
Acceleration strategies and applications

Outline

• Some common elliptic operators

• Finite Difference schemes for 2D operators

• Sparse matrices

• General preconditioning strategies

• Saddle point problems
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Some common elliptic operators

Given Ω ⊂ R
2 bounded, open domain,

Γ = ∂Ω. Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= f, (x, y) ∈ Ω

equipped with boundary conditions, that is, for (x, y) on Γ, e.g.:

Dirichlet conditions: u(x, y) = φ(x, y)

Neumann conditions: ∂u
∂n

= 0 (∇u · n = 0)

Cauchy conditions: ∂u
∂n

+ α(x, y)u(x, y) = γ(x, y)

Note: possibly mixed conditions on parts of the domain

(e.g., Γ = Γ1 ∪ Γ2, with Dirichlet cond. on Γ1, Neumann cond on Γ2)
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Some common elliptic operators

More general,

Lu = f, L =
∂

∂x

(
a1

∂

∂x

)
+

∂

∂y

(
a2

∂

∂y

)

(or, more compactly, L = ∇ · (a · ∇))

In case of an anisotropic and inhomogeneous medium. In general

Lu = ∇ · (A∇)u, A ∈ R
2×2

A: tensor acting on both components of ∇

The (steady-state) convection diffusion equation:

−∇ · (a.∇)u+ b · ∇u = f

the magnitude of the vector b is a measure of non-selfadjointness of the

equation.
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Finite difference: basic approximations

du

dx
=

u(x+ h)− u(x)

h
−

h

2

d2u(x)

dx2
+O(h2), h → 0

du

dx
=

u(x)− u(x− h)

h
+

h

2

d2u(x)

dx2
+O(h2), h → 0

Centered approximation: Combining these two approximations,

du

dx
=

u(x+ h)− u(x− h)

2h
+O(h2), h→ 0

second order accuracy!

⇒ Two-point stencils
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Some common elliptic operators

Approximating the second derivative:

d2u

dx2
=

ux(x+ h)− ux(x)

h
, h > 0, h→ 0

Combining forward and backward approximation of ux,

d2u

dx2
=

u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2), h→ 0

⇒ Three-point stencil

More general second order operator:

d

dx

(
a(x)

du

dx

)
=

ai+ 1
2
(ui+1 − ui)− ai− 1

2
(ui − ui−1)

h2
+O(h2), h→ 0

where ui+1 = u(x+ h), ai+ 1
2
= a(x+ 1

2
h), etc.
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Difference schemes for the 2D Laplace operator

Using h1 in x-direction and h2 in y-direction,

∆u ≡ uxx + uyy

≈ u(x+ h1, y)− 2u(x, y) + u(x− h1, y)

h2
1

+
u(x, y + h2)− 2u(x, y) + u(x, y − h2)

h2
2

that is, for h1 = h2 = h,

∆u ≈
1

h2
(u(x+ h, y) + u(x− h, y) + u(x, y + h) + u(x, y − h)− 4u(x, y))
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Actual implementation. 1D

Consider the 1D problem

−u′′(x) = f(x), x ∈ (0, 1),

u(0) = u(1) = 0

Discretization of interval [0, 1] with n+ 2 nodes:

xi = ih, i = 0, 1, . . . , n+ 1

Note: h = 1
n+1

Note: Dirichlet b.c., u(0) = u(x0) and u(1) = u(xn+1) known

Write u(xi) ≡ ui. Then the discrete version of the diff.equation is

−ui−1 + 2ui − ui+1 = h2fi, i = 1, . . . , n
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Actual implementation. 1D

(−ui−1 + 2ui − ui+1) = h2fi, i = 1, . . . , n

Collecting all i’s, we obtain Au = f with

A =




2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2




, f =




f0 + u(0)

f1
...

fn

fn+1 + u(1)
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Neumann boundary conditions

Assume: u′(0) = 0. Therefore u(x1)− u(x0) = 0⇔ u(x0) = u(x1)

In the generic equation 1
h2 (−ui−1 + 2ui − ui+1) = fi, i = 1, . . . , n

For i = 1 we obtain 1
h2 (−u1 + 2u1 − u2) =

1
h2 (u1 − u2)

Therefore,

A =




1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2




, f =




f0

f1
...

fn

fn+1 + u(1)
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Actual implementation. Poisson equation in a square

lexicographic order : u =





































u11

..

