slim})$ spectrum: $\lambda_{1} \approx \lambda_{n}, \quad \sigma_{1} \approx \sigma_{m}$

Spectral properties

$$
\mathcal{A}=\left[\begin{array}{cc}
A & B^{T} \\
B & O
\end{array}\right] \quad \begin{array}{ll}
0<\lambda_{n} \leq \cdots \leq \lambda_{1} & \text { eigs of } A \\
0<\sigma_{m} \leq \cdots \leq \sigma_{1} & \text { sing. vals of } B
\end{array}
$$

$\sigma(\mathcal{A})$ subset of (Rusten \& Winther 1992)

$$
\left[\frac{1}{2}\left(\lambda_{n}-\sqrt{\lambda_{n}^{2}+4 \sigma_{1}^{2}}\right), \frac{1}{2}\left(\lambda_{1}-\sqrt{\lambda_{1}^{2}+4 \sigma_{m}^{2}}\right)\right] \cup\left[\lambda_{n}, \frac{1}{2}\left(\lambda_{1}+\sqrt{\lambda_{1}^{2}+4 \sigma_{1}^{2}}\right)\right]
$$

Good $(=\operatorname{slim})$ spectrum: $\lambda_{1} \approx \lambda_{n}, \quad \sigma_{1} \approx \sigma_{m}$
EXAMPLE:

$$
\begin{gathered}
\mathcal{A}=\left[\begin{array}{cc}
I & U^{T} \\
U & O
\end{array}\right], \quad U U^{T}=I, \quad \lambda_{i}(I)=1 \forall i, \sigma_{j}(U)=1, \forall j \\
\sigma(A) \subset\left\{\frac{1}{2}(1-\sqrt{5})\right\} \cup\left[1, \frac{1}{2}(1+\sqrt{5})\right]
\end{gathered}
$$

Which method for this problem?
\mathcal{A} is symmetric but indefinite!
$\Rightarrow \mathrm{CG}$ will not work...
\Rightarrow GMRES? it is for nonsymmetric problems... however, we said:

$$
\text { If } \mathcal{A} \text { were } \mathrm{Hpd} \quad \Rightarrow \quad V_{k}^{*} \mathcal{A} V_{k} \text { also } \mathrm{Hpd} \quad \Rightarrow \quad \text { tridiagonal }
$$

Which method for this problem?
\mathcal{A} is symmetric but indefinite!
$\Rightarrow \mathrm{CG}$ will not work...
\Rightarrow GMRES? it is for nonsymmetric problems... however, we said:

$$
\text { If } \mathcal{A} \text { were } \mathrm{Hpd} \quad \Rightarrow \quad V_{k}^{*} \mathcal{A} V_{k} \text { also } \mathrm{Hpd} \quad \Rightarrow \quad \text { tridiagonal }
$$

This implies (details omitted) that

$$
\min _{y}\left\|r_{0}-A V_{k} y\right\| \Leftrightarrow \min _{y}\left\|e_{1} \beta_{0}-\underline{H}_{k} y\right\|
$$

with $\underline{H}_{k}=V_{k+1}^{*} \mathcal{A} V_{k}$ tridiagonal, so that

$$
x_{k+1}=x_{k}+q_{k} \eta_{k}
$$

(for some q_{k}, η_{k}) short-term recurrence, MINRES

Block diagonal Preconditioner
$\star A$ nonsing.,$C=0$:

$$
\begin{gathered}
\mathcal{P}_{0}=\left[\begin{array}{cc}
A & 0 \\
0 & B A^{-1} B^{T}
\end{array}\right] \\
\Rightarrow \quad \mathcal{P}_{0}^{-\frac{1}{2}} \mathcal{A} \mathcal{P}_{0}^{-\frac{1}{2}}=\left[\begin{array}{cc}
I & A^{-\frac{1}{2}} B^{T}\left(B A^{-1} B^{T}\right)^{-\frac{1}{2}} \\
\left(B A^{-1} B^{T}\right)^{-\frac{1}{2}} B A^{-\frac{1}{2}} & 0
\end{array}\right]
\end{gathered}
$$

MINRES converges in at most 3 iterations. $\quad \sigma\left(\mathcal{P}_{0}^{-\frac{1}{2}} \mathcal{A} \mathcal{P}_{0}^{-\frac{1}{2}}\right)=\left\{1, \frac{1}{2} \pm \frac{\sqrt{5}}{2}\right\}$

Block diagonal Preconditioner
$\star A$ nonsing.,$C=0$:

$$
\begin{gathered}
\mathcal{P}_{0}=\left[\begin{array}{cc}
A & 0 \\
0 & B A^{-1} B^{T}
\end{array}\right] \\
\Rightarrow \quad \mathcal{P}_{0}^{-\frac{1}{2}} \mathcal{A} \mathcal{P}_{0}^{-\frac{1}{2}}=\left[\begin{array}{cc}
I & A^{-\frac{1}{2}} B^{T}\left(B A^{-1} B^{T}\right)^{-\frac{1}{2}} \\
\left(B A^{-1} B^{T}\right)^{-\frac{1}{2}} B A^{-\frac{1}{2}} & 0
\end{array}\right]
\end{gathered}
$$

