
Acceleration strategies and applications

Outline

• Some common elliptic operators

• Finite Difference schemes for 2D operators

• Sparse matrices

• General preconditioning strategies

• Saddle point problems

1

Some common elliptic operators

Given Ω ⊂ R
2 bounded, open domain,

Γ = ∂Ω. Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= f, (x, y) ∈ Ω

equipped with boundary conditions, that is, for (x, y) on Γ, e.g.:

Dirichlet conditions: u(x, y) = φ(x, y)

Neumann conditions: ∂u
∂n

= 0 (∇u · n = 0)

Cauchy conditions: ∂u
∂n

+ α(x, y)u(x, y) = γ(x, y)

Note: possibly mixed conditions on parts of the domain

(e.g., Γ = Γ1 ∪ Γ2, with Dirichlet cond. on Γ1, Neumann cond on Γ2)

2

Some common elliptic operators

Given Ω ⊂ R
2 bounded, open domain,

Γ = ∂Ω. Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= f, (x, y) ∈ Ω

equipped with boundary conditions, that is, for (x, y) on Γ, e.g.:

Dirichlet conditions: u(x, y) = φ(x, y)

Neumann conditions: ∂u
∂n

= 0 (∇u · n = 0)

Cauchy conditions: ∂u
∂n

+ α(x, y)u(x, y) = γ(x, y)

Note: possibly mixed conditions on parts of the domain

(e.g., Γ = Γ1 ∪ Γ2, with Dirichlet cond. on Γ1, Neumann cond on Γ2)

3

Some common elliptic operators

More general,

Lu = f, L =
∂

∂x

(
a1

∂

∂x

)
+

∂

∂y

(
a2

∂

∂y

)

(or, more compactly, L = ∇ · (a · ∇))

In case of an anisotropic and inhomogeneous medium. In general

Lu = ∇ · (A∇)u, A ∈ R
2×2

A: tensor acting on both components of ∇

The (steady-state) convection diffusion equation:

−∇ · (a.∇)u+ b · ∇u = f

the magnitude of the vector b is a measure of non-selfadjointness of the

equation.

4

Finite difference: basic approximations

du

dx
=

u(x+ h)− u(x)

h
−

h

2

d2u(x)

dx2
+O(h2), h → 0

du

dx
=

u(x)− u(x− h)

h
+

h

2

d2u(x)

dx2
+O(h2), h → 0

Centered approximation: Combining these two approximations,

du

dx
=

u(x+ h)− u(x− h)

2h
+O(h2), h→ 0

second order accuracy!

⇒ Two-point stencils

5

Some common elliptic operators

Approximating the second derivative:

d2u

dx2
=

ux(x+ h)− ux(x)

h
, h > 0, h→ 0

Combining forward and backward approximation of ux,

d2u

dx2
=

u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2), h→ 0

⇒ Three-point stencil

More general second order operator:

d

dx

(
a(x)

du

dx

)
=

ai+ 1
2
(ui+1 − ui)− ai− 1

2
(ui − ui−1)

h2
+O(h2), h→ 0

where ui+1 = u(x+ h), ai+ 1
2
= a(x+ 1

2
h), etc.

6

Difference schemes for the 2D Laplace operator

Using h1 in x-direction and h2 in y-direction,

∆u ≡ uxx + uyy

≈ u(x+ h1, y)− 2u(x, y) + u(x− h1, y)

h2
1

+
u(x, y + h2)− 2u(x, y) + u(x, y − h2)

h2
2

that is, for h1 = h2 = h,

∆u ≈
1

h2
(u(x+ h, y) + u(x− h, y) + u(x, y + h) + u(x, y − h)− 4u(x, y))

