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Abstract. In this paper we propose a new projection method to solve large-scale continuous-time
Lyapunov matrix equations. The new method projects the problem onto a much smaller approxima-
tion space, generated as a combination of Krylov subspaces in A and A−1. The reduced problem is
then solved by means of a direct Lyapunov scheme based on matrix factorizations. The reported nu-
merical results show the competitiveness of the new method, compared to a state-of-the-art approach
based on the factorized Alternating Direction Implicit (ADI) iteration.

1. Introduction. Given the time-invariant linear system

x′(t) =Ax(t) + Bu(t), x(0) = x0, (1.1)

with A ∈ R
n×n and B ∈ R

n×s with s ≤ n, the solution of the associated continuous-
time Lyapunov equation

AX + XAT + BBT = 0 (1.2)

has a fundamental role in applied fields such as signal processing and system and
control theory. We assume that s ¿ n, and that A is dissipative, that is, xT (A +
AT )x < 0 for all real vectors x. The symmetric solution X, called the reachability
Gramian, carries important information on the stability and energy of the linear
system (1.1) and on the feasibility of order reduction techniques [1], [4], [8].

The numerical solution of the Lyapunov matrix equation has been addressed in
a large body of literature, and well established methods exist for small dimensional
problems [2], [19]. Research has recently focused mostly on schemes for medium to
large-scale Lyapunov equations, for which methods based on matrix factorizations be-
come too demanding, both in terms of computational costs and memory requirements.
For dense problems, efforts have been devoted to the development of matrix iterative
methods based on the sign function, possibly exploiting the problem structure; see,
e.g., [3], [5], and references therein.

In the case of sparse matrix A, projection-type methods based on Krylov sub-
spaces, either using polynomials or rational functions of A, have been employed; see,
e.g., [22], [23], [24], [25], [27], [31], and the general treatment in [1]. In particular,
since the work by Ellner and Wachspress in [11], the ADI iteration has found great
applicability in the solution of (1.2), and software implementing an efficient variant
is now available [29]. A common feature of all these projection methods is that the

approximate solution X̂ is given in factored form, X̂ = ZZT with Z of low column
rank. The possibility of obtaining a good low rank approximate solution is supported
by recent theoretical results showing the rapid decay of the eigenvalues of the symmet-
ric and positive semidefinite exact solution; see [28], [15], [33]. This property can be
fully exploited when dealing with large problems, since storing the whole, in general
full matrix X̂ would require a significant amount of memory space. Other methods
have been investigated, such as that in [21], which however do not build a low rank
approximation.
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†Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, I-40127

Bologna, Italy and CIRSA, Ravenna, Italy (valeria@dm.unibo.it).

1



2 V. Simoncini

In spite of these recent efforts, projection methods that are directly based on
Krylov subspace approaches (cf. [31], [22]) may be slow, requiring the generation of
a very large approximation space to obtain a sufficiently accurate solution; see the
experiments reported in [27]. On the other hand, ADI-type methods need the a-priori
evaluation of some parameters which may be hard to tune. In addition, memory
and CPU time requirements remain an issue, for these methods perform various large
matrix factorizations.

In this paper we propose a new projection-type method for large-scale problems,
that is in general faster than approaches based on the ADI iteration, and does not
require estimation of parameters. The new method projects the problem onto a
small approximation space, generated as a combination of Krylov subspaces in A and
A−1. The reduced problem is then solved by means of a standard scheme for small
Lyapunov equations. The method is equipped with a natural stopping criterion, which
can be computed inexpensively. The performance of the new method is compared
on benchmark problems to that of the cyclic implementation of the factorized ADI
method available in [29].

The paper is organized as follows. Section 2 describes the general subspace pro-
jection framework, which characterizes the new approach and several other reduction
methods. Section 3 and its subsections describe the new method, and its algorithmic
aspects. Section 4 reviews the ADI iteration and its efficient variant, to prepare the
notation for the numerical experiments reported in section 5. Finally, in section 6 we
provide some conclusive remarks.

The following notation is used throughout. The square identity and zero matrices
are denoted by I and O, respectively; rectangular portions will be identified by using
subscripts. The only exceptions are the (block) columns of the identity, denoted by
ei, ith column (resp. Ei, 2i − 1st and 2ith column of the identity matrix of even
dimension). Matlab notation is used whenever possible [26]. ‖ ·‖ indicates the 2-norm
for vectors and the induced norm for matrices, while ‖ · ‖F denotes the Frobenius
norm, that is ‖A‖2F =

∑n
i=1

∑m
j=1 a2

i,j for A ∈ R
n×m. Range(V ) indicates the space

spanned by the columns of V . Finally, exact arithmetic is assumed throughout.

2. Projection methods for the Lyapunov equation. In this section we re-
view a general framework associated with projection methods for the Lyapunov equa-
tion. This will allow us to simplify the presentation of the new approach in section 3.

