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2 V. Simoncini

1. Introduction. Given the real or complex matrices A,D,E,B and C of con-
forming dimensions, we consider the linear matrix equation

AXE +DXB = C (1.1)

in the unknown matrix1 X, and its various generalizations. If E and D are identity
matrices, then (1.1) is called the Sylvester equation, as it first appearance is usually
associated with the work of J.J. Sylvester [247]; if in addition B = A∗, where A∗ is the
conjugate transpose of A, then the equation is called the Lyapunov equation in honor
of A. M. Lyapunov and his early contributions to the stability problem of motion;
see [14],[186] and the whole issue of the same journal. We shall mainly consider the
generic case, thus assuming that the all involved matrices are nonzero.

Under certain conditions on the coefficient matrices, (1.1) has a unique solution,
with available elegant and explicit closed forms. These are usually inappropriate as
computational devices, either because they involve estimations of integrals, or because
they can be polluted with numerical instabilities of various sorts. Nonetheless, closed
forms and other properties of the solution matrix have strongly influenced the com-
putational strategies that have lead to most algorithms used today for numerically
solving (1.1), in the case of small or large dimensions of the coefficient matrix. Due to
the availability of robust and reliable core algorithms, (1.1) now arises in an increas-
ingly larger number of scientific computations, from statistics to dynamical systems
analysis - with a major role in control applications, and also as a workhorse of more
intensive computational methods. In section 2 we will briefly review this broad range
of numerical and application problems.

Our aim is to provide an overview of the major algorithmic developments that
have taken place in the past few decades in the numerical solution of (1.1) and of
related problems, both in the small and large scale cases. A distinctive feature in
the large-scale setting is that although the coefficient matrices may be sparse, the
solution matrix is usually dense and thus impossible to store in memory. Therefore,
ad-hoc strategies need to be devised to approximate the exact solution in an affordable
manner.

Functions related to the solution matrix X such as the spectrum, the trace and the
determinant, also have an important role in stability analysis and other applications.
Although we shall not discuss these problems in detail, we shall occasionally point to
relevant results and appropriate references.

The Lyapunov equation has received a lot of attention, mainly thanks to its
prominent role in control. In particular, many authors have focused on numerical
strategies associated specifically to this equation, making the corresponding literature
particularly rich. As a consequence, the Sylvester and Lyapunov equations have
somehow evolved differently. For these reasons, and to account for the literature
in a homogeneous way, we shall first discuss numerical strategies for the Sylvester
equation, and then treat in detail the Lyapunov problem, emphasizing the overlapping
solution methods. It should be noticed, however, that all numerical solution strategies
available for the Sylvester equation can be used for the Lyapunov case, and that many
of the Lyapunov solvers can be naturally adapted to the general case. For A and B of
size up to a few hundreds, the Schur-decomposition based algorithm by Bartels and
Stewart ([15]) has since its appearance become the main numerical solution tool. In
the large scale case, various directions have been taken, and a selection of effective

1Here and in the following we shall use bold face letters to denote the unknown solution matrices.
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algorithms is available, from projection methods to sparse format iterations, with no
clear winner for all settings. The distinction between small, moderate and large size is
clearly architecture dependent. In the following we shall refer to “small” and medium
problem size when the coefficient matrices have dimensions of a few thousands at most.
These linear equations can be solved with decomposition-based methods on laptops
with moderate computational efforts. The target for current large-scale research are
matrices of dimensions O(106) or larger, with a variety of sparsity patterns.

Throughout the paper we shall assume that E,D are either the identity, or are
nonsingular matrices. Singular E,D have great relevance in control applications as-
sociated with differential-algebraic equations and descriptor systems but require a
specialized treatment, which can be found, for instance, in [166].

Equation (1.1) is a particular case of the linear matrix equation

A1XB1 +A2XB2 + . . . AkXBk = C, (1.2)

with Ai, Bi, i = 1, . . . , k square matrices, and C of dimension n×m. While up to 15-20
years ago this multi-term equation could be rightly considered of mainly theoretical
interest, the dramatic recent developments associated with problems stemming from
applications with a dominant stochastic component have brought generalized linear
matrix equations to play a fundamental role; see also section 2 and section 7.2.

Equation (1.2) is very difficult to analyze in its full generality, and necessary and
sufficient conditions for the existence and uniqueness of the solution X explicitly based
on {Ai}, {Bi}, are hard to get, except for some very special cases [170],[159]. The
numerical solution of (1.2) has been largely overlooked, and this is particularly so in
the large-scale setting, namely when either or both Ai and Bi have large dimensions.
Moreover, while from a theoretical view point the importance of taking into account
the structure of the problem has been acknowledged [159], this is not so for compu-
tational strategies, especially with large scale problems. The main algorithmic device
for (1.2) consists in transforming the matrix above into a vector form by means of the
Kronecker product (defined below). Such basic approach was abandoned for (1.1) as
a core method, since algorithms with a complexity of a modest power of the coeffi-
cient matrices dimension are now available. The efficient numerical solution to (1.2)
thus represents the next frontier for linear matrix equations, so as to assist quickly
developing application problems.

Various forms of generalizations have also been tackled, as they are more and more
often encountered in applications. This is the case, for instance, for bilinear equations
(in two unknown matrices), and for systems of bilinear equations. These represent an
open computational challenge, and their efficient numerical solution would provide a
great advantage for emerging mathematical models.

A very common situation arises when B = 0 and C is tall in (1.1), so that
the matrix equation reduces to a standard linear system with multiple right-hand
sides, the columns of C. This is an important problem, and it is often encountered
in applications; a significant body of literature is available, with a large number of
contributions in the past twenty years. Since the most popular procedures for the
solution of AX = C are usually derived from the single right-hand side case, we shall
not discuss them here, as the topic surely deserves a dedicated treatment; instead, we
refer to [220] and to the recent list of references [114].

After a brief account of the numerous application problems where linear matrix
equations arise, we shall recall the main properties of these equations, together with
possible explicit forms for their solution matrix. The rest of this paper describes
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many approaches that have been proposed in the recent literature: we first treat the
Sylvester equation, when A and B are small, when one of the two is large, and when
both are large. Indeed, rather different approaches can be employed depending on the
size of the two matrices. We shall then focus on the Lyapunov equation: due to its
relevance in control, many developments have specifically focused on this equation,
therefore the problem deserves an ad-hoc treatment. The small-scale problem is com-
putationally well understood, whereas the large-scale case has seen quite significant
developments in the past ten years. Later sections report on the computational de-
vices associated with the numerical solution of various generalizations of (1.1), which
have been taking place in the past few years.

2. Applications. Matrix equations are ubiquitous in signal processing, control
and system theory; see, e.g., [4],[258],[91],[70],[23],[28],[224],[63] and references therein.
Most time-dependent models may be represented as linear or non-linear dynamical
systems, accounting for the prediction, simulation and control of real world phenom-
ena. The numerical solution of matrix equations and the relevance of its role within
engineering applications justify the great effort put into this problem by the scientific
community, both from the mathematical and from the applied directions. Special
issues of journals and multi-contribution books are often devoted to advances in this
and related areas, attesting the continuous pressure for up-front numerical devices,
that can take into account the properties of the problem, such as structure, size and
operational characterizations.