7

Actual implementation. 1D

Consider the 1D problem

−u′′(x) = f(x), x ∈ (0, 1),

u(0) = u(1) = 0

Discretization of interval [0, 1] with n+ 2 nodes:

xi = ih, i = 0, 1, . . . , n+ 1

Note: h = 1
n+1

Note: Dirichlet b.c., u(0) = u(x0) and u(1) = u(xn+1) known

Write u(xi) ≡ ui. Then the discrete version of the diff.equation is

−ui−1 + 2ui − ui+1 = h2fi, i = 1, . . . , n

8

Actual implementation. 1D

(−ui−1 + 2ui − ui+1) = h2fi, i = 1, . . . , n

Collecting all i’s, we obtain Au = f with

A =




2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2




, f =




f0 + u(0)

f1
...

fn

fn+1 + u(1)




9

Neumann boundary conditions

Assume: u′(0) = 0. Therefore u(x1)− u(x0) = 0⇔ u(x0) = u(x1)

In the generic equation 1
h2 (−ui−1 + 2ui − ui+1) = fi, i = 1, . . . , n

For i = 1 we obtain 1
h2 (−u1 + 2u1 − u2) =

1
h2 (u1 − u2)

Therefore,

A =




1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2




, f =




f0

f1
...

fn

fn+1 + u(1)




10

Actual implementation. Poisson equation in a square

lexicographic order : u =





































u11

..

.

un,1

u2,1

.

..

u2,n

.

..





































So that: A =




. . .

. . . −1︸︷︷︸
i,j−1

0 . . . −1︸︷︷︸
i−1,j

4︸︷︷︸
i,j

−1︸︷︷︸
i+1,j

. . . 0 −1︸︷︷︸
i,j+1

. . .

. . .




11

2D Poisson equation. The coefficient matrix

A =




. . .

. . . −1︸︷︷︸
i,j−1

0 . . . −1︸︷︷︸
i−1,j

4︸︷︷︸
i,j

−1︸︷︷︸
i+1,j

. . . 0 −1︸︷︷︸
i,j+1

. . .

. . .




0 5 10 15 20 25

0

5

10

15

20

25

nz = 105

⇒ Au = f

12

Spectral properties of discretized operators in 2D

M : “mass” matrix, discretization of 0-order operator

A: “diffusion” matrix, discretizazion of self-ajdoint 2nd-order operator

• Finite Differences: n nodes each direction, A ∈ R
n2×n2

, h = 1
n−1

M = I, κ(M) = 1

A such that ch2 ≤ λi(A) ≤ C, κ(A) = O(1
h2) (c, C constants)

• Finite Elements:

M such that ch2 ≤ λi(M) ≤ Ch2, κ(M) = C/c (c, C constants)

A such that ch ≤ λi(A) ≤ 1
h
C, κ(A) = O(1

h2) (c, C constants)

13

Finite Differences: n nodes each direction, A ∈ R
n2×n2

, h = 1
n−1

n λmin λmax κ

10 1.6203e-01 7.8380e+00 4.8374e+01

20 4.4677e-02 7.9553e+00 1.7806e+02

30 2.0523e-02 7.9795e+00 3.8881e+02

40 1.1737e-02 7.9883e+00 6.8062e+02

50 7.5867e-03 7.9924e+00 1.0535e+03

60 5.3036e-03 7.9947e+00 1.5074e+03

70 3.9151e-03 7.9961e+00 2.0424e+03

14

Structured and Sparse matrices

Finite Difference/Element discretization of 1D operator: banded matrices

⇒ Exploiting banded structure with banded solvers

However: higher degree operators and general domains determine

matrices with different structure ⇒ Sparse matrices

15

Sparse matrices. I

Matrices stemming from discretizations have special pattern:

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

Same matrix, different ordering of the unknowns

large dimensions, only low percentage of nonzero elements per row

16

Sparse matrices. An Example

Matrix market. matrix CAN 1072 (structure problem in aircraft design)

Original sparsity pattern symamd reordering

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 12196

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 12196

17

Sparse matrices. An Example

Factor U in LU factorization A = LU :

A with original sparsity pattern A with symamd reordering

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 302697

Factor U, original ordering

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 62823

Factor U, symamd permutation

18

Solution methods for large matrices

Discretization of 2D and 3D problems leads to large matrices A

(size O(10k), k = 5− 8)

⇒ (Optimized) LU decomposition too expensive

• Iterative methods: Projection-type methods (*)

• Geometric multigrid methods

• Algebraic multigrid methods

• Problem-related optimized methods

19

Discretization and linear system solves

A symmetric and positive definite.