Consider a subspace K of R
n, and let V be a matrix whose orthonormal columns

span K, with B = V E for some matrix E, so that B ∈ K. We project the Lyapunov
equation onto this subspace K: we set H = V T AV , and seek an approximate solution
in K in the form X̂ = V Y V T . The projected problem may be obtained by imposing
that the residual R = AX̂+X̂AT +BBT be orthogonal to the approximation space K,
the so-called Galerkin condition. In matrix terms, this can be written as1 V T RV = O.
Since V has orthonormal columns, imposing V T RV = 0 gives the following projected
Lyapunov equation

V T AV Y + Y V T AT V + EET = 0, (2.1)

whose solution Y defines X̂. Since we assume that A is dissipative, V T AV is stable
and the equation (2.1) admits a unique solution. The projection is effective if a good
approximation is attained for a small dimensional subspace, so that (2.1) can be

1This condition can be derived by first defining the matrix inner product 〈X, Y 〉 = tr(XY T ) and
then imposing 〈R, P 〉 = 0 for any P = V GV T [31].
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cheaply solved by means of procedures based on matrix factorizations; cf. [2], [19]. In
turn, this effectiveness is more likely to take place whenever the exact solution can be
accurately approximated by low rank matrices. An additional theoretical motivation
for using such technique is given by the exponential form of the analytical solution,

X =

∫ ∞

0

etABBT etAT

dt. (2.2)

Note that the use of this formulation has lead to different approximation procedures
such as that in [16]. The quantity W = etAB can be approximated in K as Ŵ =
V etHE. Therefore, an approximation to X can be obtained as

X̂ =

∫ ∞

0

ŴŴT dt = V

(∫ ∞

0

etHEET etHT

dt

)
V T =: V Y V T .

Using the fact that H = V T AV is stable, the following result can be readily estab-
lished.

Proposition 2.1. The matrix Y =
∫∞
0

etHEET etHT

dt is the unique solution to
the Lyapunov equation (2.1).

Although the results above hold independently of the specific approximation space
K, the effectiveness of the approach crucially depends on K. The presentation above
and also Proposition 2.1 were first introduced in [31] for B ∈ R

n and K corresponding
to the Krylov subspace Kk(A,B) = span{B,AB, . . . , Ak−1B}. Further developments
of Krylov subspace methods for B ∈ R

n×s and using conditions on the residual
different from the Galerkin one were discussed in [22]. Reasons for expecting good
accuracy in the approximation for sufficiently large dimension of the Krylov subspace
comes from the approximation properties of the exponential. Let Vk be such that
Range(Vk) = Kk(A,B), and Hk = V T

k AVk. If Ŵk = VketHE is a good approximation
to W = etAB, we expect the corresponding integral to approximate X. In particular,
assuming for the sake of the presentation t = 1, if the numerical range of A is contained
in the complex disk |z + ρ| ≤ ρ for some ρ > 0, then a bound of the form ‖ exp(A)v−
Vk exp(Hk)e1‖ = O(( eρ

k
)k), holds, for k ≥ 2ρ; see [20]. More accurate bounds can be

obtained in the symmetric case [20], [36], [9].
Assume now that a sequence of approximation subspaces Kk of dimension k is

given, with Kk ⊂ Kk+1, and satisfying AKk ⊂ Kk+1. Note that these conditions on
Kk are reasonably general.

Let the columns of Vk span Kk, Hk = V T
k+1AVk, and let Xk = VkYkV T

k be the
approximate solution to (1.2) in Kk, obtained by imposing the Galerkin condition.
The associated residual Rk = AXk + XkAT + BBT satisfies

Rk = Vk+1HkVkYkV T
k + VkYkHT

k V T
k+1 + VkEET V T

k =: Vk+1R̂V T
k+1. (2.3)

The selection Kk = Kk(A,B) fulfils all conditions above, and in addition it can be
shown that ‖Rk‖ = ‖ET

k+1HkYk‖, so that the quality of the approximation Xk can be
measured by computing the residual norm, without explicitly evaluating the residual
matrix. This setting has been heavily exploited to devise competitive approaches, and
to derive theoretical properties; see, e.g., [30], [23], [22].

3. The new iterative procedure. The general description of the previous
section suggests that the approximation space K could be enriched to contain more
information than that of the regular Krylov subspace Kk(A,B). To this end, starting
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with the pair {B,A−1B}, we propose to generate a sequence of approximation spaces
that contain information on both A and A−1, by adding two vectors at the time, one
multiplied by A, and one by A−1, that is

span{B,A−1B,AB,A−2B,A2B,A−3B, . . .}.

As discussed in section 2, once the approximation space is generated, the original
problem is projected onto this space, and the resulting small dimensional problem
is solved. To simplify the presentation, we derive the new method for rank(B) = 1,
however the generalization to larger rank is immediate. Implementation details of the
approach are given in section 3.1.

Given B, A, set V1 = gram sh([B,A−1B]), V0 = ∅.
For m = 1, 2, . . . ,
1. Vm = [Vm−1, Vm]
2. Set Tm = VT

mAVm and E = VT
mB

3. Solve TmY + Y T T
m + EET = 0 and set Ym = Y

4. If converged then Xm = VmYmVT
m and stop

5. V ′
m+1 = [AV

(1)
m , A−1V

(2)
m ]

6. V̂m+1 ← orthogonalize V ′
m+1 w.r.to Vm

7. Vm+1 = gram sh(V̂m+1)

At each iteration of this process, two new vectors are added to the space, so that
the space dimension increases by two. Unless breakdown occurs, at the mth iteration
the method has constructed an orthonormal basis of dimension 2m, given by the
columns of the matrix Vm = [V1, V2, . . . , Vm], Vi ∈ R

n×2, and Km := Range(Vm).
The orthogonalization is performed first with respect to the previous basis vectors,
and then within the new block of two vectors (function gram sh, see section 3.1). At
each iteration (cf. step 3), a small dimensional Lyapunov equation with matrices of
size 2m × 2m is solved. Since B is a vector, E = E1V

T
1 B = [e1β, 0] ∈ R

2m×2, with
β = ‖B‖. Only at convergence (step 4), the approximate solution to X is constructed
as

Xm = VmYmVT
m, (3.1)

with Ym symmetric. The following important properties are a consequence of the
subspace definition.