Linear matrix equations have an important role in the stability analysis of linear
dynamical systems, and take also part in the theoretical developments of non-linear
ones. Consider the following continuous-time linear system2

ẋ = Ax+B1u (2.1)

y = B>2 x (2.2)

where x is the model state, u is the input and y is the output, and the matrices A,B1

and B2 are time-invariant. Assuming A is stable, that is its eigenvalues have negative
real part, then the solutions P and Q to the following Lyapunov equations

AP + PA> +B1B
>
1 = 0, A>Q + QA+B2B

>
2 = 0,

are called the controllability and observability Gramians, respectively, and they are
used, for instance, to control the energy of the system [4, sec.4.3.1]. Under certain
additional hypotheses it may be shown that the symmetric matrices P and Q are
positive definite. These two latter matrices are key when one is interested in reducing
the original system into one of much smaller dimension, while essentially preserving
the main dynamical system properties. Indeed, one of the goals of balanced reduction,
is to determine an appropriate representation basis for the system such that the
Gramians are equal and diagonal [193], so that the reduction of that basis will maintain
this property of the Gramians. The diagonal Gramians then contain information on
the output error induced by the reduced model.

Alternatively, if B1 and B2 have the same number of columns, one can solve the
following Sylvester equation,

AW + WA+B1B
>
2 = 0,

2In the control literature, B1, B2 are usually denoted by B and C>, respectively; we opted for a
slightly different notation because here B and C have a different meaning.
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thus obtaining the cross-Gramian W [88], which contains information on controlla-
bility and observability of the system. For B1, B2 having a single column, or for A
symmetric and B1, B2 such that B>2 (zI−A)−1B1 is symmetric, it is possible to show
that W2 = PQ, so that the eigenvalues of W coincide with the square root of the
eigenvalues of PQ [89],[242]. In general, the latter are called the Hankel singular
values of the system, and they are invariant under state space transformations; we
refer to [4] for a detailed discussion of these quantities and their role in model order
reduction. A different Sylvester equation was used in [92] to derive a numerical algo-
rithm that couples the two Gramians P and Q. Similar results can be stated for the
case of the discrete-time time-invariant linear systems

x(t+ 1) = Ax(t) +B1u(t)

y(t) = B>2 x(t),

which are associated, for instance, with the discrete-time Lyapunov equation

AXA> −X +B1B
>
1 = 0.

Linear matrix equations are also used in control as a technical tool for solving
other problems, see, e.g., [22],[286],[91],[172],[198], and for the reduction of nonlinear
models; see, e.g., [265],[160],[294],[62] and references therein.

The Sylvester equation often occurs in linear and generalized eigenvalue problems
for the computation of invariant subspaces by means of the Riccati equation [246],
[235], [73]. In fact, the algebraic Riccati equation itself provides a formidable setting
for linear matrix equations: this quadratic equation is sometimes dealt with by solv-
ing a sequence of linear Sylvester equations with possibly varying known term and
coefficient matrices [43]. With the aim of controlling resonance modes in vibrating
structures, Sylvester equations also arise in solving quadratic eigenvalue assignment
problems, see, e.g., [50]. Large eigenvalue problems are also a key step in the de-
tection of a Hopf bifurcation in large-scale dynamical systems that depend on some
physical parameters. However, it is possible to compute these parameters without
actually computing the relevant eigenvalues. In [189], it was shown that this can be
performed by means of a matrix inverse iteration procedure, which involves approxi-
mately solving a sequence of large-scale Lyapunov equations. Lyapunov equations are
a theoretical and computational tool also in hydrodynamic stability theory of time-
dependent problems, which is emerging as an attractive alternative to classical modal
spectral analysis, in the quantitative description of short-term disturbance behaviors
[225].

Different application areas have emerged that can take advantage of an efficient
solution of linear matrix equations. Problems associated with image processing seem
to provide a rich source. For instance, Sylvester equations can be used to formulate
the problem of restoration of images affected by noise [55]: an optimization model is
formulated describing the image-object correspondence, and noise is included. The
minimum of the cost functional can be explicitly obtained, and the estimated image
can be reconstructed as the solution of a linear matrix equation. A similar optimiza-
tion model can be used in adaptive optics, a technology developed for compensation
of aberrations in optical systems or due to atmospheric turbulence, mainly used in
high quality astronomical observations and measurements [214]. Within the image
application, the problem of estimating a 3D object’s pose obtained from 2D image
sequences can be stated as a constrained optimization problem [60], [59]. This leads
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to the solution of a sequence of small Sylvester equations. In fact, depending on the
number of poses, the occurring linear matrix equations have more than two terms,
and can be formulated as in (1.2); see [59].

The Sylvester equation was highlighted as a model problem in the solution of el-
liptic boundary value problems governed by the two-dimensional differential operator

L(u) = −∇ · (κ∇u)

by Ellner and Wachspress [83]: they devised a matrix algorithmic version of the (dif-
ferential) ADI algorithm by Peaceman and Rachford, and this became the founder of
ADI-type methods for linear matrix equations. Wachspress showed that the constant
coefficient second order differential equation can be used as preconditioner for the
original operator, and that the application of the preconditioner amounts to solving a
Lyapunov equation [270]. Sylvester equations can also be used in the implementation
of implicit Runge-Kutta integration formulae and block multistep formulae for the
numerical solution of ordinary differential equations [86]. Discrete-time Sylvester and
Lyapunov equations (cf. section 6) also arise for instance in statistics and probabil-
ity ([155],[154],[153],[10]), and as a building block of discrete-time algebraic Riccati
equation [43]. A large list of references on application problems where the Lyapunov
equation plays an important role is available in the last chapter of [91].

3. Notation and preliminary definitions. Unless stated otherwise, through-
out the paper we shall assume that the coefficient matrices are real. Moreover, spec(A)
denotes the set of eigenvalues of A, and A>, A∗ denote that transpose and conjugate
transpose of A, respectively. A matrix A is stable if all its eigenvalues have negative
real part, and passive if for all unit 2-norm complex vectors x, the quantity x∗Ax
has negative real part; the term “negative definite” is sometimes also used instead of
“passive”. The notation A > 0 (A ≥ 0) states that A is a symmetric and positive
definite (semi-definite) matrix.

The vector ei denotes the ith column of the identity matrix, whose dimension will
be clear from the context; In denotes the identity matrix of size n, and the subscript
will be omitted when clear from the context. Throughout, given x ∈ Cn, ‖x‖ denotes
the 2-norm of x, ‖A‖ or ‖A‖2 denotes the matrix norm induced by the vector 2-
norm, while ‖A‖F denotes the Frobenius norm of A = (ai,j)i=1,...,n,j=1,...m, that is
‖A‖2F =

∑
i,j |ai,j |2. The notation [A;B] will be often used to express the matrix

obtained by stacking the matrix B below the matrix A, both having conforming
dimensions.

For given matrices A ∈ CnA×mA , A = (aij)i=1,...,nA,j=1,...,mA
and B ∈ CnB×mB ,

the Kronecker product is defined as

A⊗B =


a11B a12B · · · a1mA

B
a21B a22B · · · a2mA

B
...

...
anA1B anA2B · · · anAmA

B

 ∈ CnAnB×mAmB ;

the vec operator stacks the columns of a matrix X = [x1, . . . , xm] ∈ Cn×m one after
the other as

vec(X) =

x1

...
xm

 ∈ Cnm×1.
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We summarize some well known properties of the Kronecker product in the next
lemma.