CG: Number of iterations k depends on cond(A) := λmax(A)
λmin(A)

A 2D Poisson operator:

number of nodes cond(A) # its

per dimension tol = 10−10

23 32.16 10

24 116.46 31

25 440.69 66

26 1711.17 132

Stopping criterion: rk := b−Axk small enough in some norm

20

Preconditioning techniques

Determine matrix P such that

(PA)x = Pb

is “easier” to solve than Ax = b, that is

• Takes less CPU time

• P is cheap to construct

• P is reasonably cheap to apply

Note: Typically, P used in operators such as y ← Pv

Criteri per la scelta :

• P t.c. PA ≈ I, con I la matrice identità

• P t.c. P con proprietà spettrali simili a quelle di A−1

• P “imita” l’operatore che sta “dietro” a A

• ...

21

Preconditioning techniques

Determine matrix P such that

(PA)x = Pb

is “easier” to solve than Ax = b, that is

• Takes less CPU time

• P is cheap to construct

• P is reasonably cheap to apply

Note: Typically, P used in operators such as y ← Pv

Choice criteria :

• P s.t. PA ≈ αI, with I identity matrix

• P t.c. P con proprietà spettrali simili a quelle di A−1

• P “imita” l’operatore che sta “dietro” a A

• ...

22

Preconditioning techniques

Determine matrix P such that

(PA)x = Pb

is “easier” to solve than Ax = b, that is

• Takes less CPU time

• P is cheap to construct

• P is reasonably cheap to apply

Note: Typically, P used in operators such as y ← Pv

Choice criteria :

• P s.t. PA ≈ αI, with I identity matrix

• P s.t. P spectral properties similar to those of A−1

• P “imita” l’operatore che sta “dietro” a A

• ...

23

Preconditioning techniques

Determine matrix P such that

(PA)x = Pb

is “easier” to solve than Ax = b, that is

• Takes less CPU time

• P is cheap to construct

• P is reasonably cheap to apply

Note: Typically, P used in operators such as y ← Pv

Choice criteria :

• P s.t. PA ≈ αI, with I identity matrix

• P s.t. P spectral properties similar to those of A−1

• P “mimicks” the operator behind A

• ...

24

Preconditioning. 2

(PA)x = Pb

Classical strategy:

Determine P as P = P−1 con P ≈ A

P−1Ax = P−1b

Sperando che:

⇒ P ≈ A allora P−1 ≈ A−1 e quindi P−1A ≈ I

⇒ P−1 sia poco costosa da applicare (via y ← P−1v), cioè risolvere

Py = v

costi poco rispetto a Ax = b

⋆ Esempio: P = diag(A): costa poco, ma è poco efficiente...

25

Preconditioning. 2

(PA)x = Pb

Classical strategy:

Determine P as P = P−1 con P ≈ A

P−1Ax = P−1b

hoping that:

⇒ P ≈ A then P−1 ≈ A−1 so that P−1A ≈ I

⇒ P−1 cheap to apply (via y ← P−1v), that is, solving

Py = v

is far less expensive than Ax = b

⋆ Example: P = diag(A): cheap, but little effective....