Proposition 3.1. For any m ≥ 1, the space Km satisfies Km = K2m(A,A−mB).
In particular, it follows that

AKm ⊆ Km+1. (3.2)

We observe that the results of Proposition 3.1 ensure that Tm is block upper Hes-
senberg, since V T

k AVj = O for k > j + 1, j = 1, 2, . . .. In particular, property (3.2)
allows us to employ the framework of section 2. Moreover, since A is dissipative, Tm

is stable, so that Ym is positive (semi-)definite.
We next derive some recursive relations that can be used to significantly reduce

the computational costs of the basic algorithm. LetHm = [Hm;χmET
m] ∈ R

2(m+1)×2m

collect all orthonormalization coefficients, that is

V̂m+1 = [AV (1)
m , A−1V (2)

m ]− VmHm[e2m−1, e2m] (3.3)

Vm+1χm = V̂m+1; (3.4)
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note that Hm is block upper Hessenberg with 2×2 blocks. Let also T m := VT
m+1AVm.

The computation of Tm seems to require additional matrix-vector products with A
and extra inner products of long vectors. We next derive a recursion for T m that
completely avoids this expensive step.

Proposition 3.2. Let `(k) = (`ij) be the 2 × 2 matrix such that Vk = V̂k`(k) in
(3.3), k = 1, . . . ,m. Let

T m = (ti,j)i=1,...,2m+2,j=1,...,2m and Hm = (hi,j)i=1,...,2m,j=1,...,2m.

Then (odd columns)

t:,2k−1 = h:,2k−1, k = 1, . . . ,m,

while (even columns)

(k = 1) t:,2 =
1

`
(1)
11

(h:,1`
(1)
12 + e1`

(1)
22 ) t:,4 = (e2 − T 1h1:2,2)`

(2)
22 , ρ(2) =

`
(2)
12

`
(2)
22

(1 < k ≤ m) t:,2k = t:,2k + t:,2k−1ρ
(k)

t:,2k+2 = (e2k − T kh1:2k,2k)`
(k+1)
22 , ρ(k+1) =

`
(k+1)
12

`
(k+1)
22

.

Proof. For k ≥ 1, we write Vk = [V
(1)
k , V

(2)
k ] ∈ R

n×2. Using (3.3), we immediately

have AV
(1)
k = Vk+1χke1 + VkHke2k−1 = Vk+1Hme2k−1, so that the odd columns of

Tm satisfy

VT
mAVme2k−1 = VT

mAV
(1)
k =

[
I2k+1

O

]
Hke2k−1 = Hme2k−1.

The even columns need to take into account that the recurrence comes from
multiplications by A−1, and thus the term AV

(2)
k is not explicitly available. However,

from (3.3) we obtain

V
(2)
k = AV̂

(2)
k+1 + AVkHke2k,

which gives a recurrence for the (2k + 2)th column AV̂
(2)
k+1. Hence,

VT
m+1AV̂

(2)
k+1 = VT

m+1V
(2)
k − VT

m+1AVkHke2k = e2k −
(

T k

Om−k,2k

)
Hke2k.

To complete the derivation, we recall that Vk+1 = V̂k+1`
(k+1), with `(k+1) = (`ij)

upper triangular, so that V
(2)
k+1 = V̂

(1)
k+1`12 + V̂

(2)
k+1`22, from which AV

(2)
k+1 = AV̂

(1)
k+1`12 +

AV̂
(2)
k+1`22 = AV

(1)
k+1`

−1
11 `12 + AV̂

(2)
k+1`22. Therefore,

VT
m+1AV

(2)
k+1 = VT

m+1Vk+2Hk+1e2k+1`
−1
11 `12 +

(
e2k −

(
T k

Om−k,2k

)
Hke2k

)
`22.

The recursion thus follows.
The recurrence for T m shows that the lower diagonal 2× 2 block has zero second

row. This fact can be used to simplify the computation of the residual norm.
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Proposition 3.3. For m ≥ 1, let Km = Range(Vm) and let Xm be the approx-
imate solution obtained as in (3.1) with associated residual Rm = AXm + XmAT +
BBT . Then Range(Rm) = Range(Vm+1) and ‖Rm‖ = ‖eT

2m+1T mYm‖.
Proof. Since AVm = Vm+1L, for some matrix L, the first result follows from (2.3).

Therefore, Rm = Vm+1R̂mVT
m+1, with

R̂m = VT
m+1RmVm+1 =

(
0 VT

mRmVm+1

V T
m+1RmVm 0

)
.

Using V T
m+1RmVm = ET

m+1T mYm, it follows ‖Rm‖ = ‖R̂m‖ = ‖V T
m+1RmVm‖ =

‖ET
m+1T mYm‖ = ‖eT

2m+1T mYm‖.
The matrix Ym in the solution Xm = VmYmVT

m is often numerically positive
semi-definite [28], [15], [33]. If this is so, it is possible to generate a lower rank Xm as
Xm = ZmZT

m with Zm of rank lower than 2m, the dimension of Ym. More precisely,
let Ym = WDWT be the eigendecomposition of the 2m × 2m matrix Ym with D
diagonal having diagonal entries sorted in decreasing order, and let WkDkWT

k be
the approximate decomposition obtained by truncating to the first k columns of W ,
with k ¿ 2m. Then Ym ≈ WkDkWT

k and the approximation is determined by using

Zm = VmWkD
1

2

k . The number k of columns to retain may be determined by inspecting
the diagonal elements of D. In our implementation, we discarded the columns of W
corresponding to diagonal elements of D less than 10−12; a more conservative tolerance
could also be employed.