Lemma 3.1. (cf., e.g., [132]) Some properties:
(i) vec(AXB) = (B> ⊗A)vec(X) (note the complex transposition for B);

(ii) If A ∈ Rn×n and B ∈ Rm×m, and λA ∈ spec(A), λB ∈ spec(B), then
λAλB ∈ spec(A ⊗ B); (and every eigenvalue of A ⊗ B is the product of
eigenvalues of A and B)

(iii) Under the hypotheses of (ii), λA + λB ∈ spec(Im ⊗ A+ B ⊗ In); (and every
eigenvalue of Im ⊗A+B ⊗ In is the sum of eigenvalues of A and B)

4. Continuous-time Sylvester equation. The continuous-time Sylvester e-
quation is possibly the most broadly employed linear matrix equation, and is given
as

AX + XB = C, (4.1)

with A ∈ Rn×n, B ∈ Rm×m and C ∈ Rn×m. In general, the dimensions of A and
B may be orders of magnitude different, and this fact is key in selecting the most
appropriate numerical solution strategy.

A general result on the consistency of the Sylvester equation was given by Roth
in 1952 in [217], and it reads: the equation (4.1) admits a solution if and only if the
matrices [

A −C
0 −B

]
and

[
A 0
0 −B

]
(4.2)

are similar.
Using the Kronecker product, this matrix equation can be rewritten as the fol-

lowing standard (vector) linear system

Ax = c, with
A = Im ⊗A+B> ⊗ In
x = vec(X), c = vec(C),

(4.3)

from which we can deduce that the system admits a solution for any c and this is
unique, if and only if the matrix A is nonsingular. Taking into account Lemma
3.1(iii), this is equivalent to requiring that spec(A) ∩ spec(−B) = ∅ (cf., e.g., [132,
Th. 4.4.6]). In the following we shall thus always assume that this latter condition
is satisfied, so that the solution to (4.1) exists and is unique; we refer to standard
matrix analysis books for the case when this spectral condition is not satisfied (cf.,
e.g., [132], [169]). The homogeneous case, namely when C = 0, can be handled
correspondingly: the matrix equation has only the trivial solution X = 0 if and only
if spec(A) ∩ spec(−B) = ∅ [98, sec.17.8].

The solution X of (4.1) may be written in closed form in a number of different
ways (see, e.g., [170], [72], [132], [141]):

(a) Integral of resolvents. The following representation, due to Krein, exploits
spectral theory arguments:

X = − 1

4π2

∫
Γ1

∫
Γ2

(λIn −A)−1C(µIm −B)−1

λ+ µ
dµdλ, (4.4)

where Γ1,Γ2 are contours containing and sufficiently close to, the spectra of
A and B, respectively.
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(b) Integral of exponentials. This representation is tightly connected to the pre-
vious one,

X = −
∫ ∞

0

eAtCeBtdt, (4.5)

where eHt is the matrix exponential of Ht. Here the spectra of A and B are
supposed to be separated by a vertical line.

(c) Finite power sum. Let C = CAC
>
B , and let m, k be the degrees of the minimal

polynomials of A with respect to CA and of B with respect to CB , respectively.
Then

X =

m−1∑
i=0

k−1∑
j=0

γijA
iCBj = [CA, ACA, . . . , A

m−1CA](γ ⊗ I)


C>B
C>BB

...
C>BB

k−1


where γ is the solution of the Sylvester equation with coefficient matrices the
companion matrices of A and B, and right-hand side the matrix E1E

>
1 , where

E1 contains the first few columns of the identity matrix, and it has the same
number of columns as CA and CB ; see also [167].

(d) Similarity transformations. Strictly related to (c), in addition this form as-
sumes that A and B can be diagonalized, U−1AU = diag(λ1, . . . , λn) and

V −1BV = diag(µ1, . . . , µn). Let C̃ = U−1CV . Then

X = UX̃V −1, with x̃ij =
c̃ij

λi + µj
.

Other representations can be found in [170], and for more general equations of
the same type, in [276]. We also mention that the columns of [X; I] span an invariant
subspace for the left matrix in (4.2), that is[

A −C
0 −B

] [
X
I

]
=

[
X
I

]
S (4.6)

where it holds that S = −B. This viewpoint has allowed the derivation of several
properties of the matrix equation, from stability to algorithmic devices.

In [72] the closed form in (c) is used to derive results on the solution rank. In
there, the controllability (resp. observability) of the pair (A,CA) (resp. (B>, CB))
plays a crucial role3. Results on the nonsingularity of the solution based on the same
conditions are also contained in [121]. For more general equations, corresponding
conditions can be found, e.g., in [275].

Early computational methods relied on one of the analytic expressions above; see,
e.g., [141], and the account on early methods in [91]. However, these closed forms
are no longer used to numerically solve the Sylvester equation, as they are clearly
inefficient - and possibly unstable - even for small n,m. On the other hand, they
have been used as motivation to several successful methods and they represent an
important starting point for theoretical investigations of numerical approaches.

3A pair (M,C) is controllable if the matrix [C,MC, . . . ,Mn−1C] has full row rank n, equal to
the row dimension of M ; (M,C>) is observable if (M>, C) is controllable.
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4.1. Stability and sensitivity issues of the Sylvester equation. In this
section we provide a brief account of the most pressing problems encountered when
dealing with solutions to the Sylvester equation. The topic is broad, and it also
involves the solution of related matrix equations; we refer to the thorough treatment
in [159] for a full account on the perturbation theory of this and other important
equations in control.

The sensitivity to perturbations of the solution X to (4.1) is inversely proportional
to the separation between A and −B, where the separation function of two matrices
A1 and A2 is defined as

sepp(A1, A2) = min
‖P‖p=1

‖A1P − PA2‖p,

with p = 2, F [245][262]. This can be viewed by using the theory developed by Stewart
in [245], where the columns of [X; I] are a basis for an invariant subspace for the first
block matrix in (4.6). We refer, e.g., to [99, section 7.6.3] where the role of ‖X‖ in the
conditioning of the associated eigenvalues is emphasized. More specifically, it holds
that

‖X‖ < 2
‖C‖

sep2(A,−B)
.

For non-normal matrices, the bound above shows that a good spectral distance be-
tween A and −B might not be sufficient to limit the size of ‖X‖, since sep2(A,−B) can
be much smaller than the distance between the spectra of A and −B. The function
sep is thus viewed as a condition number for the following Sylvester operator

S : Rn×m → Rn×m, S(X) = AX +XB; (4.7)

numerical estimates for the sep function can be obtained by carefully adapting clas-
sical strategies [51]. The discussion above also shows that for small scale equations,
algorithms that rely on orthogonal reduction should be preferred in terms of numerical
stability. Methods that rely on more general similarity transformations may transfer
the ill-conditioning of the transformation matrix onto large errors in the obtained
solution [245, Th.4.8].

A major difference between matrix equations and standard linear systems lies in
their stability properties. In particular, a small Sylvester equation residual does not
necessarily imply a small backward error [124, sec.15.2]. Define the backward error
for an approximation X as

η(X) :=min{ε : (A+ ∆A)X + X(B + ∆B) = C + ∆C,

‖∆A‖F ≤ ε‖A‖F , ‖∆B‖F ≤ ε‖B‖F , ‖∆C‖F ≤ ε‖C‖F },

and the residual as R = C − (AX + XB). Then ([124])

η(X) ≤ µ ‖R‖F
(‖A‖F + ‖B‖F )‖X‖F + ‖C‖F

, (4.8)

where µ is an amplification factor depending on the data norms and on the singular
values of X. For instance, for n = m this factor has the expression

µ =
(‖A‖F + ‖B‖F )‖X‖F + ‖C‖F

((‖A‖2F + ‖B‖2F )σmin(X)2 + ‖C‖2F )
1
2

,
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making the dependence on the norm and ill-conditioning of X more apparent. A more
complex situation occurs for n 6= m; we refer to [124, sec.15.2] for more details. We
also mention that in [254] bounds for the norm of the solution X and of its perturbation
are obtained, that emphasize the influence of the possibly low-rank right-hand side
on the sensitivity of the solution itself.

