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The problem
Find X € R™"*" such that
AX +XA" —XBB'X+CTC =0
with A € R™*™ B € R™*?, ¢ € R**", p,s = O(1)

Rich literature on analysis, applications and numerics:

Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, Mehrmann etal 2003 ...



The problem

Find X € R™™ ™ such that
AX+XAT —XBB'"X+C'C =0
with A € R™*™ B e R"™? (C € R**", p,s = O(1)

Rich literature on analysis, applications and numerics:

Lancaster-Rodman 1995, Bini-lannazzo-Meini 2012, Mehrmann etal 2003 ...

We focus on the large scale case: n > 1000

Different strategies
e (Inexact) Kleinman iteration (Newton-type method)
e Projection methods
e Invariant subspace iteration

e (Sparse) multilevel methods



Galerkin projection method for the Riccati equation

Given the basis Vi for an approximation space, determine approximation
Xy, = ViYi Vi
to the Riccati solution matrix by orthogonal projection:
Vi (AXy+XxA" =X, BB' X3, +CT OV, =0 (Galerkin condition)
giving
(VL AVR)Y + Y (Vi AT Vi)=Y (Vi BB Vi)Y + (Vi €T)(CVi) = 0

(Heyouni-Jbilou 2009)



Galerkin projection method for the Riccati equation

Given the basis Vi for an approximation space, determine approximation
Xy, = ViYi Vi
to the Riccati solution matrix by orthogonal projection:
Vi (AXy+XxA" =X, BB' X3, +CT OV, =0 (Galerkin condition)
giving
(Vi AVR)Y +Y (V' A" Vi)—Y(Vi, BB Vi )Yi + (Vi C")(CV&) =0

(Heyouni-Jbilou 2009)

Key questions:
e Which approximation space?

e |s this meaningful from a Control Theory perspective?



On the choice of approximation space
Approximate solution X = VkYkaT, with

(Vi AVR)Y +Y (V' A" Vi)—Yu(Vi BB Vi)V + (Vi CT(CV&) =0

Krylov-type subspaces: (from Lyapunov case)
o Kr(A,C"):=Range([C",AC",...,A*"1C"]) (Polynomial)
o EKL(A,CT) :=Ki(A,CT)UKRL(A Y, A~1CT) (EKSM, Rational)
o RKr(A,C',s):=

k—1
Range([C'', (A —s20)7'C", ..., H(A —s;a)7C))

=1

(RKSM, Rational)



On the choice of approximation space
Approximate solution X = VkYkaT, with

(Vi AVR)Y +Y (V' A" Vi)—Yu(Vi BB Vi)V + (Vi CT(CV&) =0

Krylov-type subspaces: (from Lyapunov case)
o Kr(A,C"):=Range([C",AC",...,A*"1C"]) (Polynomial)
o EKL(A,CT) :=Ki(A,CT)UKRL(A Y, A~1CT) (EKSM, Rational)
o RKr(A,C',s):=

k—1
Range([C'', (A —s20)7'C", ..., H(A —s;a)7C))

=1

(RKSM, Rational)

x Matrix BB ' not involved



On the choice of approximation space
Approximate solution X = VkYkaT, with

(Vi AVR)Y +Y (V' A" Vi)—Yu(Vi BB Vi)V + (Vi CT(CV&) =0

Krylov-type subspaces: (from Lyapunov case)
o Kr(A,C"):=Range([C",AC",...,A*"1C"]) (Polynomial)
o EKL(A,CT) :=Ki(A,CT)UKRL(A Y, A~1CT) (EKSM, Rational)
o RKr(A,C',s):=
k—1

Range([C'', (A —s20)7'C", ..., H(A —s;a)7C))

=1

(RKSM, Rational)
x Matrix BB' not involved

x Parameters s; (adaptively) chosen in field of values of —A



Performance of solvers

Problem: A: 3D Laplace operator, B, C randn matrices, tol=10"8

(n,p,s) = (125000, 5, 5)

its  inner its  time space dim  rank(Xy)
Newton Xg =0 | 15 5,...,5 808 100 95
GP-EKSM 20 531 200 105
GP-RKSM 25 524 125 105

(n,p,s) = (125000, 20, 20)

its innerits  time space dim  rank(Xjy)
Newton Xo =0 | 19 5,...,5 2332 400 346
GP-EKSM 15 622 600 364
GP-RKSM 20 720 400 358

GP=Galerkin projection

(V.Simoncini, D.Szyld, M.Monsalve, 2014)



A numerical example

Consider the 500 x 500 Toeplitz matrix

A = toeplitz(—1,2.5,1,1,1), C=[1,-2,1,-2,..],B=1

—&—RKSM

absolute residual norm

0 5 10 15 20 25 30 35 40
space dimension

Parameter computation:
Left: adaptive RKSM on A
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A numerical example

Consider the 500 x 500 Toeplitz matrix

A = toeplitz(—1,2.5,1,1,1), C=[1,-2,1,-2,..],B=1

—&—RKSM —&—RKSM

absolute residual norm

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
space dimension space dimension

Parameter computation:
Left: adaptive RKSM on A Right: adaptive RKSM on A — BB X},

(Lin, Simoncini 2015)
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Connection to dynamical systems

AX + XA - XBB'™X+CTC =0

Time-invariant linear system

t(t) = Azx(t) + Bu(t), z(0) = xg

y(t) = Cx(?),
u(t) : control (input) vector; y(t) : output vector
x(t) : state vector; T : initial state
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Connection to dynamical systems