Due to the form of the approximate solution, it is also possible to monitor at low
cost the amount by which the approximate solution varies as the iterations proceed.
Indeed, letting Ym = [Ŷm, ym; yT

m, ηm] with Ŷm of size (2m− 2)× (2m− 2) we have

Xm −Xm−1 = [Vm−1, Vm]

[
Ŷm − Ym−1 ym

yT
m ηm

]
[Vm−1, Vm]T =: VmGmVT

m,

so that

‖Xm −Xm−1‖F
‖Xm−1‖F

=
‖Gm‖F
‖Ym−1‖F

, (3.5)

where both Gm and Ym−1 have small dimension. We do not advocate using this
quantity as stopping criterion, however we shall sometime refer to it in our experiments
for comparison purposes.

3.1. Implementation details. An implementation of the algorithm associated
with the procedure outlined above is given by the function Krylov-Plus-Inverted-
Krylov (hereafter K-PIK).

function Z=KPIK(A,v,m_max,k_max,tol)

nrmb=norm(rhs,’fro’)^2;

nrma=norm(A,’fro’);

[LA,UA]= lu(A); % For sym matrices use UA=chol(-A); LA=-UA’;

[ibeta,U(:,1:2)] = gram_sh([rhs, UA\ (LA\ rhs)]);

for j=1:m_max,

% Expand the approximation space
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jms=(j-1)*2+1;j1s=(j+1)*2;js=j*2;js1=js+1;

Up(:,1) = A*U(:,jms); Up(:,2) = UA\ (LA\ U(:,js));

%New Basis Block

for il=1:2 % Reorthogonalization

k_min=max(1,j-k_max);

for kk=k_min:j

k1=(kk-1)*2+1; k2=kk*2;

coef= U(1:n,k1:k2)’*Up;

H(k1:k2,jms:js) = H(k1:k2,jms:js)+ coef;

Up = Up - U(:,k1:k2)*coef;

end

end

if (j<=m)

[hinv,U(1:n,js1:j1s)]=gram_sh(Up); H(js1:j1s,jms:js)=inv(hinv);

end

I = speye(js+2);

% Update the T recurrence

if (j==1),

l(1:js+1,j)=[ H(1:3,1), speye(3,1)]*ibeta(1:2,2)/ibeta(1,1);

else

l(1:js+2,j)=l(1:js+2,j) + H(1:js+2,js-1)*rho;

end

T(1:js+2,1:2:js)=H(1:js+2,1:2:js); T(1:js+2,2:2:js)=l(1:js+2,1:j);

l(1:js+2,j+1)=( I(1:js+2,j*2)-T(1:js+2,1:js)*H(1:js,js))*hinv(2,2);

rho = hinv(1,2)/hinv(1,1);

% Solve small Lyapunov equation

Y = lyap(T(1:js,1:js),beta^2*speye(js,1)*speye(js,1)’);

% Compute residual and test for convergence

cc(1:2,1) = H(js1:j1s,js-1); cc(1:2,2) = l(js1:j1s,j);

nrmx = norm(Y,’fro’);

er2(j) = norm(cc*Y(js-1:js,:))/(nrmb+nrma*nrmx);

if (er2(j)<tol), break, end

end

% Reduced rank solution tol = 1e-12

[uY,sY]=eig(Y); [sY,id]=sort(diag(sY));

sY=flipud(sY); uY=uY(:,id(end:-1:1)); is=sum(abs(sY)>1e-12);

Y0 = uY(:,1:is)*diag(sqrt(sY(1:is)));

Z = U(:,1:js)*Y0;

A few comments are in order. The LU factorization of A is employed for medium
size matrices, and the Cholesky factorization of −A should be used for A symmetric.
For large matrices, a preconditioned iterative method could be employed to solve
systems with A at each iteration, where the preconditioner could be generated once
for all.

Function gram sh performs the modified Gram-Schmidt orthogonalization of the
new block [13]. The same process is used for the orthogonalization with respect to
older vectors in the basis. Note that this reduces to a procedure similar to the block
Lanczos algorithm (see [14]) when the problem is symmetric, by setting k max = 2,
so that only orthogonalization with respect to the previous two blocks is enforced. In
particular, for A symmetric, the whole matrix Vm is only needed at convergence to
recover the solution factor. Therefore, one can either store the columns that are not
needed in the orthogonalization process, or use a “two-pass” procedure, in which the
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basis vectors are first discarded. At convergence, the short-term iteration is performed
once again to recover the basis vectors and update the final solution. Although this
procedure is expensive, essentially doubling the computational cost of the generation
of the approximation space, the memory requirements become extremely limited,
allowing one to tackle very large problems, in the symmetric case.

The function lyap computes the numerical solution of the small dimensional
Lyapunov equation by means of a Schur decomposition type method; in our experi-
ments, we used the algorithm proposed by Sorensen and Zhou [34], which implements
the Bartels-Stewart method with only real arithmetic, leading to significant computa-
tional savings compared to the original method [2]; see also [32] for a recent evaluation
of solvers from the SLICOT package ([37]) for Lyapunov and other matrix equations
stemming from control system design. Since the matrix Tm is stable, other procedures
such as the Hammarling method could also be employed [19]. Note also that the fact
that Tm is block upper Hessenberg significantly reduces the computational work of the
method. We should remark, however, that as the approximation subspace increases,
this step becomes the most computational demanding task of the algorithm.

The stopping criterion is given by

‖AXm + XmAT + BBT ‖
2‖A‖F ‖Ym‖F + ‖B‖2F

≤ tol (3.6)

where tol is a chosen fixed threshold. The numerator is obtained by using the compu-
tationally inexpensive relation of Proposition 3.3. We observe that the output matrix
is the memory-conserving factor Zm of Xm = ZmZT

m.