The distribution of the singular values of X plays a crucial role in the stabil-
ity analysis of dynamical systems. Remarkably, such distribution is also extremely
relevant in the development and convergence analysis of iterative solution methods.
Indeed, it is expected that a Sylvester equation having solution with exponentially
decaying singular values will be well approximated by a low rank matrix. We recall
here the result described by Sabino in [221, Th.2.1.1], and we refer to Sabino’s PhD
thesis for further discussion related to this bound. Here K and K ′ are the complete
elliptic integrals of the first kind4 [1]. Additional considerations are postponed to the
Lyapunov equation case in section 5.

Theorem 4.1. Let A and B be stable and symmetric, with spectra contained in
[a, b] and [c, d], respectively. Define η = 2(b− a)(d− c)/((a+ c)(b+ d)). Assume C is
of rank p. Then the singular values σ1 ≥ . . . ≥ σmin{m,n} of the solution X to (4.1)
satisfy

σpr+1

σ1
≤

(
1−

√
k′r

1 +
√
k′r

)2

, 1 ≤ pr < n,

where k′r = 1/(1+η+
√
η(η + 2)) is the complementary elliptic modulus corresponding

to the nome qr, q := exp(−πK ′/K).
A more accessible and practical estimate for B = A and small condition number

κ(A) may be obtained as ([221])

σpr+1

σ1
. 4exp(−π2r/ log(4κ(A))). (4.9)

Easy to use variants of (4.9) are compared in [221] with earlier estimates in [204].
Results for A and B nonsymmetric are few, and mainly experimental; non-normality
may strongly influence the solution rank, so that results will significantly depart from
the above bound. This area of research is essentially open.

From a numerical analysis viewpoint, we notice that the main ingredients from ra-
tional approximation used for results of the type above are the same as those obtained
for rational space projections and ADI-type iterations (see section 4.4.1 and section
4.4.2, respectively), which also rely on minimax rational approximations; in fact, the
result above is intimately related to similar estimates by Ellner and Wachspress in
[83], [84].

4.2. Sylvester equation. Small scale computation. A robust and efficient
method for numerically solving Sylvester equations of small and moderate size was
introduced in 1972 by Bartels and Stewart [15], and with some modifications is still
the state-of-the-art; in section 8 we give an account of current software, highly relying
on this method. The idea is to compute the Schur decomposition of the two coefficient
matrices and then transform the given equation into an equivalent one that uses the
quasi-lower/upper structure of the Schur matrices. The last equation can then be

4They are defined as K = K(k) =
∫ 1
0 [(1− t2)(1− kt2)]−1/2dt and K′ = K(1− k), with k being

the modulus, k =
√

1− (k′)2, while the complementary elliptic modulus k′ is given.
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explicitly solved element by element. More precisely, the algorithm performs the
following steps (see, e.g., [99],[229]):

1. Compute the Schur forms: A∗ = URU∗, B = V SV ∗ with R,S upper trian-
gular;

2. Solve R∗Y + YS = U∗CV for Y;
3. Compute X = UYV ∗.

The Schur forms in the first step are obtained by the QR algorithm [99], while the
third step is a simple product. It remains to explain how to solve the new structured
Sylvester equation in the second step. Assuming complex arithmetic is used through-
out, R∗ is lower triangular and S is upper triangular, so that, for instance, the (1,1)
element of Y can be readily obtained. From there the next elements of the first row
in Y can also be obtained sequentially. A similar reasoning can be used for the sub-
sequent rows. In the case of real A and B, the real Schur form may be exploited,
where R and S are now quasi-triangular, that is the diagonals have 2 × 2 and 1 × 1
blocks, corresponding to complex and real eigenvalues, respectively. The process relies
on the equivalence between a 2× 2 Sylvester equation and the associated Kronecker
form [229]. The same sequential process as in the complex case can be employed to
compute the elements of Y, as long as the diagonal blocks can be made conforming
[15],[99]. The method just outlined is one of the workhorses of the software package
SLICOT [257],[238],[35]. The leading computational cost is given by the Schur forms
in step one, which for real matrices are nowadays performed in real arithmetic. Ex-
plicitly writing the Schur form costs at least 10n3 for a matrix of size n [99]; to limit
costs, the SLICOT developers suggest to employ the Bartels-Stewart algorithm only
if either A or B is already in Schur or upper Hessenberg form [238]. For general ma-
trices A and B, the method proposed by Golub, Nash and Van Loan in 1979 ([100])
can be considerably faster, especially if either m or n is significantly smaller than the
other. This latter method replaces the Schur decomposition of the larger matrix, say,
B, with the Hessenberg decomposition of the same matrix whose computational cost
is 5/3m3, which should be compared with 10m3 of the Schur form [100]. We refer to
[229, sec.2.3.1] for a more detailed comparisons on the computational costs. In fact,
these flop counts may be too pessimistic and thus possibly misleading: CPU times
are in practice more similar than predicted from the flop count. In [241], a variant
of the Bartels-Stewart algorithm is proposed: the forward-backward substitution in
step 2 is performed by a column-wise block scheme, which seems to be better suited
for modern computer architectures than the original complex version; we also refer to
[146],[147] for even more effective implementations.

Iterative solution strategies for small size matrices have also been proposed: given
an initial guess X0, they determine a sequence of matrices X1, . . . ,Xk, . . . that con-
verge to X. These are related to a basic Newton iteration for approximating the
matrix sign function; see, e.g., [22]. In section 5.2.3 we will give more details in re-
lation with the Lyapunov equation, although the procedure can be used for stable
Sylvester equations as well [39]. These approaches are easier to parallelized than QR
based methods. For instance, in [39] they provide high efficiency and scalability on
clusters of machine processors.

Recently, an Hermitian and skew-Hermitian splitting strategy was used in [9]; the
idea could be adapted to solve large scale problems, however important computational
issues such as low rank recurrences, parameter selection and residual computation still
need to be addressed. The connection with classical ADI methods is also unexplored.
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Finally, a numerical method based on a closed form solution was derived in [210],
which used the characteristic polynomials of A and B, though the stability properties
of this approach have not been analyzed. We recall that the solution can be given
in closed form by using the minimal polynomials of A and B, if C is low rank; cf.
section 4.1. For stability reasons, generic numerical procedures based on these closed
forms should be avoided.

To conclude, a special mention deserves the Sylvester equation with B = −A,
yielding the so-called displacement equation

AX−XA = C, (4.10)

which measures how far A and X are from commuting; see [44],[97] for typical applica-
tions in the context of structured matrices such as Cauchy-like and Toeplitz matrices.

4.3. Sylvester equation. Large A and small B. When either n or m is large,
reduction may require a prohibitive amount of space, due to the full decomposition of
the corresponding large matrix. Selecting the most appropriate solver still depends on
whether the smaller matrix has very small dimension. Different approaches can then
be used when decomposing the small matrix is feasible5. To fix ideas, and without
loss of generality, we shall assume that B is small and A is large, so that m� n.