.

un,1

u2,1

.

..

u2,n

.

..





































So that: A =




. . .

. . . −1︸︷︷︸
i,j−1

0 . . . −1︸︷︷︸
i−1,j

4︸︷︷︸
i,j

−1︸︷︷︸
i+1,j

. . . 0 −1︸︷︷︸
i,j+1

. . .

. . .
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2D Poisson equation. The coefficient matrix

A =




. . .

. . . −1︸︷︷︸
i,j−1

0 . . . −1︸︷︷︸
i−1,j

4︸︷︷︸
i,j

−1︸︷︷︸
i+1,j

. . . 0 −1︸︷︷︸
i,j+1

. . .

. . .




0 5 10 15 20 25

0

5

10

15

20

25

nz = 105

⇒ Au = f
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Spectral properties of discretized operators in 2D

M : “mass” matrix, discretization of 0-order operator

A: “diffusion” matrix, discretizazion of self-ajdoint 2nd-order operator

• Finite Differences: n nodes each direction, A ∈ R
n2×n2

, h = 1
n−1

M = I, κ(M) = 1

A such that ch2 ≤ λi(A) ≤ C, κ(A) = O( 1
h2 ) (c, C constants)

• Finite Elements:

M such that ch2 ≤ λi(M) ≤ Ch2, κ(M) = C/c (c, C constants)

A such that ch ≤ λi(A) ≤ 1
h
C, κ(A) = O( 1

h2 ) (c, C constants)
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Finite Differences: n nodes each direction, A ∈ R
n2×n2

, h = 1
n−1

n λmin λmax κ

10 1.6203e-01 7.8380e+00 4.8374e+01

20 4.4677e-02 7.9553e+00 1.7806e+02

30 2.0523e-02 7.9795e+00 3.8881e+02

40 1.1737e-02 7.9883e+00 6.8062e+02

50 7.5867e-03 7.9924e+00 1.0535e+03

60 5.3036e-03 7.9947e+00 1.5074e+03

70 3.9151e-03 7.9961e+00 2.0424e+03
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Structured and Sparse matrices

Finite Difference/Element discretization of 1D operator: banded matrices

⇒ Exploiting banded structure with banded solvers

However: higher degree operators and general domains determine

matrices with different structure ⇒ Sparse matrices
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Sparse matrices. I

Matrices stemming from discretizations have special pattern:

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

Same matrix, different ordering of the unknowns

large dimensions, only low percentage of nonzero elements per row
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Sparse matrices. An Example

Matrix market. matrix CAN 1072 (structure problem in aircraft design)

Original sparsity pattern symamd reordering

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 12196

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 12196
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Sparse matrices. An Example

Factor U in LU factorization A = LU :

A with original sparsity pattern A with symamd reordering

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 302697

Factor U, original ordering

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 62823

Factor U, symamd permutation
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Solution methods for large matrices

Discretization of 2D and 3D problems leads to large matrices A

(size O(10k), k = 5− 8)

⇒ (Optimized) LU decomposition too expensive

• Iterative methods: Projection-type methods (*)

• Geometric multigrid methods

• Algebraic multigrid methods

• Problem-related optimized methods
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Discretization and linear system solves

A symmetric and positive definite.