26

An example: Cholesky incomplete decomposition

A sym.pos.def. A = LLT ≈ L0L
T
0

L0 obtained from L by threshold chopping (element values below tol

zeroed out)

L Original approximation L0

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1009

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 478

A corresponds to the Poisson operator, and tol = 10−2

27

A possible strategy for incomplete LU

(ILUT, Algorithm 10.6, Saad)

A n× n, ”threshold dropping” strategy

1. for i = 1...n do

2. w = ai,: (with w = (w1, ..., wn))

3. for k = 1....i− 1 and wk 6= 0 do

4. wk := wk/ak,k

5. Apply the ‘‘dropping rule’’ to wk

6. If wk 6= 0, w := w − wkuk,:,end

7. endfor

8. Apply the ‘‘dropping rule’’ to the row w

9. li,1:i−1 = w1:i−1, ui,i:n = wi:n

10. endfor

28

zero threshold: ILU(0) and CHOLINC(0)

A ≈ LU such that L and U have the same sparsity pattern as A

(nnz(L + U - speye(size(A))) = nnz(A))

0 50 100

0

20

40

60

80

100

nz = 280

L

0 50 100

0

20

40

60

80

100

nz = 622

L L
T

0 50 100

0

20

40

60

80

100

nz = 460

A

...also other strategies...

Theorem. If A is a P -matrix, then there exists an incomplete

factorization of A with fixed zero sparsity pattern, such that

A = LU −R with LU non-singular

29

PCG, maintaing symmetry

For A sym pos.def., A ≈ P = LLT . The preconditioned problem:

Ax = b ⇒ L−1AL−T

︸ ︷︷ ︸
Ã

LTx︸︷︷︸
x̃

= L−1b︸ ︷︷ ︸
b̃

,

Per p̃(0) = r̃(0) = b̃− Ãx̃(0) = L−1(b−Ax(0)) = L−1r(0), si ha

x̃(j+1) = x̃(j) + αj p̃
(j), con αj =

(r̃(j),r̃(j))

(Ãp̃(j),p̃(j))
=

(r̃(j),p̃(j))

(Ãp̃(j),p̃(j))

LT x(j+1) = LT x(j) + αjL
−1p(j), con αj =

(L−1r(j),L−1r(j))

(L−1AL−T L−1p(j),L−1p(j))

r̃(j+1) = r̃(j) − αjÃp̃(j)

L−1r(j+1) = L−1r(j) − αjL
−1AL−TL−1p(j)

p̃(j+1) = r̃(j+1) + βj p̃
(j), con βj =

(r̃(j+1),r̃(j+1))

(r̃(j),r̃(j))
=

(r̃(j+1),p̃(j+1))

(r̃(j),p̃(j))

L−1p(j+1) = L−1r(j+1) + βjL
−1p(j), con βj =

(L−1r(j+1),L−1p(j+1))

(L−1r(j),L−1p(j))

30

PCG, maintaing symmetry

For A sym pos.def., A ≈ P = LLT . The preconditioned problem:

Ax = b ⇒ L−1AL−T

︸ ︷︷ ︸
Ã

LTx︸︷︷︸
x̃

= L−1b︸ ︷︷ ︸
b̃

,

For p̃(0) = r̃(0) = b̃− Ãx̃(0) = L−1(b−Ax(0)) = L−1r(0), we have

x̃(j+1) = x̃(j) + αj p̃
(j), with αj =

(r̃(j),r̃(j))

(Ãp̃(j),p̃(j))

LT x(j+1) = LT x(j) + αjL
−1p(j), con αj =

(L−1r(j),L−1p(j))

(L−1AL−T L−1p(j),L−1p(j))

r̃(j+1) = r̃(j) − αjÃp̃(j)

L−1r(j+1) = L−1r(j) − αjL
−1AL−TL−1p(j)

p̃(j+1) = r̃(j+1) + βj p̃
(j), con βj =

(r̃(j+1),r̃(j+1))

(r̃(j),r̃(j))

L−1p(j+1) = L−1r(j+1) + βjL
−1p(j), con βj =

(L−1r(j+1),L−1p(j+1))

(L−1r(j),L−1p(j))

31

PCG, maintaing symmetry

For A sym pos.def., A ≈ P = LLT . The preconditioned problem:

Ax = b ⇒ L−1AL−T

︸ ︷︷ ︸
Ã

LTx︸︷︷︸
x̃

= L−1b︸ ︷︷ ︸
b̃

,

For p̃(0) = r̃(0) = b̃− Ãx̃(0) = L−1(b−Ax(0)) = L−1r(0), we have

x̃(j+1) = x̃(j) + αj p̃
(j), with αj =

(r̃(j),r̃(j))

(Ãp̃(j),p̃(j))

LT x(j+1) = LT x(j) + αjL
−1p(j), with αj =

(L−1r(j),L−1r(j))

(L−1AL−T L−1p(j),L−1p(j))

r̃(j+1) = r̃(j) − αjÃp̃(j)

L−1r(j+1) = L−1r(j) − αjL
−1AL−TL−1p(j)

p̃(j+1) = r̃(j+1) + βj p̃
(j), with βj =

(r̃(j+1),r̃(j+1))

(r̃(j),r̃(j))

L−1p(j+1) = L−1r(j+1) + βjL
−1p(j), with βj =

(L−1r(j+1),L−1r(j+1))

(L−1r(j),L−1r(j))

32

PCG, maintaing symmetry

For A sym pos.def., A ≈ P = LLT . The preconditioned problem:

Ax = b ⇒ L−1AL−T

︸ ︷︷ ︸
Ã

LTx︸︷︷︸
x̃

= L−1b︸ ︷︷ ︸
b̃

,

For p̃(0) = r̃(0) = b̃− Ãx̃(0) = L−1(b−Ax(0)) = L−1r(0), we have

x̃(j+1) = x̃(j) + αj p̃
(j), with αj =

(r̃(j),r̃(j))

(Ãp̃(j),p̃(j))

x(j+1) = x(j) + αjL
−TL−1p(j), with αj =

(r(j),L−T L−1r(j))

(AL−T L−1p(j),L−T L−1p(j))

r̃(j+1) = r̃(j) − αjÃp̃(j)

r(j+1) = r(j) − αjAL−TL−1p(j)

p̃(j+1) = r̃(j+1) + βj p̃
(j), with βj =

(r̃(j+1),r̃(j+1))

(r̃(j),p̃(j))

L−T L−1p(j+1) = L−T L−1r(j+1) + βjL
−T L−1p(j), with βj =

(r(j+1),L−T L−1r(j+1))

(r(j),L−T L−1r(j))

33

PCG, maintaing symmetry

For A sym pos.def., A ≈ P = LLT . The preconditioned problem:

Ax = b ⇒ L−1AL−T

︸ ︷︷ ︸
Ã

LTx︸︷︷︸
x̃

= L−1b︸ ︷︷ ︸
b̃

,

For p̃(0) = r̃(0) = b̃− Ãx̃(0) = L−1(b−Ax(0)) = L−1r(0), we have

With p̂(0) = L−TL−1p(0) = P−1p(0) and z(j) = L−TL−1r(j) = P−1r(j):

x(j+1) = x(j) + αj p̂
(j) with αj =

(r(j),z(j))

(Ap̂(j),p̂(j))

r̃(j+1) = r̃(j) − αjÃp̃(j)

r(j+1) = r(j) − αjAp̂(j)

p̃(j+1) = r̃(j+1) + βj p̃
(j), with βj =

(r̃(j+1),r̃(j+1))

(r̃(j),p̃(j))

p̂(j+1) = z(j+1) + βj p̂
(j), with βj =

(r(j+1),z(j+1))

(r(j),z(j))

34

Practical preconditioning strategies

• LU-type approx decomposition of A: → Pv = U−1L−1v

• Algebraic multigrid (approximate representation of A on smaller

version of the matrix - recursive procedure)

• Geometric multigrid (operator and domain dependent)

• Functional approximation of the underlying operator

35

A comparison :

Incomplete Cholesky and Algebraic Multigrid

Poisson, 2D problem on [0, 1]2. Matrices of dim n = 2k × 2k

grid incomplete Chol AMG

nodes per dim # it’s CPU time # it’s CPU time

24 11 0.008 6 0.18

25 18 0.007 6 0.20

26 33 0.04 7 0.22

27 58 0.29 7 0.32

28 106 2.27 8 0.71

For 28, dim(A) = 65536 × 65536

!! Preconditioned CG with AMG gives grid independent # it’s !!