In this section we thus consider that the equation can be visualized as: A

X

+

X

 [B] =

C
 , (4.11)

so that only the large dimension of A provides new challenges with respect to sec-
tion 4.2. This setting arises for instance in the solution of eigenvalue problems [274,
sec.2.4, sec.6.6] and in (separable) boundary value problems [268],[272],[42]. We read-
ily notice that for very small m, the transformation with the Kronecker product (4.3)
may be appealing, since the dimension of the linear system may be just a few (m)
times that of A. However, projection methods acting on the original matrix equation
turn out to be extremely effective in this case, possibly justifying the fewer attempts
to pursue such Kronecker formulation. We next describe some of the standard ap-
proaches currently employed.

Assume that B can be spectrally decomposed cheaply and stably. Then by writing
B = WSW−1 with S = diag(s1, . . . , sm), we obtain

AX̂ + X̂S = Ĉ, X̂ = XW, Ĉ = CW. (4.12)

For B symmetric, W−1 = W>. Each column of X̂ can be obtained by solving a
shifted linear system (A+ siI)(X̂)i = (Ĉ)i, where (X̂)i denotes the ith column of X̂.
The main steps are as follows:

1. Compute the decomposition B = WSW−1

2. Set Ĉ = CW
3. For each i, solve (A+ siI)(X̂)i = (Ĉ)i
4. Compute X = X̂W−1

5Feasibility is machine architecture dependent; nonetheless, a matrix of dimension much less
than one thousand should be considered small.
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The shifted systems in step 3 can be solved simultaneously by using standard
solvers for algebraic linear systems, either direct or iterative; see, e.g., [220], [236] and
their references. We also note that step 3 is “embarrassingly parallel” in case different
systems can be distributed on a multiprocessor machine.

If the eigendecomposition of B is not appealing, then one can resort to a (complex)
Schur decomposition B = QRBQ

∗, giving AXQ+ XQRB = CQ. Since RB is upper
triangular, these systems can still be solved by using the shifted form, but this time
in sequence: letting rij be the (i, j) entry of RB and Ĉ = CQ, we have

for i = 1, . . . ,m, (A+ riiI)(X̂)i = (Ĉ)i −
i−1∑
k=1

rki(X̂)k, X̂ = XQ; (4.13)

such approach has been used in different contexts, see, e.g., [111],[243],[34], where the
considered Sylvester equation is occasionally called sparse-dense equation.

For moderate n, the use of direct methods in (4.12) and (4.13) may entail the use
of complex arithmetic if the shifts (eigenvalues) are complex, significantly increasing
the computational cost; the alternative of solving two real systems also lead to higher
computational costs. In addition, in case the use of sparse direct methods appears to
be competitive, it should be noticed that only the sparsity analysis step can be done
once for all, whereas the actual decomposition needs to be performed again for each
distinct shifts.

Major computational savings may be obtained if C is low rank, namely C = C0R,
with C0 ∈ Rn×m̄ and m̄ < m. Indeed, the m shifted systems can be solved more
efficiently by only working with the common matrix C0. For the rest of this section
we assume that C is full rank, and postpone the treatment of the low-rank case to
later, when we discuss the occurrence of large B. Indeed, the rank of C is key in
developing general projection methods, as explained next.

Projection methods. Let V be a space6 of dimension k, and let the columns of
Vk ∈ Cn×k span V. An approximate solution Xk with range(Xk) ⊂ V is sought such
that

Rk := AXk + XkB − C ≈ 0.

Several options arise, depending on the choice of V and on the strategy to determine
Xk within the space V. For a given V, let thus Xk = VkYk ≈ X, for some Yk ∈
Rk×m to be determined. Recalling the operator S defined in (4.7), we observe that S
generalizes to the “block” B the concept of shifted matrices, namely

x 7→ (A+ βI)x = Ax+ xβ.

Therefore, it is very natural to extend the algorithmic strategies of linear systems
to the case of S. Extensions of the linear system solvers CG (FOM) and MINRES
(GMRES) can be thought of for A symmetric (nonsymmetric), although the actual
implementation differs. All these system solvers are derived by imposing some orthog-
onality condition on the system residual. Consider the matrix inner product defined
as

〈Y,X〉 = trace(Y ∗X). (4.14)

6We use complex arithmetic for V to allow for complex spaces, which may arise when using
Rational Krylov subspaces with complex shifts. A careful implementation can construct a real space
in case conjugate shifts are used. For the sake of generality we stick to complex arithmetic for V.
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Algorithm. Given A,B,C
Orthogonalize the columns of C to get v1 = V1

for k = 1, 2, . . . do
Compute Yk solution to (V ∗k AVk)Y + YB − V ∗k C = 0
if converged then

Xk = VkYk and stop
end if
Arnoldi procedure for the next basis block:
v̂ = Avk
Make v̂ orthogonal wrto {v1, . . . , vk}
Orthogonalize the columns of v̂ to get vk+1

Update: Vk+1 = [Vk, vk+1]
end for

Fig. 4.1. Solution of Sylvester equation in K�
k (A,C) with Galerkin condition

If we require that the columns of Rk be orthogonal to the approximation space V
in this inner product, then we are imposing a Galerkin condition, explicitly given by
V ∗k Rk = 0. For simplicity let us assume that V ∗k Vk = I. Then

0 = V ∗k Rk = V ∗k AVkYk + YkB − V ∗k C. (4.15)

The condition thus gives a new, reduced in size, Sylvester equation to be solved.
Under the hypothesis that spec(V ∗k AVk)∩ spec(−B) = ∅, such equation can be solved
efficiently by one of the methods discussed in section 4.2. The procedure above holds
for any space V and associated full rank matrix Vk. Therefore, the effectiveness of the
approximation process depends on the actual selection of V. A well exercised choice
is given by the block Krylov subspace

K�
k (A,C) = range([C,AC, . . . , Ak−1C]).

This space coincides with K�
k (S, C) = range([C,S(C), . . . ,Sk−1(C)]), where Sj(C) =

S(Sj−1(C)) and S0(C) = C [215]. With this selection of space, the procedure just
outlined is the complete analog of the one giving rise to the Full Orthogonalization
Method (FOM) for m = 1 or for B = 0. However, due to possible loss of rank in
the basis, it was suggested in [215] to generate the subspace with A rather than with
S. As an example, Figure 4.1 describes the algorithm implementing the projection
method with the generation of the block Krylov subspace and the determination of
the approximation by imposing the Galerkin orthogonality condition.

For later reference, we remark that the Arnoldi procedure used in Figure 4.1
generates a matrix recurrence that can be written as

AVk = VkHk + v̂e>k , (4.16)

where v̂ is the new block of basis vectors, prior orthogonalization, and Hk contains
the orthogonality coefficients, with Hk = V >k AVk.

One could consider constraint spaces different from the approximation spaces; in
this case, a so-called Petrov-Galerkin condition is imposed on the residual. Following
the linear system case, and using, e.g., the space spanned by the columns of AVk, one
would be tempted to impose the condition (AVk)∗Rk = 0, giving

V ∗k A
∗AVkYk + V ∗k A

∗VkYkB − V ∗k A∗C = 0. (4.17)
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In the standard (B = 0) linear system setting, this condition is equivalent to mini-
mizing the residual Rk in the Frobenius norm, that is

min
Yk∈Rk×m

‖Rk‖F . (4.18)

However, for B 6= 0, such equivalence does not hold, that is, the solution to (4.17)
is not a residual minimizing approximation. To attain a residual minimization, the
orthogonality condition should be applied to the operator S in (4.7); to this end, we
note that the adjoint operator S∗ with respect to the inner product in (4.14) is given
by S∗(X) = A∗X +XB∗.