CG: Number of iterations k depends on cond(A) := λmax(A)
λmin(A)

A 2D Poisson operator:

number of nodes cond(A) # its

per dimension tol = 10−10

23 32.16 10

24 116.46 31

25 440.69 66

26 1711.17 132

Stopping criterion: rk := b−Axk small enough in some norm
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Preconditioning techniques

Determine matrix P such that

(PA)x = Pb

is “easier” to solve than Ax = b, that is

• Takes less CPU time

• P is cheap to construct

• P is reasonably cheap to apply

Note: Typically, P used in operators such as y ← Pv

Criteri per la scelta :

• P t.c. PA ≈ I, con I la matrice identità

• P t.c. P con proprietà spettrali simili a quelle di A−1

• P “imita” l’operatore che sta “dietro” a A

• ...
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Preconditioning techniques
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Preconditioning. 2

(PA)x = Pb

Classical strategy:

Determine P as P = P−1 con P ≈ A

P−1Ax = P−1b

Sperando che:

⇒ P ≈ A allora P−1 ≈ A−1 e quindi P−1A ≈ I

⇒ P−1 sia poco costosa da applicare (via y ← P−1v), cioè risolvere

Py = v

costi poco rispetto a Ax = b

⋆ Esempio: P = diag(A): costa poco, ma è poco efficiente...
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Preconditioning. 2

(PA)x = Pb

Classical strategy:

Determine P as P = P−1 con P ≈ A

P−1Ax = P−1b

hoping that:

⇒ P ≈ A then P−1 ≈ A−1 so that P−1A ≈ I

⇒ P−1 cheap to apply (via y ← P−1v), that is, solving

Py = v

is far less expensive than Ax = b

⋆ Example: P = diag(A): cheap, but little effective....
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An example: Cholesky incomplete decomposition

A sym.pos.def. A = LLT ≈ L0L
T
0

L0 obtained from L by threshold chopping (element values below tol

zeroed out)

L Original approximation L0

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1009

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 478

A corresponds to the Poisson operator, and tol = 10−2
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A possible strategy for incomplete LU

(ILUT, Algorithm 10.6, Saad)

A n× n, ”threshold dropping” strategy

1. for i = 1...n do

2. w = ai,: (with w = (w1, ..., wn))

3. for k = 1....i− 1 and wk 6= 0 do

4. wk := wk/ak,k

5. Apply the ‘‘dropping rule’’ to wk

6. If wk 6= 0, w := w − wkuk,:,end

7. endfor

8. Apply the ‘‘dropping rule’’ to the row w

9. li,1:i−1 = w1:i−1, ui,i:n = wi:n

10. endfor
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zero threshold: ILU(0) and CHOLINC(0)

A ≈ LU such that L and U have the same sparsity pattern as A

(nnz(L + U - speye(size(A))) = nnz(A))

0 50 100

0

20

40

60

80

100

nz = 280

L

0 50 100

0

20

40

60

80

100

nz = 622

L L
T

0 50 100

0

20

40

60

80

100

nz = 460

A

...also other strategies...

Theorem. If A is a P -matrix, then there exists an incomplete

factorization of A with fixed zero sparsity pattern, such that

A = LU −R with LU non-singular
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PCG, maintaing symmetry

For A sym pos.def., A ≈ P = LLT . The preconditioned problem:

Ax = b ⇒ L−1AL−T

︸ ︷︷ ︸
Ã

LTx︸︷︷︸
x̃

= L−1b︸ ︷︷ ︸
b̃

,

Per p̃(0) = r̃(0) = b̃− Ãx̃(0) = L−1(b−Ax(0)) = L−1r(0), si ha

x̃(j+1) = x̃(j) + αj p̃
(j), con αj =

(r̃(j),r̃(j))

(Ãp̃(j),p̃(j))
=

(r̃(j),p̃(j))

(Ãp̃(j),p̃(j))

LT x(j+1) = LT x(j) + αjL
−1p(j), con αj =

(L−1r(j),L−1r(j))

(L−1AL−T L−1p(j),L−1p(j))

r̃(j+1) = r̃(j) − αjÃp̃(j)