AX + XA - XBB'™X+CTC =0

Time-invariant linear system

t(t) = Azx(t) + Bu(t), z(0) = xg

y(t) = Cx(t),
u(t) : control (input) vector; y(t) : output vector
x(t) : state vector; T : initial state
Minimization problem for a Cost functional: (simplified form)

i%f J (u, o) J(u, xg) := /Ooo(x(t)TCTC:E(t) +u(t) " u(t))dt
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Connection to dynamical systems

AX +XA" - XBB'™X+CTC =0

i%f J (u, zq) J(u, zg) := /OOO (z(t) " C T Cx(t) + u(t) "u(t))dt

THEOREM. Let the pair (A, B) be stabilizable and (C, A) observable.
Then there is a unique solution X > 0 of the Riccati equation.
Moreover,

i) For each xg there is a unique optimal control, and it is given by
u(t) = =B Xexp((A — BB'X)t)xq for t > 0;

i) J (us, 20) = 29 X2 for all zg € R™
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Order reduction of dynamical systems by projection

Let V. € R™*4% have orthonormal columns, d; < n

let T, =V, AV, By=V,)B, C] =V/CT

Reduced order dynamical system:

Z(t) = Tiu@(t) + Bp(t),  Z(0) = Ty :=V, o

xk(t) — kalj\(t) ~ :E(t)

Typical frameworks:
e Transfer function approximation

e Model reduction
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The role of the projected Riccati equation

(V. AV)Y + YV, A" V) -Y(V,) BB'V,)Y + (V. C")(CV},) =0

that is

T.Y +YT,! —YB,B,Y+C/C,=0 (%)

THEOREM. Let the pair (T}, By) be stabilizable and (C}, Tk)
observable. Then there is a unique solution Y > 0 of (*) that for
each 7 gives the feedback optimal control

ﬂ* (t) = _BZYk exp((Tk — BkBZYk)t)EIZ\(), t Z 0

for the reduced system.
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The role of the projected Riccati equation

(V. AV)Y + YV, A" V) -Y(V,) BB'V,)Y + (V. C")(CV},) =0

that is
T.Y + YT, —YB,BY +C, Ci, =0 ()
THEOREM. Let the pair (T}, By ) be stabilizable and (C, T})

observable. Then there is a unique solution Y > 0 of (*) that for
each 7 gives the feedback optimal control

ﬂ* (t) = _BZYk exp((Tk — BkBZYk)t)/x\Op t Z 0

for the reduced system.
If there exists a matrix K such that A — BK is passive, then the pair (T, By ) is stabilizable.
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Projected optimal vs approximate optimal control functions

*x Our projected optimal control function:

U, (t) = =B, Y, exp((Ty, — BpB, Yi)t)Zo, t>0

with X, = VkYka—r

* Typically used approximate control function:

u(t) ;== —B" Xx(t)
where Z(t) := exp((A — BBT X)t)z( for some X ~ X

U # T

They induce different actions on the cost functional 7, even for X = X,
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Projected optimal vs approximate optimal control functions

Residual matrix:

R, = AX, + X, A— X.BB' X, +C'C

THEOREM. Assume that A — BB ' X} is stable and that
u(t) := —B'" Xyx(t). Then

1Rell T

xo IEO,

T (@, 20) — Ty (s, Tp)| <

. T
where o > 0 is such that ||e(A=BB Xu)t|| < et for all t > 0.
Note: |7 (%, z0) — Ji (T, To)| is nonzero for Ry, # 0
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On the residual matrix and adaptive RKSM

R, :=AX, +X.A— X.BB'"X,+C'C

THEOREM. Let Ty = T} — BB, Y;. Then
Ry = ﬁkaT—FVkﬁ;_, with ﬁk = AV.Y, + V/{Ykﬁ—r —+ CT (ka)

so that ||Ri||r = V2| Ry
At least formally:

= VY3V, is a solution to the Riccati equation (Rj = 0) if and only
if Z;. = V.Y). is the solution to the Sylvester equation (}A%k =0)
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On the residual matrix and adaptive RKSM

Ry = ﬁkaT + Vkﬁz
Expression for the semi-residual ﬁk:

THEOREM. Assume C'' € R", Range(V;)= RKr(A,C",s). Assume
that 7. =11 — BkB,;rYk is diagonalizable. Then

Ry, = i1 (A)OT CVi (W, (= T3 )

where
det(z] — Tk)

[T (= — s)

Here 7, = V,' (A — BB' X,)V}, = T}, — Bi. B, Y}

wk,Tk (Z) —

(see also Beckermann 2011)
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On the choice of the next parameters si1

Ry = Vi1, (A)CTOVi(hr (T3 )7L

with wk,Tk (Z) — l(j[e’:_(jgz_—tl;kj)>

x Greedy strategy: Next shift should make (¢ 7, (=7, ))~! smaller

4

Determine for which s in the spectral region of 7 the quantity
(Yr.1,(—s)) "t is large, and add a root there

1
wkz,Tk (S)

Sy region enclosing the eigenvalues of —7;

Sl = arg max
+ gseaSk

(This argument is new also for Sylvester/Lyapunov equations)
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Selection of sg11 in RKSM. An example

A: 900 x 900 2D Laplacian, B = t1 with t; =5-1077,

C=101,-21,-21-2,.]
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Further results and conclusions
Not presented but relevant:
e Stabilization properties of approximate solution Xy
e Approximation tracking as subspace grows
e Invariant subspace approximation
Wrap-up:
e Projection-type methods fill the gap between MOR and Riccati equation

e Clearer role of the non-linear term during the projection
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