Proposition 4.2. [215, sec.3] Let Yk ∈ Rk×m, and let Rk = AVkYk+VkYkB−
C be the associated residual. Then

Yk = arg min
Yk∈Rk×m

‖Rk‖F if and only if V ∗k S∗(Rk) = 0.

For the choice V = K�
k (A,C), the minimization process in (4.18) is the matrix

analog of GMRES (for m = 1 or B = 0) (cf. [220, sec. 6.12]). Similar results are
discussed independently in [111]. In [215] the authors provide a detailed description
of the parallel between solving (4.11) for m� n with Galerkin and with minimizing
procedures, and solving linear systems AX = C by means of block methods. This
confirms the intuitive fact that thanks to the small rank of B and to the fact that C
is full rank, there is a sort of “block” shift invariance property taking place, where
the “shift” block is the matrix B. Numerical experiments on the performance of the
approach are also given in [215]. Upper bounds for the residual norm of Galerkin and
residual minimizing methods with V = K�

k (A,C) are also provided in [215].
An iteration based on block Arnoldi was recently proposed in [149], where a series

of Sylvester equations is solved by means of the block method above; however, the full
rank of the right-hand side cannot be ensured after the first iteration of the process.

An alternative choice of approximation space V has recently shown great poten-
tial compared to the block Krylov subspace, and it is given by the Extended Krylov
subspace, defined as EKk(A,C) := K�

k (A,C) + K�
k (A−1, A−1C). Since the spaces

are nested, namely EKk(A,C) ⊆ EKk+1(A,C), the space can be generated itera-
tively, allowing one to improve the approximate solution as the recurrence proceeds.
Experiments in [233] show that the good performance of the derived method seems
to fully compensate the high costs of solving linear systems with a large and sparse
A at each iteration.

4.4. Sylvester equation. Large A and large B. In the most general case,
both A and B have large dimensions. This setting arises in many situations, as in the
discretization of separable PDEs [83], or in the computation of the cross Gramian in
control [4]. The possibility of writing C = C1C

>
2 with C1, C2 with low column rank

is crucial to obtain good low-rank approximations to X, thus avoiding the storage of
the whole matrix, which is in general prohibitive.

Methods in the literature have mainly proceeded in three directions: Projection
type approaches (mostly based on the Krylov subspace family), matrix updating se-
quences (such as Alternating-Direction-Implicit iterations), and sparse data format
recurrences. Combinations of these have also been explored.

It is interesting that, due to the important role the Lyapunov equation has in
control problems, many authors have developed numerical procedures specifically for
the Lyapunov equation, and not for the Sylvester equation, although in many cases
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they could be extended to the latter in a natural manner. For historical reasons, and
also to avoid constant reference to the equation context, we will refer to the literature
the way the methods were originally presented. In particular, it will be apparent that
the literature on large scale Lyapunov equations is richer than that for the Sylvester
equation.

We also notice that, as a major distinction from linear vector equations, the
numerical solution of matrix equations cannot directly rely on preconditioning strate-
gies, unless the Kronecker formulation is employed. Indeed, preconditioning methods
would necessarily destroy the symmetry properties of the problem, and its peculiar
Kronecker structure, which allows one to deal with computational costs that depend
on powers of n and m, but not on powers of n ·m.

4.4.1. Projection methods. When both n and m are large, the dense solu-
tion matrix X of (4.1) cannot be stored, therefore the determination of a memory
saving approximation becomes mandatory. Whenever C = C1C

>
2 has low rank, the

results discussed in section 4.1 suggest that a low rank approximate solution may be
determined, so that projection strategies are very appealing. Indeed, these methods
determine low rank approximations X̃ = VkYW>j ≈ X, with Vk and Wj having far
fewer columns than n and m, respectively, and are generalizations of the procedure
seen in previous sections.

Let V andW be two subspaces, in principle not necessarily of the same dimension,
and let the k (j) columns of Vk (of Wj) be orthonormal bases for V (for W), with
k � n, j � m, such that V is not orthogonal to range(C1) andW is not orthogonal to

range(C2). We look for an approximation X̃ = VkYW>j ≈ X, and we let R := C1C
>
2 −

AX̃− X̃B be the associated residual. Then we have x̃ =vec(X̃) = (Wj ⊗ Vk)vec(Y),
where x̃ is an approximate solution of (4.3). Imposing a Galerkin (orthogonality)
condition to the vector residual c−Ax̃ with respect to the space spanned by Wj ⊗Vk
corresponds to writing

(Wj ⊗ Vk)>(c−Ax̃) = 0 ⇔ V >k RWj = 0.

Alternatively, such Galerkin condition may be imposed by using matrix orthogonality
with respect to the inner product in (4.14). Other conditions could be considered,
such as the minimization of the residual in some norm, or the orthogonality of the
residual with respect to some other space; see, e.g., [133], [129], [181]. Substituting
the residual matrix, the equation V >k RWj = 0 gives the following small size Sylvester
equation:

V >k AVkY + YW>j BWj = V >k C1(W>j C2)>. (4.19)

If V >k AVk and W>j BWj have disjoint spectra, then this equation admits a unique
solution for any right-hand side. By assuming that the fields of values of A and B
are disjoint, one can ensure that V >k AVk and W>j BWj have disjoint spectra. Though
restrictive, such assumption is welcome also for stability purposes, so as to monitor
that the solution X have moderate norm [262].

The quality of the approximation depends on the choice of V and W, which is
usually based on similar arguments for the two spaces. In his seminal article [219],
Saad proposed Krylov subspaces for determining a low rank approximate solution to
the Lyapunov equation by projection; the motivation was that Krylov subspaces tend
to approximate well the action of the matrix exponential to a vector, so that the solu-
tion in the integral form (4.5) can take advantage of this property (see also section 5
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for an explicit derivation). A major problem with this approach is that both bases
Vk and Wj need to be stored to compute the final approximate solution. Since both
matrices are full, this provides a severe limitation in the maximum affordable size of
the two approximation spaces when A and B are large. In the quest of small but more
effective spaces, several alternatives have been investigated. The impressive perfor-
mance results of these enriched spaces have lead to a resurgence of projection-type
methods for linear matrix equations. In addition to the standard Krylov subspace, we
list here a couple of recently explored selections for V with A and C1; similar choices
can be made for W using B> and C2.

(a) Standard (block) Krylov subspace:

V = range([C1, AC1, A
2C1, . . .]);

(b) Rational (block) Krylov subspace:

V = range([(A− σ1I)−1C1, (A− σ2I)−1(A− σ1I)−1C1, . . .]),

for a specifically chosen sequence {σj}, j = 1, 2, . . . that ensure nonsingularity
of the shifted matrix.