L−1r(j+1) = L−1r(j) − αjL
−1AL−TL−1p(j)

p̃(j+1) = r̃(j+1) + βj p̃
(j), con βj =

(r̃(j+1),r̃(j+1))

(r̃(j),r̃(j))
=

(r̃(j+1),p̃(j+1))

(r̃(j),p̃(j))

L−1p(j+1) = L−1r(j+1) + βjL
−1p(j), con βj =

(L−1r(j+1),L−1p(j+1))

(L−1r(j),L−1p(j))
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For p̃(0) = r̃(0) = b̃− Ãx̃(0) = L−1(b−Ax(0)) = L−1r(0), we have

x̃(j+1) = x̃(j) + αj p̃
(j), with αj =

(r̃(j),r̃(j))
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L−1r(j+1) = L−1r(j) − αjL
−1AL−TL−1p(j)

p̃(j+1) = r̃(j+1) + βj p̃
(j), con βj =

(r̃(j+1),r̃(j+1))

(r̃(j),r̃(j))

L−1p(j+1) = L−1r(j+1) + βjL
−1p(j), con βj =

(L−1r(j+1),L−1p(j+1))

(L−1r(j),L−1p(j))

31



PCG, maintaing symmetry

For A sym pos.def., A ≈ P = LLT . The preconditioned problem:
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x̃(j+1) = x̃(j) + αj p̃
(j), with αj =

(r̃(j),r̃(j))

(Ãp̃(j),p̃(j))

LT x(j+1) = LT x(j) + αjL
−1p(j), with αj =

(L−1r(j),L−1r(j))

(L−1AL−T L−1p(j),L−1p(j))

r̃(j+1) = r̃(j) − αjÃp̃(j)

L−1r(j+1) = L−1r(j) − αjL
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PCG, maintaing symmetry

For A sym pos.def., A ≈ P = LLT . The preconditioned problem:

Ax = b ⇒ L−1AL−T

︸ ︷︷ ︸
Ã

LTx︸︷︷︸
x̃

= L−1b︸ ︷︷ ︸
b̃

,

For p̃(0) = r̃(0) = b̃− Ãx̃(0) = L−1(b−Ax(0)) = L−1r(0), we have

x̃(j+1) = x̃(j) + αj p̃
(j), with αj =

(r̃(j),r̃(j))

(Ãp̃(j),p̃(j))

x(j+1) = x(j) + αjL
−TL−1p(j), with αj =

(r(j),L−T L−1r(j))

(AL−T L−1p(j),L−T L−1p(j))

r̃(j+1) = r̃(j) − αjÃp̃(j)

r(j+1) = r(j) − αjAL−TL−1p(j)

p̃(j+1) = r̃(j+1) + βj p̃
(j), with βj =

(r̃(j+1),r̃(j+1))

(r̃(j),p̃(j))

L−T L−1p(j+1) = L−T L−1r(j+1) + βjL
−T L−1p(j), with βj =

(r(j+1),L−T L−1r(j+1))

(r(j),L−T L−1r(j))
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PCG, maintaing symmetry

For A sym pos.def., A ≈ P = LLT . The preconditioned problem:

Ax = b ⇒ L−1AL−T

︸ ︷︷ ︸
Ã

LTx︸︷︷︸
x̃

= L−1b︸ ︷︷ ︸
b̃

,

For p̃(0) = r̃(0) = b̃− Ãx̃(0) = L−1(b−Ax(0)) = L−1r(0), we have

With p̂(0) = L−TL−1p(0) = P−1p(0) and z(j) = L−TL−1r(j) = P−1r(j):

x(j+1) = x(j) + αj p̂
(j) with αj =

(r(j),z(j))

(Ap̂(j),p̂(j))

r̃(j+1) = r̃(j) − αjÃp̃(j)

r(j+1) = r(j) − αjAp̂(j)

p̃(j+1) = r̃(j+1) + βj p̃
(j), with βj =

(r̃(j+1),r̃(j+1))