MINRES converges in at most 3 iterations. $\quad \sigma\left(\mathcal{P}_{0}^{-\frac{1}{2}} \mathcal{A} \mathcal{P}_{0}^{-\frac{1}{2}}\right)=\left\{1, \frac{1}{2} \pm \frac{\sqrt{5}}{2}\right\}$
A more practical choice:

$$
\mathcal{P}=\left[\begin{array}{cc}
\widetilde{A} & 0 \\
0 & \widetilde{S}
\end{array}\right] \quad \text { spd. } \widetilde{A} \approx A \quad \widetilde{S} \approx B A^{-1} B^{T}
$$

eigs in

$$
[-a,-b] \cup[c, d], \quad a, b, c, d>0
$$

Still an Indefinite Problem $\quad \Rightarrow \quad$ MINRES
Giving up symmetry ...

- Change the preconditioner: Mimic the LU factors

$$
\mathcal{A}=\left[\begin{array}{cc}
I & O \\
B A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & B^{T} \\
O & B A^{-1} B^{T}+C
\end{array}\right] \Rightarrow \mathcal{P} \approx\left[\begin{array}{cc}
A & B^{T} \\
O & B A^{-1} B^{T}+C
\end{array}\right]
$$

- Change the preconditioner: Mimic the Structure

$$
\mathcal{A}=\left[\begin{array}{ll}
A & B^{T} \\
B & -C
\end{array}\right] \Rightarrow \mathcal{P} \approx \mathcal{A}
$$

- Change the matrix: Eliminate indef. $\quad \mathcal{A}_{-}=\left[\begin{array}{cc}A & B^{T} \\ -B & C\end{array}\right]$
- Change the matrix: Regularize $(C=0)$

$$
\mathcal{A} \Rightarrow \mathcal{A}_{\gamma}=\left[\begin{array}{cc}
A & B^{T} \\
B & -\gamma W
\end{array}\right] \text { or } \mathcal{A}_{\gamma}=\left[\begin{array}{cc}
A+\frac{1}{\gamma} B^{T} W^{-1} B & B^{T} \\
B & O
\end{array}\right]
$$

Application of the preconditioners. 1

At each iteration of CG, MINRES or GMRES, compute $y=\mathcal{P}^{-1} z$, that is solve

$$
\mathcal{P}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]
$$

$\mathcal{P}=\left[\begin{array}{cc}\widetilde{A} & 0 \\ 0 & \widetilde{S}\end{array}\right] \quad$ that is \quad Solve $\widetilde{A} y_{1}=z_{1}, \quad \widetilde{S} y_{2}=z_{2}$.
$\mathcal{P}=\left[\begin{array}{cc}\widetilde{A} & B^{T} \\ 0 & \widetilde{S}\end{array}\right] \quad$ that is \quad Solve $\widetilde{S} y_{2}=z_{2}, \quad \widetilde{A} y_{1}=z_{1}-B^{T} y_{2}$.

Application of the preconditioners. 2

Indefinite preconditioner:

$$
\mathcal{P}=\left[\begin{array}{cc}
\widetilde{A} & B^{T} \\
B & -\widetilde{S}
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
B \widetilde{A}^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
\widetilde{A} & 0 \\
0 & -\widehat{S}
\end{array}\right]\left[\begin{array}{cc}
I & \widetilde{A}^{-} B^{T} \\
0 & I
\end{array}\right]=\mathcal{P}_{1} \mathcal{D} \mathcal{P}_{2}
$$

with $\widehat{S}=\widetilde{S}+B \widetilde{A}^{-} B^{T}$
(In practice \widehat{S} is an approximation to this quantity)
Application of the indefinite preconditioner:

$$
\mathcal{P} y=z \quad \Leftrightarrow \quad \mathcal{P}_{1} \underbrace{\mathcal{D} \underbrace{\mathcal{P}_{2} y}_{=z_{1}}}_{=z_{2}}=z
$$

[^0]: ${ }^{\text {a e.g., }}$ if A is Hpd is an M-matrix, that is with $a_{i i}>0 \forall i$ and $a_{i j} \leq 0 \forall i \neq j$, with non-negative inverse - the usual discretization of the Laplacian.

[^1]: ${ }^{\text {a }}$ e.g., if A is Hpd is an M-matrix, that is with $a_{i i}>0 \forall i$ and $a_{i j} \leq 0 \forall i \neq j$, with non-negative inverse - the usual discretization of the Laplacian.