(c) Global Krylov subspace:

V =

∑
i≥0

AiC1γi, γi ∈ R

 = span{C1, AC1, A
2C1, . . .},

where the linear combination is performed block-wise.
In all instances the least number of powers is computed so as to reach the dimension
k. All spaces listed above are nested, so that an approximate solution can be derived
while each of these spaces are expanded. The idea of generating different approxi-
mation spaces - of the same dimension - for A and B by means of standard Krylov
subspaces was first developed in [133], where however the right-hand side C of the
original problem was approximated by a rank-one matrix c1c

>
2 , to be able to build the

standard Krylov subspaces Kj(A, c1) and Kj(B
>, c2) as approximation spaces. The

approach was then generalized to block Krylov subspaces in [231], so as to exploit the
low (but possibly larger than one) rank matrices C1, C2. Different Krylov subspaces
for the right and left subspace should be considered also when B = A>, as long as
C1C

>
2 is nonsymmetric. Nonetheless, in this case the generation of the two spaces

can share some computationally intensive computation, such as shifted system solves
with the same coefficient matrix. The possibility of using nonsymmetric Lanczos,
processes which, e.g., simultaneously generate Kj(A,C1) and Kj(A,C2) could also be
considered.

The subspaces listed above are somewhat related. For instance, the standard
Krylov subspace can be formally obtained from the rational Krylov subspace for σj =
∞ for all j. Moreover, the Rational block Krylov subspace also includes the special
choice of fixed poles at zero and infinity, which corresponds to the extended Krylov
subspace K�

j (A,C1) +K�
k (A−1, A−1C1), where j and k can in principle be different

[76]. In addition, one can impose that C1 belongs to the rational Krylov subspace
with the choice σ1 =∞. The global Krylov subspace in (c) is a subspace of the block
Krylov subspace; it was first proposed to solve linear systems with multiple right-hand
sides [144], and then adapted to the Sylvester equation in [142]. Global spaces may be
viewed as simplified versions of block Krylov spaces, where the polynomial coefficients
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are chosen to be multiples of the identity matrices, therefore lowering the number of
degrees of freedom.

Rational Krylov subspace have a rich history. First introduced by Ruhe in the
context of eigenvalue approximation [218], its relevance has significantly spread in
applied approximation theory and model order reduction frameworks, due to its func-
tional approximation properties; see, e.g., [4],[109],[115] and references therein.

We should mention that the effectiveness of general rational spaces strongly relies
on the efficiency of solving systems with A or its shifted variants. The reliability of
recent direct sparse and iterative linear system solvers has made it possible to use
these richer approximation spaces for more complex problems such as the ones we are
addressing.

Already in [133] the possibility of restarting the process was considered. In this
case, a maximum subspace dimension is allowed and the final approximate solution
is obtained as X̃ = X̃(1) + X̃(2) + X̃(3) + . . ., where the superscripts indicate a new
restart. Strategies on how to generate the new approximations were proposed in [133].
We mention that new restarting procedures were recently proposed in [3], but their
overall computational costs for large scale matrices have not clearly been assessed. An
alternative that could be considered in the symmetric case is to resort to a two-pass
strategy, inspired by a similar procedure in the eigenvalue context. Indeed, for A
and B symmetric, not necessarily equal, an orthogonal basis of each standard Krylov
subspace together with the projected matrix could be generated without storing the
whole basis, but only the last three (block) vectors, because the orthogonalization
process reduces to the short-term Lanczos recurrence [220]. Therefore, in a first-pass
only the projected solution Y could be determined while limiting the storage for Vk
and Wj ; at convergence the approximate solution X̃ = VkYW>j could be recovered

by generating the two bases once again, and updating X̃ on the fly with the already
computed Y; an implementation of such approach can be found in [162] for B = A>

and C1 = C2. The same idea could be used for other situations where a short-term
recurrence is viable; the effectiveness of the overall method strongly depends on the
affordability of computing the two bases twice.

The convergence analysis of projection methods has long been overlooked, in
spite of a good experimental performance of these strategies. Following recent signif-
icant advances in the convergence of projection methods for the Lyapunov equation
(see section 5.2.1) Beckermann in [21] provided a thorough study: residual norm
bounds are given for Galerkin projection methods when Rational Krylov subspaces,
of possibly different dimensions, are used for A and B>. The proposed estimates
rely on new residual relations, and highlight the role of the field of values of the
two coefficient matrices. Advances in the theoretical aspects of projection meth-
ods have been made in close connection with the recent great steps ahead taken
in the understanding of polynomial and rational approximation methods for matrix
functions such as the matrix exponential. The interplay of numerical linear alge-
bra, approximation theory and functional analysis has made this possible; see, e.g.,
[20],[115],[125],[77],[156],[137],[116],[108],[82],[126],[194] and their references.

4.4.2. ADI iteration. The Alternating-Direction-Implicit (ADI) iteration was
first introduced in [199] in 1955, and proposed to solve large Sylvester equations
by Ellner and Wachspress in [83]7. Since then, and with various computationally
effective refinements, the approach has been one of the leading methods for solving

7The authors of [83] referred to these Sylvester equations as Lyapunov equations.
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large-scale Sylvester (and Lyapunov) equations. In its original form discussed in [83]
and summarized next, the ADI iteration is derived for a full matrix X (cf. also Smith
[239] for the derivation below). A low memory factorized version is used in practice
for large matrices, and it will be presented in the sequel. In the following we assume
that both real matrices A and B have eigenvalues with positive real parts. We can
equivalently rewrite (4.1) as

(qI +A)X(qI +B)− (qI −A)X(qI −B) = 2qC, q 6= 0.

For q > 0, qI + A and qI + B are nonsingular and we can multiply by their inverses
so as to obtain the Stein equation

X− (qI +A)−1(qI −A)X(qI −B)(qI +B)−1 = 2q(qI +A)−1C(qI +B)−1.

LetA = (qI+A)−1(qI−A), B = (qI−B)(qI+B)−1 and C = 2q(qI+A)−1C(qI+B)−1.
Then the matrix X =

∑∞
k=1Ak−1CBk−1 is a formal solution, and since both A and B

have spectral radius less than one, the series is convergent. This consideration drives
the implementation of the following sequence of approximations

X0 = C, Xk+1 = C +AXkB (4.20)

The approach can be generalized to two parameters p, q > 0 for A and B, respectively,
giving the transformed equation

X−A(p, q)XB(p, q) = C(p, q),

with A(p, q) = (pI + A)−1(A − qI), B(p, q) = (B − pI)(qI + B)−1 and C(p, q) =
(p+ q)(pI +A)−1C(qI +B)−1. A recursion similar to the one for a single parameter
can be derived, and it is convergent if the spectral radii of A(p, q),B(p, q) are both
less than one. Therefore, the parameters p, q are selected so as to minimize these
spectral radii, and if A,B are both symmetric with spectral intervals (a, b) and (c, d),
respectively, this corresponds to solving the ADI minimax problem

min
p,q>0

max
s∈(a,b),t∈(c,d)

∣∣∣∣ (q − s)(p− t)(p+ s)(q + t)

∣∣∣∣ .
The generalization of this concept allows one to choose different p, q at each iter-

ation, providing a sequence of parameters p1, p2, . . . and q1, q2, . . ., and then cyclically
repeating them until convergence. Following a successful idea developed for the Lya-
punov equation, the authors of [27] propose a factorized version of the ADI iteration,
which allows one to write the approximate solution as the product of three memory
saving factors, as long as C = C1C

∗
2 is low rank. We will expand on this implemen-

tation aspect in the case of the Lyapunov equation. In that setting, we shall also
emphasize the tight connection between ADI and projection methods.