3.2. Finite Termination and convergence. In exact arithmetic, the proce-
dure just described has finite termination, since for m such that 2m ≥ n the generated
vectors span the whole space. However, since two vectors at the time are added to
the current basis, loss of rank may occur during the orthogonalization with respect to
the older basis vectors, so that the next basis pair using Vm+1 cannot be built. We
next show that this implies convergence, as expected by the result of Proposition 3.1.

Proposition 3.4. Assume that m − 1 iterations of the K-PIK method have
been taken, with B ∈ R

n. At the mth iteration, assume that V̂m+1 in (3.3) has rank

less than two. Then Vm ∪ {V̂m+1} is an invariant subspace of A with respect to B.

Therefore, Range(Vm ∪ {V̂m+1}) contains the exact solution.
Proof. We recall that Range(Vm) = K2m(A,A−mB). Therefore, the given as-

sumption requires that there exist αi ∈ R, i = −m − 1, . . . ,m not all zero such
that

α−mA−mB+ . . . +α−1A
−1B + α0B + α1AB +

. . . +αm−1A
m−1B + αmAmB + α−m−1A

−m−1B = 0.

Assume first α−m−1 = 0 and αm 6= 0. Then, A(Am−1B) =
∑2m−1

j=0 βjA
jA−mB, which

shows that AVm = VmTm, and thus Vm is invariant for A. Using Xm = VmYmVT
m, we

obtain

AXm + XmAT + BBT = Vm(TmYm + YmTm + EET )VT
m = O.

Next, assume that α−m−1 6= 0 and αm 6= 0. Then,

A−1A−mB =

2m−1∑

j=0

βjA
jA−mB + β2mAmB,
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or, equivalently, A−mB −∑2m
j=1 βjA

jA−mB = β2mA(AmB), so that A[Vm, V
(1)
m ] =

[Vm, V
(1)
m ]T̂m where T̂m is the restriction of Tm+1 to the first (2m + 1) columns and

rows. Therefore, [Vm, V
(1)
m ] is invariant for A. As in the previous case, writing X ′

m =

[Vm, V
(1)
m ]Y ′

m[Vm, V
(1)
m ]T , where Y ′

m is the solution to the Lyapunov equation with

coefficient matrix T̂m, we obtain AX ′
m +X ′

mAT +BBT = [Vm, V
(1)
m ](T̂mY ′

m +Y ′
mT̂m +

EET )[Vm, V
(1)
m ]T = O, and the proof is completed.

If B is not a vector, then loss of rank while generating the basis may occur without
convergence. In this case, deflation strategies should be employed, as in stardard block
Krylov subspace methods [18].

In section 2 we discussed the close relation between the approximation to the
exponential and the projected Lyapunov equation. The new approach implicitly ap-
proximates W = exp(A)B with Ŵ = Vm exp(Tm)E in Km = K2m(A,A−mB), and
results in this context can be used to theoretically motivate our approach. For A sym-
metric and B a vector, it is shown by Druskin and Knizhnerman in [10] that the choice
K2m(A,A−mB) yields an improved approximation to the exponential, over the stan-
dard Krylov subspaceK2m(A,B). More precisely, they show that the quality of the ap-
proximation to the exponential (and in fact to a whole class of functions) in K2m(A,B)
corresponds to that in K√

2m(A,A−mB). Therefore, using K√
2m(A,A−mB) allows

one to achieve the same approximation quality as a regular Krylov space with a much
lower subspace dimension.

We explicitly observe that the method proposed in [10] aims at approximating
functions of matrices (in the symmetric case). In addition, the authors suggest to
fix a-priori the number k of matrix-vector products with A−1, so as to implicitly
build the approximation space span{A−kv,A−k+1v, . . . , Av, . . . , Am−1v, . . .}. Here,
we continue increasing the subspace in “both directions” until convergence. This can
be easily done thanks to the recurrence in Proposition 3.2 for the matrix Tm.

4. The Cholesky-Factorized ADI iteration. The Lyapunov equation was
shown to be a “model problem” for the classical ADI iteration in [11] and an imple-
mentation for sparse symmetric positive definite A was proposed in [38]. Since then,
several papers have discussed the practical implementation of the method, including
the case of complex spectrum [12], [25]. Much more recently, a Cholesky-factorized
version has made the method more appealing for large-scale computation, for the
approximate solution can be written as the product of two low-rank matrices [24].
We next review the method, which will be used for numerical comparisons in sec-
tion 5. Finally, we should mention that for the CF-ADI method to be derived, A
is only required to be stable, that is its eigenvalues should lie in the left-half plane,
whereas projection-type methods need dissipativity, to ensure that the projected and
restricted coefficient matrix in (2.1) is stable.

Given a set of parameters p1, p2, . . . , p`, the basic ADI iteration determines an
approximate solution as (cf., e.g., [24])

X0 = 0, Xj = −2pj(A + pjI)−1BBT (A + pjI)−T

+(A + pjI)−1(A− pjI)Xj−1(A− pjI)T (A + pjI)−T , j = 1, . . . , `.

It can be shown that Xj is symmetric and positive (semi-)definite so that it can be
represented as Xj = ZjZ

T
j . This Cholesky-type factorization with the possibly low-

rank matrix Zj allows one to iteratively form the columns of Zj one at the time.
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Setting Z1 =
√−2p1(A + p1I)−1B, the iteration is given by

Zj = [
√
−2pj(A + pjI)−1B, (A + pjI)−1(A− pjI)Zj−1] ∈ R

n×j , j = 1, . . . , `.