(r̃(j),p̃(j))

p̂(j+1) = z(j+1) + βj p̂
(j), with βj =

(r(j+1),z(j+1))

(r(j),z(j))
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Practical preconditioning strategies

• LU-type approx decomposition of A: → Pv = U−1L−1v

• Algebraic multigrid (approximate representation of A on smaller

version of the matrix - recursive procedure)

• Geometric multigrid (operator and domain dependent)

• Functional approximation of the underlying operator
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A comparison :

Incomplete Cholesky and Algebraic Multigrid

Poisson, 2D problem on [0, 1]2. Matrices of dim n = 2k × 2k

grid incomplete Chol AMG

nodes per dim # it’s CPU time # it’s CPU time

24 11 0.008 6 0.18

25 18 0.007 6 0.20

26 33 0.04 7 0.22

27 58 0.29 7 0.32

28 106 2.27 8 0.71

For 28, dim(A) = 65536 × 65536

!! Preconditioned CG with AMG gives grid independent # it’s !!

Remark: For 28, tic;A\b;toc, gives: Elapsed time is 0.588393

seconds.
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Algebraic Multigrid (AMG)

Consider the original system

Ahu
h = fh (⋆)

The error vector is split in two parts: an oscillatory component (high

freq.) and a regular component (smooth, low freq.)

A Multigrid (or multilevel) type method for a linear system is made of

two ingredients:

• A smoothing step of the oscillatory portion:

usually a few iterations of a classical method (e.g., Jacobi,

Gauss-Seidel)

• A correction on a coarser grid for the smooth part

The system (⋆) is approximated by a system on a coarser grid:

AH , fH such that

AH = IHh AhI
h
H , fH = IHh fh
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Conceptually similar to a Galerkin projection type procedure:

IHh : restriction operator, full rank

IhH : prolongation operator, rull rank

with

IHh = (IhH)T (transposition)

Remark: Geometric Multigrid uses the physical grid. Algebraic Multigrid

use the matrix elements

(matrix indexes ≡ grid nodes)
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Algebraic Multigrid (AMG)

General procedure (on two grids):

1. Perform n1 steps of smoothing (e.g., Jacobi) on Ahu
h = fh

2. Compute the residual rh = fh −Ahu
h ≡ Aeh

3. Project (restrict) to the coarse grid rH = IHh rh

4. Solve on coarse grid: AHeH = rH

5. Add (prolong) uh := uh + IhHeH

6. Take n2 steps of smoothing on Ahu
h = fh
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Algebraic Multigrid (AMG). The coarse grid

Determine AH from Ah, AH is a subset of the rows/columns of Ah

(strong connection among the elements of AH)

def. Let θ ∈ (0, 1] be a fixed threshold. The variable ui strongly depends

on the variable uj if

−aij ≥ θmax
k 6=i
{−aik}

⇒ non-diagonal positive elements have a weak connection

The following steps should be taken (where: node= pair of

indexes)

1. Define a “strength” matrix (Af ) by eliminating the weak connections

2. Choose an independent set of strong nodes of Af

3. Add possible nodes to have a correct proloungation operator
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Spectral equivalence

Under particular conditionsa on the matrix A, it can be proved that the

AMG preconditioner is spectrally equivalent to A, that is:

There exist α1, α2 > 0 independent of the dimension of A such that

α1(x, Px) ≤ (x,Ax) ≤ α2(x, Px), ∀x 6= 0

Nel nostro contesto:

P−1Av = λv ⇔ Av = λPv

Per cui

λ =
(v,Av)

(v, Pv)
, min

x 6=0

(x,Ax)

(x, Px)
≤ λ ≤ max

x 6=0

(x,Ax)

(x, Px)