Remark: For 28, tic;A\b;toc, gives: Elapsed time is 0.588393

seconds.

36

A comparison :

Incomplete Cholesky and Algebraic Multigrid

Poisson, 2D problem on [0, 1]2. Matrices of dim n = 2k × 2k

grid incomplete Chol AMG

nodes per dim # it’s CPU time # it’s CPU time

24 11 0.008 6 0.18

25 18 0.007 6 0.20

26 33 0.04 7 0.22

27 58 0.29 7 0.32

28 106 2.27 8 0.71

For 28, dim(A) = 65536 × 65536

!! Preconditioned CG with AMG gives grid independent # it’s !!

Remark: For 28, tic;A\b;toc, gives: Elapsed time is 0.588393

seconds.

37

Algebraic Multigrid (AMG)

Consider the original system

Ahu
h = fh (⋆)

The error vector is split in two parts: an oscillatory component (high

freq.) and a regular component (smooth, low freq.)

A Multigrid (or multilevel) type method for a linear system is made of

two ingredients:

• A smoothing step of the oscillatory portion:

usually a few iterations of a classical method (e.g., Jacobi,

Gauss-Seidel)

• A correction on a coarser grid for the smooth part

The system (⋆) is approximated by a system on a coarser grid:

AH , fH such that

AH = IHh AhI
h
H , fH = IHh fh

38

Conceptually similar to a Galerkin projection type procedure:

IHh : restriction operator, full rank

IhH : prolongation operator, rull rank

with

IHh = (IhH)T (transposition)

Remark: Geometric Multigrid uses the physical grid. Algebraic Multigrid

use the matrix elements

(matrix indexes ≡ grid nodes)

39

Algebraic Multigrid (AMG)

General procedure (on two grids):

1. Perform n1 steps of smoothing (e.g., Jacobi) on Ahu
h = fh

2. Compute the residual rh = fh −Ahu
h ≡ Aeh

3. Project (restrict) to the coarse grid rH = IHh rh

4. Solve on coarse grid: AHeH = rH

5. Add (prolong) uh := uh + IhHeH

6. Take n2 steps of smoothing on Ahu
h = fh

40

Algebraic Multigrid (AMG). The coarse grid

Determine AH from Ah, AH is a subset of the rows/columns of Ah

(strong connection among the elements of AH)

def. Let θ ∈ (0, 1] be a fixed threshold. The variable ui strongly depends

on the variable uj if

−aij ≥ θmax
k 6=i
{−aik}

⇒ non-diagonal positive elements have a weak connection

The following steps should be taken (where: node= pair of

indexes)

1. Define a “strength” matrix (Af) by eliminating the weak connections

2. Choose an independent set of strong nodes of Af

3. Add possible nodes to have a correct proloungation operator

41

Spectral equivalence

Under particular conditionsa on the matrix A, it can be proved that the

AMG preconditioner is spectrally equivalent to A, that is:

There exist α1, α2 > 0 independent of the dimension of A such that

α1(x, Px) ≤ (x,Ax) ≤ α2(x, Px), ∀x 6= 0

Nel nostro contesto:

P−1Av = λv ⇔ Av = λPv

Per cui

λ =
(v,Av)

(v, Pv)
, min

x 6=0

(x,Ax)

(x, Px)
≤ λ ≤ max

x 6=0

(x,Ax)

(x, Px)

⇒ l’intervallo spettrale del problema precondizionato non dipende

dalla dimensione del problema (o dalla griglia!)
ae.g., if A is Hpd is an M -matrix, that is with aii > 0 ∀i and aij ≤ 0 ∀i 6= j,

with non-negative inverse - the usual discretization of the Laplacian.