The actual implementation, hereafter CF-ADI, requires only one solve with A + pjI
per iteration; see, e.g., [24, Algorithm 2]. A cyclic procedure is obtained by continuing
the iteration above and cyclically using the parameters, and this is also referred to as
the cyclic low-rank Smith(`) method [27]. It is interesting to notice that the columns
of the factor Zj span a special rational Krylov subspace generated by alternating the
parameters as poles in the construction of the space [24].

For small size matrices, the recurrence can be stopped as soon as the residual
matrix AZjZ

T
j + ZjZ

T
j AT + BBT is sufficiently small in some norm. In fact, the

Frobenius norm of the residual matrix can be more cheaply computed using (see [27])

‖AZjZ
T
j + ZjZ

T
j AT + BBT ‖F = ‖[AZj , Zj , B][Z,AZj , B]T ‖F

= ‖rIrT ‖F , (4.1)

where r is the triangular square matrix of the “economy-size” QR factorization of
the matrix [AZj , Zj , B], and I is a permutation matrix. Due to memory limitations,
the previous quantities cannot be computed explicitly for large problems, therefore,
a criterion based on the current iterate is commonly employed. More precisely, if
Zj = [Zj−1, zj ], then using ‖ZjZ

T
j − Zj−1Z

T
j−1‖F = ‖zj‖2, the iteration is stopped

if ‖zj‖ (absolute) or ‖zj‖/‖Zj−1‖F (relative) is sufficiently small, which implies that
the recurrence stagnates. Note that neither of these last two stopping criteria ensures
that convergence has taken place.

The ADI parameters represent the key ingredient for the success of the method,
and the performance can wildly vary if the parameters are not chosen sufficiently well.
Optimal ADI parameters are a function of ` and solve the following min-max problem
([38])

min
p1,...,p`

max
x∈Ω

∣∣∣∣∣∣
∏̀

j=1

(pj − x)

(pj + x)

∣∣∣∣∣∣
,

where Ω ⊆ C
− contains the spectrum of A. Optimal parameters are known analyt-

ically when A has real spectrum; see, e.g., the discussion in [12]. The situation is
significantly more complicated for complex spectrum. In both cases, however, quite
accurate information on the region Ω is required. The computation of quasi-optimal
parameters has raised considerable attention, both as a general approximation theory
problem, as well as in more application oriented contexts; see, e.g., [35], [12] and
references therein. More recently an economical procedure was proposed by Penzl
in [27], which is based on the classical and shift-and-invert Arnoldi procedures and
using the associated Ritz values to compute suboptimal ADI parameters. In our ex-
periments, we used the function2 lp para in the lyapack package ([29]) to compute
these parameters.

Another important aspect associated with the implementation of the CF-ADI
iteration is related to the solves with A + pjI, j = 1, . . . , `. For very sparse and
structured matrices, e.g., banded with small bandwidth, each matrix A + pjI can be

2The Arnoldi procedures in lp para were modified to include reorthogonalization, so as to limit
the occurrence of unstable shifts.
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factorized once for all and the Cholesky factor stored and used cyclically when pj is
employed; this approach is suggested for instance in [29]. For the sake of comparison,
we report the performance of such implementation in Example 5.1 where factorizing
the matrix requires limited memory resources. Since this procedure is clearly too
memory consuming in large-scale applications, we opted for solving systems with
A + pjI repeatedly at occurrence.

An additional difficulty with CF-ADI is given by the use of complex arithmetic
when A is nonsymmetric and the ADI parameters are complex conjugate. In the
original CF-ADI iteration, conjugate parameters can be coupled [24]. In the cyclic
version, coupling does not seem to be doable, and the whole computation is carried
out in complex arithmetic to get a complex Zj . Note that it is possible to recover
a real factor Zj from the complex counterpart at the cost of additional computation
[29]. Due to the added computational difficulties caused by complex ADI parameters,
Gugercin et al. suggest only dealing with real parameters, even when the matrix
has complex spectrum [17]. These considerations show that the performance of the
method is crucially affected by the choices taken in the computation involving the ADI
parameters. To fully explore the properties of the method, in our experiments with
the cyclic CF-ADI method we decided to use complex parameters and thus allowed
complex arithmetic throughout the iteration. Further considerations regarding the
typical behavior of this method are reported in the next section.

5. Numerical experiments. In this section we report on our numerical expe-
rience with the new method described in section 3, compared with the cyclic CF-ADI
method. All reported experiments were obtained using Matlab 7.1 (R3) ([26]), on a
PC with a 2Ghz processor, and 2GBytes of RAM.

Both CPU time (in seconds) and number of iterations (as defined next) are used to
measure the cost of the approaches. For the CF-ADI method, the number of iterations
(counted as the number of cycles times the number of parameters) coincides with the
number of shifted systems to be solved, and also with the number of long vectors that
need to be stored. We recall here that we are assuming that B is a vector. When
B is a matrix with s > 1 columns, then s new columns need to be stored at each
iteration. For the K-PIK method, each (block) iteration involves one system solution
with A, and two new vectors entering the basis. Therefore, for the Krylov approach
the final memory requirements for the approximation space are given by twice the
number of iterations. In summary, the number of iterations indicates the amount of
system solves required by each method.

In all tests with the new method, we also report the rank of the final approximate
solution as discussed in section 3. The cost of this computation is included in the
overall cost of the method. For the CF-ADI iteration, we did not attempt to compute
the factor rank to limit the computational costs. Nonetheless, we remark that a
procedure has been proposed in [17] to more cheaply determine a lower-rank factor.