⇒ l’intervallo spettrale del problema precondizionato non dipende

dalla dimensione del problema (o dalla griglia!)
ae.g., if A is Hpd is an M -matrix, that is with aii > 0 ∀i and aij ≤ 0 ∀i 6= j,

with non-negative inverse - the usual discretization of the Laplacian.
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Spectral equivalence

Under particular conditionsa on the matrix A, it can be proved that the

AMG preconditioner is spectrally equivalent to A, that is:

There exist α1, α2 > 0 independent of the dimension of A such that

α1(x, Px) ≤ (x,Ax) ≤ α2(x, Px), ∀x 6= 0

In our context:

P−1Av = λv ⇔ Av = λPv

so that

λ =
(v,Av)

(v, Pv)
, min

x 6=0

(x,Ax)

(x, Px)
≤ λ ≤ max

x 6=0

(x,Ax)

(x, Px)

⇒ The spectral interval of the preconditioned problems does not

depend on the problem dimension (or on the grid!)
ae.g., if A is Hpd is an M -matrix, that is with aii > 0 ∀i and aij ≤ 0 ∀i 6= j,

with non-negative inverse - the usual discretization of the Laplacian.
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Saddle point linear systems


 A BT

B −C




 u

v


 =


 f

g




• Computational Fluid Dynamics (Elman, Silvester, Wathen 2005)

• Elasticity problems

• Mixed (FE) formulations of II and IV order elliptic PDEs

• Linearly Constrained Programs

• Linear Regression in Statistics

• Image restoration

• ... Survey: Benzi, Golub and Liesen, Acta Num 2005
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The problem. Simplifications


 A BT

B −C




 u

v


 =


 f

g




To make things simple:

⋆ A symmetric positive (semi)definite

⋆ BT tall, possibly rank deficient

⋆ C symmetric positive (semi)definite
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Spectral properties

A =


 A BT

B O


 0 < λn ≤ · · · ≤ λ1 eigs of A

0 < σm ≤ · · · ≤ σ1 sing. vals of B

σ(A) subset of (Rusten & Winther 1992)
[

1

2
(λn −

√

λ2
n + 4σ2

1),
1

2
(λ1 −

√

λ2
1 + 4σm

2)

]

∪

[

λn,
1

2
(λ1 +

√

λ2
1 + 4σ2

1)

]

A nonsingular , B full rank

(other hypotheses are possible)
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Spectral properties

A =


 A BT

B O


 0 < λn ≤ · · · ≤ λ1 eigs of A

0 < σm ≤ · · · ≤ σ1 sing. vals of B

σ(A) subset of (Rusten & Winther 1992)
[

1

2
(λn −

√

λ2
n + 4σ2

1),
1

2
(λ1 −

√

λ2
1 + 4σ2

m)

]

∪

[

λn,
1

2
(λ1 +

√

λ2
1 + 4σ2

1)

]

Good (= slim) spectrum: λ1 ≈ λn, σ1 ≈ σm

example:

A =


 I UT

U O


 , UUT = I, λi(A) = 1 ∀i, σj(U) = 1, ∀j

σ(A) ⊂ {1
2
(1−

√
5)} ∪ [1,

1

2
(1 +

√
5)]
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Spectral properties

A =


 A BT

B O


 0 < λn ≤ · · · ≤ λ1 eigs of A

0 < σm ≤ · · · ≤ σ1 sing. vals of B

σ(A) subset of (Rusten & Winther 1992)
[

1

2
(λn −

√

λ2
n + 4σ2

1),
1

2
(λ1 −

√

λ2
1 + 4σ2

m)

]

∪

[

λn,
1

2
(λ1 +

√

λ2
1 + 4σ2

1)

]

Good (= slim) spectrum: λ1 ≈ λn, σ1 ≈ σm

example:

A =


 I UT

U O


 , UUT = I, λi(I) = 1 ∀i, σj(U) = 1, ∀j

σ(A) ⊂ {1
2
(1−

√
5)} ∪ [1,

1

2
(1 +

√
5)]

48



Which method for this problem?