42

Spectral equivalence

Under particular conditionsa on the matrix A, it can be proved that the

AMG preconditioner is spectrally equivalent to A, that is:

There exist α1, α2 > 0 independent of the dimension of A such that

α1(x, Px) ≤ (x,Ax) ≤ α2(x, Px), ∀x 6= 0

In our context:

P−1Av = λv ⇔ Av = λPv

so that

λ =
(v,Av)

(v, Pv)
, min

x 6=0

(x,Ax)

(x, Px)
≤ λ ≤ max

x 6=0

(x,Ax)

(x, Px)

⇒ The spectral interval of the preconditioned problems does not

depend on the problem dimension (or on the grid!)
ae.g., if A is Hpd is an M -matrix, that is with aii > 0 ∀i and aij ≤ 0 ∀i 6= j,

with non-negative inverse - the usual discretization of the Laplacian.

43

Saddle point linear systems


 A BT

B −C




 u

v


 =


 f

g




• Computational Fluid Dynamics (Elman, Silvester, Wathen 2005)

• Elasticity problems

• Mixed (FE) formulations of II and IV order elliptic PDEs

• Linearly Constrained Programs

• Linear Regression in Statistics

• Image restoration

• ... Survey: Benzi, Golub and Liesen, Acta Num 2005

44

The problem. Simplifications


 A BT

B −C




 u

v


 =


 f

g




To make things simple:

⋆ A symmetric positive (semi)definite

⋆ BT tall, possibly rank deficient

⋆ C symmetric positive (semi)definite

45

Spectral properties

A =


 A BT

B O


 0 < λn ≤ · · · ≤ λ1 eigs of A

0 < σm ≤ · · · ≤ σ1 sing. vals of B

σ(A) subset of (Rusten & Winther 1992)
[

1

2
(λn −

√

λ2
n + 4σ2

1),
1

2
(λ1 −

√

λ2
1 + 4σm

2)

]

∪

[

λn,
1

2
(λ1 +

√

λ2
1 + 4σ2

1)

]

A nonsingular , B full rank

(other hypotheses are possible)

46

Spectral properties

A =


 A BT

B O


 0 < λn ≤ · · · ≤ λ1 eigs of A

0 < σm ≤ · · · ≤ σ1 sing. vals of B

σ(A) subset of (Rusten & Winther 1992)
[

1

2
(λn −

√

λ2
n + 4σ2

1),
1

2
(λ1 −

√

λ2
1 + 4σ2

m)

]

∪

[

λn,
1

2
(λ1 +

√

λ2
1 + 4σ2

1)

]

Good (= slim) spectrum: λ1 ≈ λn, σ1 ≈ σm

example:

A =


 I UT

U O


 , UUT = I, λi(A) = 1 ∀i, σj(U) = 1, ∀j

σ(A) ⊂ {1
2
(1−

√
5)} ∪ [1,

1

2
(1 +

√
5)]

47

Spectral properties

A =


 A BT

B O


 0 < λn ≤ · · · ≤ λ1 eigs of A

0 < σm ≤ · · · ≤ σ1 sing. vals of B

σ(A) subset of (Rusten & Winther 1992)
[

1

2
(λn −

√

λ2
n + 4σ2

1),
1

2
(λ1 −

√

λ2
1 + 4σ2

m)

]

∪

[

λn,
1

2
(λ1 +

√

λ2
1 + 4σ2

1)

]

Good (= slim) spectrum: λ1 ≈ λn, σ1 ≈ σm

example:

A =


 I UT

U O


 , UUT = I, λi(I) = 1 ∀i, σj(U) = 1, ∀j

σ(A) ⊂ {1
2
(1−

√
5)} ∪ [1,

1

2
(1 +

√
5)]

48

Which method for this problem?