Unless explicitly stated, the CF-ADI complex parameters were determined with
search parameters (`, k,m) = (10, 40, 20), where ` is the number of ADI parameters3,
k is the number of Arnoldi iterations, and m is the number of inverted-Arnoldi itera-
tions in the procedure lp para; these are the parameters suggested in [27] for similar
problems. We stress that the cost of generating the ADI parameters was not taken
into account in the performance evaluation. Indeed, unless some tuning on (`, k,m)
is needed (cf. for instance Example 5.2), this pre-processing only employs a low per-

3This number may need to be adjusted to accommodate complex conjugates.
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centage of the whole cost of the algorithm. Our numerical experience showed that the
computation of the parameters was also sensitive to the choice of the starting vec-
tor that was used for generating spectral information. ADI parameters determined
with the same values (`, k,m) but with a different starting vector for the two Krylov
subspaces were significantly different, affecting the performance of the ADI iteration.

Stopping criterion. As already mentioned, a comparison between the new method
and the cyclic CF-ADI method faces the problem of the different stopping criteria used
in the two cases, namely (3.6) and the one discussed in section 4. Indeed, the fact
that the two stopping criteria are satisfied in the two cases, does not ensure that the
quality of the approximate solution is comparable. For this reason we decided to take
the “user point of view”, that is, we measure what the user can really handle during
the run of the algorithm. To this end, we fix a certain tolerance, and evaluate the
performance of the two methods by monitoring the associated “standard” stopping
criterion. More precisely,

K-PIK:
‖AXm + XmAT + BBT ‖

2‖A‖F ‖Ym‖F + ‖B‖2F
≤ tol (5.1)

Cyclic CF-ADI:
‖zj‖
‖Zj−1‖F

≤
√
tol. (5.2)

We recall that (5.2) corresponds to ‖Xj −Xj−1‖F /‖Xj−1‖F ≤ tol. In all examples
considered, we used tol = 10−10. In some cases, the final residual norm (4.1) of
the CF-ADI iteration was also computed, but this cost was not included in the total
computational requirements of the method, because in most cases overwhelming. We
found the CF-ADI residual norm often to be above the requested residual tolerance
(cf. Example 5.4).

Example 5.1. This example is taken from [27, Example 6.3] and describes a
model of heat flow with convection in the given domain. The associated parabolic
equation is given by

x′ = xxx + xyy − 10xxx − 1000yxy + b(x, y)u(t)

on the unit square, with Dirichlet boundary conditions. The 4900 × 4900 matrix A
resulting from the centered finite difference discretization of the differential terms is
nonsymmetric with complex eigenvalues, and has 24220 nonzero entries. Vector b was
taken to be the vector of all ones. This choice allows one to completely replicate the
reported experiments. The results in the following table show the performance of the
new method, compared to the cyclic CF-ADI iteration. For the sake of completeness,
in this example we also report the performance of the CF-ADI method when all matrix
factorizations are carried out at the beginning of the computation and thus stored, so
that at each ADI iteration only triangular solves are performed (CF-ADI m column).

K-PIK CF-ADI CF-ADI m
CPU time (s) 1.1 14 9
# iterations 19 80 80
dim. Approx. Space 38 80 80
Solution rank 35 80 80

The reported values show the competitiveness of the new method on this medium
size problem, with low CPU time and memory requirements. A posteriori, we com-
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puted the residual norm of the CF-ADI solution and found that it was above 10−5.
Following (3.5), we also computed the relative norm of the variation in the solution
of the new method, which for this example was 5.7 · 10−8. All these numbers show
that the quality of the approximate solutions significantly differs, depending on the
employed measure. In this particular case, we observed in a separate experiment that
letting the K-PIK solution difference (3.5) go below the threshold 10−10 only took
less than one additional second of CPU time.

Example 5.2. This example is a three-dimensional variant of the previous prob-
lem, and the differential equation is given by

x′ = xxx + xyy + xzz − 10xxx − 1000yxy − 10xz + b(x, y)u(t)

on the unit cube, with Dirichlet boundary conditions. The nonsymmetric matrix
resulting from centered finite difference discretization with 18 nodes in each direction
is of size 5832 × 5832 and has 38880 nonzero entries. Once again, b was taken to be
the vector of all ones. The results are shown in the first part of the following table.

n K-PIK CF-ADI CF-ADI
(10,40,20) (16,60,40)

5832 CPU time (s) 15 149 112
# iterations 56 110 85
dim. Approx. Space 112 110 85
Solution rank 47 110 85

KPIC CF-ADI CF-ADI
(16,60,40) (30,60,60)

10648 CPU time (s) 43 336 236
# iterations 45 85 65
dim. Approx. Space 90 85 65
Solution rank 45 85 65

The reported numbers are consistent with those of the previous experiments. It
is worth noticing that at completion, for the new method the difference ‖Xm −
Xm−1‖/‖Xm−1‖ was equal to about 2 · 10−8 in both problems (cf. (3.5)).

The behavior for different CF-ADI parameters is also reported. The computed
parameters for the two choices are also depicted in Figure 5.1, where the symbol ’×’
denotes the eigenvalues of A, ’o’ the ADI parameters for (`, k,m) = (10, 40, 20) and ’*’
the case (`, k,m) = (16, 60, 40). The last choice is clearly more successful in capturing
the relevant spectral boundary, suggesting better performance.

In the table we also report the results for a run of the same problem with a slightly
finer discretization, leading to a 10648 × 10648 nonsymmetric matrix A with 71632
nonzero entries. The results are consistent with those for the coarser mesh, confirming
the difficulty of the CF-ADI pre-processing in finding effective ADI parameters even
for different discretizations of the same problem.