A is symmetric but indefinite!

⇒ CG will not work...

⇒ GMRES? it is for nonsymmetric problems... however, we said:

If A were Hpd ⇒ V ∗
k AVk also Hpd ⇒ tridiagonal

This implies (details omitted) that

min
y
‖r0 −AVky‖ ⇔ min

y
‖e1β0 −Hky‖

with Hk tridiagonal, so that

xk+1 = xk + qkηk

(for some qk, ηk) short-term recurrence, MINRES
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Which method for this problem?

A is symmetric but indefinite!

⇒ CG will not work...

⇒ GMRES? it is for nonsymmetric problems... however, we said:

If A were Hpd ⇒ V ∗
k AVk also Hpd ⇒ tridiagonal

This implies (details omitted) that

min
y
‖r0 −AVky‖ ⇔ min

y
‖e1β0 −Hky‖

with Hk = V ∗
k+1AVk tridiagonal, so that

xk+1 = xk + qkηk

(for some qk, ηk) short-term recurrence, MINRES
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Block diagonal Preconditioner

⋆ A nonsing., C = 0:

P0 =


 A 0

0 BA−1BT




⇒ P
− 1

2
0 AP

− 1
2

0 =





I A− 1
2 BT (BA−1BT )−

1
2

(BA−1BT )−
1
2 BA− 1

2 0





MINRES converges in at most 3 iterations. σ(P
− 1

2
0 AP

− 1
2

0 ) = {1, 1
2
±

√
5

2
}

A more practical choice:

P =


 Ã 0

0 S̃


 spd. Ã ≈ A S̃ ≈ BA−1BT

eigs in [−a,−b] ∪ [c, d], a, b, c, d > 0

Still an Indefinite Problem ⇒ minres
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Block diagonal Preconditioner

⋆ A nonsing., C = 0:

P0 =


 A 0

0 BA−1BT




⇒ P
− 1

2
0 AP

− 1
2

0 =





I A− 1
2 BT (BA−1BT )−

1
2
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1
2 BA− 1

2 0





MINRES converges in at most 3 iterations. σ(P
− 1

2
0 AP

− 1
2

0 ) = {1, 1
2
±

√
5

2
}

A more practical choice:

P =


 Ã 0

0 S̃


 spd. Ã ≈ A S̃ ≈ BA−1BT

eigs in [−a,−b] ∪ [c, d], a, b, c, d > 0

Still an Indefinite Problem ⇒ minres
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Giving up symmetry ...

• Change the preconditioner: Mimic the LU factors

A =





I O

BA−1 I









A BT

O BA−1BT + C



 ⇒ P ≈





A BT

O BA−1BT + C





• Change the preconditioner: Mimic the Structure

A =


 A BT

B −C


 ⇒ P ≈ A

• Change the matrix: Eliminate indef. A− =


 A BT

−B C




• Change the matrix: Regularize (C = 0)

A ⇒ Aγ =





A BT

B −γW



 or Aγ =





A+ 1
γ
BTW−1B BT

B O
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Application of the preconditioners. 1

At each iteration of CG, MINRES or GMRES, compute y = P−1z, that

is solve

P


y1
y2


 =


z1
z2




P =


Ã 0

0 S̃


 that is Solve Ãy1 = z1, S̃y2 = z2.

P =


Ã BT

0 S̃


 that is Solve S̃y2 = z2, Ãy1 = z1−BT y2.
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Application of the preconditioners. 2

Indefinite preconditioner:

P =


Ã BT

B −S̃


 =


 I 0

BÃ−1 I




Ã 0

0 −Ŝ




I Ã−BT

0 I


 = P1DP2

with Ŝ = S̃ +BÃ−BT

(In practice Ŝ is an approximation to this quantity)

Application of the indefinite preconditioner:

Py = z ⇔ P1D P2y︸︷︷︸
=z1︸ ︷︷ ︸

=z2

= z
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