A is symmetric but indefinite!

⇒ CG will not work...

⇒ GMRES? it is for nonsymmetric problems... however, we said:

If A were Hpd ⇒ V ∗
k AVk also Hpd ⇒ tridiagonal

This implies (details omitted) that

min
y
‖r0 −AVky‖ ⇔ min

y
‖e1β0 −Hky‖

with Hk tridiagonal, so that

xk+1 = xk + qkηk

(for some qk, ηk) short-term recurrence, MINRES

49

Which method for this problem?

A is symmetric but indefinite!

⇒ CG will not work...

⇒ GMRES? it is for nonsymmetric problems... however, we said:

If A were Hpd ⇒ V ∗
k AVk also Hpd ⇒ tridiagonal

This implies (details omitted) that

min
y
‖r0 −AVky‖ ⇔ min

y
‖e1β0 −Hky‖

with Hk = V ∗
k+1AVk tridiagonal, so that

xk+1 = xk + qkηk

(for some qk, ηk) short-term recurrence, MINRES

50

Block diagonal Preconditioner

⋆ A nonsing., C = 0:

P0 =


 A 0

0 BA−1BT




⇒ P
− 1

2
0 AP

− 1
2

0 =





I A− 1
2 BT (BA−1BT)−

1
2

(BA−1BT)−
1
2 BA− 1

2 0





MINRES converges in at most 3 iterations. σ(P
− 1

2
0 AP

− 1
2

0) = {1, 1
2
±

√
5

2
}

A more practical choice:

P =


 Ã 0

0 S̃


 spd. Ã ≈ A S̃ ≈ BA−1BT

eigs in [−a,−b] ∪ [c, d], a, b, c, d > 0

Still an Indefinite Problem ⇒ minres

51

Block diagonal Preconditioner

⋆ A nonsing., C = 0:

P0 =


 A 0

0 BA−1BT




⇒ P
− 1

2
0 AP

− 1
2

0 =





I A− 1
2 BT (BA−1BT)−

1
2

(BA−1BT)−
1
2 BA− 1

2 0





MINRES converges in at most 3 iterations. σ(P
− 1

2
0 AP

− 1
2

0) = {1, 1
2
±

√
5

2
}

A more practical choice:

P =


 Ã 0

0 S̃


 spd. Ã ≈ A S̃ ≈ BA−1BT

eigs in [−a,−b] ∪ [c, d], a, b, c, d > 0

Still an Indefinite Problem ⇒ minres

52

Giving up symmetry ...

• Change the preconditioner: Mimic the LU factors

A =





I O

BA−1 I









A BT

O BA−1BT + C



 ⇒ P ≈





A BT

O BA−1BT + C





• Change the preconditioner: Mimic the Structure

A =


 A BT

B −C


 ⇒ P ≈ A

• Change the matrix: Eliminate indef. A− =


 A BT

−B C




• Change the matrix: Regularize (C = 0)

A ⇒ Aγ =





A BT

B −γW



 or Aγ =





A+ 1
γ
BTW−1B BT

B O





53

Application of the preconditioners. 1

At each iteration of CG, MINRES or GMRES, compute y = P−1z, that

is solve

P


y1
y2


 =


z1
z2




P =


Ã 0

0 S̃


 that is Solve Ãy1 = z1, S̃y2 = z2.

P =


Ã BT

0 S̃


 that is Solve S̃y2 = z2, Ãy1 = z1−BT y2.

54

Application of the preconditioners. 2

Indefinite preconditioner:

P =


Ã BT

B −S̃


 =


 I 0

BÃ−1 I




Ã 0

0 −Ŝ




I Ã−BT

0 I


 = P1DP2

with Ŝ = S̃ +BÃ−BT

(In practice Ŝ is an approximation to this quantity)

Application of the indefinite preconditioner:

Py = z ⇔ P1D P2y︸︷︷︸
=z1︸ ︷︷ ︸

=z2

= z

55