Example 5.3. With this example we start our tests on symmetric problems.
Here we consider the parabolic equation

x′ = xxx + xyy + xzz + b(x, y)u(t)
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Fig. 5.1. Example 5.2. Spectrum of matrix A (’×’); ADI parameters for (`, k, m) = (10, 40, 20)
(symbol ’o’); and for (`, k, m) = (16, 60, 40) (symbol ’*’).

with homogeneous boundary conditions, and discretize the 3D Laplace operator with
centered finite differences in the unit cube. The resulting symmetric matrix for the
given discretization mesh has size n = 27000. The vector b is the vector of all ones.
Note that both methods can take great advantage of the symmetry of A. In particular,
the CF-ADI is all performed in real arithmetic, with ` = 10 real parameters. The
results are reported below.

K-PIK CF-ADI
CPU time (s) 132 202
# iterations 8 20
dim. Approx. Space 16 20
Solution rank 14 20

The numbers confirm the competitiveness of the new method, which does not require
any pre-processing to gain spectral information.

Example 5.4. We next consider a benchmark problem stemming from a semi-
discretized Heat Transfer Problem for Optimal Cooling of Steel Profiles [6]. The
associated linear time-invariant system is given by

Mx′(t) = Nx(t) + B0u(t), with t > 0,

x(0) = x0,

y(t) = C0x(t).

with M symmetric positive definite, N symmetric negative definite and B0 of small
column rank. We considered two tests available in the data set in [7], corresponding
to different mesh resolutions, with dimensions n = 1357 (file rail 1357 c60) and
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n = 5177 (rail 5177 c60). In our experiments, we used the first column of B0 for
each data set.

The numerical treatment of this problem requires the discussion of some addi-
tional details. For M nonsingular, the problem can be recast as in (1.1). Using
M = LLT , we have A = L−1NL−T , B = L−1B0 and C = C0L

−1. Clearly, none of
these matrices is computed explicitly, rather, the following operations are performed:

Av = L−1(N(L−T v)), A−1v = LT (N−1(Lv)).

Thus, matrix-vector products with A require the sequential solution of two triangular
systems. In the case of the ADI iteration, the system solution is given as (A+pI)−1v =
LT (N + pM)−1Lv, therefore requiring the solution of ` = 10 systems with coefficient
matrix N + pM at each ADI cycle.

The results for both problems are summarized in the following table.

n K-PIK CF-ADI CF-ADI
(10,40,20) (20,40,40)

1357 CPU time (s) 5.67 4.36 6.96
# iterations 59 90 140
dim. Approx. Space 118 90 140
Solution rank 12 90 140
Final Residual F-norm < 10−10(†) 2.8 · 10−5 2.8 · 10−5

5177 CPU time (s) 50 62 32
# iterations 86 220 120
dim. Approx. Space 172 220 120
Solution rank 13 220 120
Final Residual F-norm < 10−10(†) 9.9 · 10−5 9.9 · 10−5

†: Before rank truncation

We observe that the first problem is quite small, and the K-PIK method is pe-
nalized, since its auxiliary costs (reorthogonalizations and the solution of a small
Lyapunov equation) may be significant.

In this set of experiments, ‖B‖ ≈ 10−7 and ‖A‖F ≈ 10−3, so that ‖X‖ ≈ 10−3.
These figures make the two stopping criteria behave very differently and seem to
show that the CF-ADI method performs better than Krylov, when the parameters
are properly chosen (Note, however, that the performance of the parameters is di-
mension dependent). We investigate further this example by reporting the conver-
gence curves in Figure 5.2. In there, we show the behavior of the relative difference
‖Xm −Xm−1‖/‖Xm−1‖ for both methods, and also the residual norm for the Krylov
approach. Clearly, had the K-PIK convergence been measured in terms of the solu-
tion difference, the iteration would have been stopped much earlier, with significant
savings both in memory and CPU time requirements. In the table we also report
the final relative residual norm (cf. (5.1)) of the CF-ADI iteration. According to
this measure, the accuracy of the CF-ADI solution is not satisfactory, for a tolerance
tol=10−10.

6. Conclusions. In this paper we have presented a new projection method for
determining low-rank approximate solutions to large-scale Lyapunov algebraic equa-
tions with dissipative coefficient matrix. Our experiments show that the new algo-
rithm is extremely competitive with the state-of-the-art solver cyclic CF-ADI, and
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Fig. 5.2. Example 5.4. Convergence history of the two methods. Left: n = 1357. Right:
n = 5177.

it does not require estimation of parameters. The new approach provides a natu-
ral, cheaply computable a-posteriori stopping criterion. Note that such a measure
is missing in the cyclic CF-ADI iteration. Moreover, the new method provides an
economical procedure to further decrease the rank of the final approximate factor.
The approach effectively reduces the original problem to one of much smaller dimen-
sion, in a way that information on the problem augments as the dimension of the
approximation space increases. This view point is completely different from CF-ADI
type of iteration, where spectral information on the problem is gathered before-hand,
and then used repeatedly. This difference is reminiscent of the differences between
semi-iterative and fully non-stationary methods in the solution of systems of linear
equations [13].

We have tested the new approach on medium size problems, while even greater
benefits can be obtained when solving larger problems. In such setting, the inner
system solves could be effectively carried out by a preconditioned iterative method.
Note that this procedure is far less straightforward in the case of CF-ADI, for the
presence of several complex shifts. We also mention that if the dimension of the
approximation space becomes large, then the costly step of solving the projected
Lyapunov equation can be done periodically, and not at every iteration. This small
variant may significantly reduce the overall cost of the method.

The general framework described in section 2 suggests that further acceleration
techniques could be derived by constructing new approximation spaces that satisfy
the given constraints. Moreover, several computational issues deserve deeper investi-
gation, such as the possibility of implementing truncation, restarting or some other
memory-conserving strategy.
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