4.4.3. Data sparse and other methods. The Kronecker formulation allows
one to consider a wide range of linear system solvers for (4.3); an early ad-hoc im-
plementation of the classical SOR was proposed in [244], although the exploding
dimensions of the problem significantly penalize the method, when compared with
the approaches analyzed so far. We also recall from section 4.4.1 that global Krylov
subspace methods represent an implicit way to deal with the Kronecker formulation.
Other iterative solvers based on the Kronecker formulation (4.3) have been explored
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specifically for the Lyapunov equation, and they will be reviewed in section 5.2.3.
These appear to be the main directions taken whenever C is not numerically low
rank.

For data-sparse matrices A ∈ Rn×n and B ∈ Rm×m, namely such that matrix-
vector multiplications for A and B can be performed with complexity O(n) and O(m),
respectively, an extension of the multigrid algorithm was recently proposed in [104],
where A and B stem from the discretization of a class of partial differential equations,
and their spectra are assumed to be separated by a line. A particular computational
caveat of this extension is the smoother (e.g., Jacobi), which in this case requires
approximately solving a diagonal Sylvester equation at each iteration. This step is
carefully discussed in [104], and a procedure for determining a cheap and low rank
approximate solution is devised. Other crucial points include handling the connection
between the (independently generated) sequences of matrices for A and B, which
is accounted for during the smoothing procedure, and the imposition of regularity
constraints on the continuous operators associated with A and B. A major issue
arising when using these hierarchical methods is whether the approximate solution X̃
is low rank, so that it can be stored cheaply by means of a (hierarchical) sparse format,
the H-matrix format. Such format is a data-sparse representation for a special class
of matrices, which appear to occur after the use of several discretization methods,
when PDEs or integral equations are treated numerically [106]. The H-matrix format
consists of partitioning a given matrix recursively, into submatrices admitting low-
rank approximations. The definition of this format requires the introduction of further
arithmetic operations/approximations, so as to be able to determine, e.g., anH-matrix
after the approximate inversion of an H-matrix, so as to make the class closed with
respect to some important matrix operations; we refer to section 5.2.3 for further
details.

A different though related approach consists in adapting small scale iterations
to the large setting, again under the condition that C is low rank. This can be
performed, for instance, within the sign function iteration, by using rank truncation
of the iterates, and sparse format for the approximate solution. More details on the
sign function iteration will be given in section 5.2.3. Here we mention that such an
approach is investigated in [17] (see also [19]), where the sparse format chosen for the
data and for the approximate solution is the hierarchical H-matrix format also used in
[102], [104]. With this approach, sparse approximate solutions to a Sylvester equation
of size up to n = 262144 associated with a control problem for the two-dimensional
heat equation are reported in [17]. The accuracy and effectiveness of the method
depend on some thresholds used for maintaining sparsity and low rank during the
iteration, and are thus problem dependent.

5. Continuous-time Lyapunov equation. For B = A> we obtain a simplified
version of the Sylvester equation, the Lyapunov equation

AX + XA> = C, (5.1)

with C symmetric, and its generalized counterpart,

AXE> + EXA> = C (5.2)

with E nonsingular. Clearly, this latter equation can be transformed into the form
(5.1) by left and right multiplication by E−1 and E−>, respectively. If E is sym-
metric and positive definite, a Cholesky decomposition could be performed and its
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inverse factors applied to the equation on the left and right sides, so as to maintain
the problem structure. These are called the continuous-time Lyapunov equations, to
be distinguished from the discrete-time equations, which will be discussed in section
6. They arise in the analysis of continuous-time and discrete-time linear dynami-
cal systems, respectively. A very detailed analysis of the Lyapunov equation, with
computational developments until 1995 and many relevant connections in the control
application area can be found in [91].

In the context of inertia theory, (5.1) with C ≥ 0 relates the location of the
eigenvalues of both A and X with respect to the imaginary axis. Since C is symmetric,
the solution X is also symmetric. According to the Sylvester equation theory, the
solution to (5.1) exists and is unique if and only if λi+ λ̄j 6= 0 for all eigenvalues λi, λj
of A [132]. If all eigenvalues of A have negative real part, namely A is stable, then such
condition is satisfied, so that a unique solution is ensured. We remark that the stability
of A is an important property in the control setting, therefore it is not regarded as
a restriction for solving the Lyapunov equation, although not strictly required. We
shall see, however, that some of the large-scale methods require additional restrictions
on A, namely its passivity, to ensure convergence. For A nonsymmetric, this extra
condition may limit the applicability of the method, since in general a stable matrix
A is not necessarily passive. It can be verified that if A is stable and C > 0 (C ≥ 0)
then X > 0 (X ≥ 0); in this case the problem is called the stable Lyapunov equation.
If C ≥ 0 and (A,C>) is observable, then X > 0. A detailed account on various
relations between the inertia of A and of X can be found, e.g., in [169, section 13.1],
[227],[228]. A specialized sensitivity bound can be obtained for the stable Lyapunov
equation. Assume that X + ∆X solves

(A+ ∆A)(X + ∆X) + (X + ∆X)(A+ ∆A)> + (C + ∆C) = 0

then

‖∆X‖
‖X + ∆X‖

≤ 2‖A+ ∆A‖ ‖H‖
[
‖∆A‖
‖A+ ∆A‖

+
‖∆C‖

‖C + ∆C‖

]
,

where H satisfies AH+HA>+I = 0, and all denominators are assumed to be nonzero
[122]. Estimates for the backward error associated with the Lyapunov equation do
not differ from those in (4.8) for the Sylvester equation; therefore, except for the sub-
stitution B = A>, the extra structure of the problem does not modify the sensitivity
properties of the solution [124].

The sensitivity of the solution to (5.1) can also be analyzed by looking at the
spectral properties of the solution matrix; this topic has attracted a lot of interest,
especially in light of its consequences in the stability analysis of dynamical systems.
Various authors have explored the spectral decomposition of the Lyapunov solution,
to make statements on the decay of its eigenvalues; see, e.g., [204],[240],[5],[158]. In
[5], an error estimate for a low rank approximation to the solution of (5.1) was proved.
For the sake of simplicity we report here only the case when C is rank-one. The result
relies on the fact that the solution matrix admits the following decomposition:

X = ZDZ>, D = diag(δ1, . . . , δn), δk =
−1

2<(λk)

k−1∏
j=1

∣∣∣∣λk − λjλ∗k + λj

∣∣∣∣2 ,
where λj are the eigenvalues of the diagonalizable matrix A.

Theorem 5.1. Assume A is diagonalizable with eigenvector matrix Q, having
all unit norm columns, and let C = cc>. Let X =

∑n
j=1 δjzjz

>
j solve (5.1), with
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the nonnegative values δj sorted decreasingly, and for k ∈ {1, . . . , n} define Xk =∑k
j=1 δjzjz

>
j . Then

‖X−Xk‖ ≤ (n− k)2δk+1(κ2(Q)‖c‖2)2,

where ‖ ‖ is the matrix norm induced by the vector 2-norm.
The bound may not be sharp for highly non-normal A, for which κ2(Q) may be

large. A more specialized bound was given by Penzl for A symmetric, which only
depends on the condition number of A [204]. In fact, it was shown in [204] that
eigenvalues alone cannot predict the eigenvalue distribution of X; this is reminiscent
of similar limitations of non-normal matrices in the convergence analysis of iterative
methods for linear systems [179, sec. 5.7.3].

Bounds on the eigenvalue decay that attempt to cope with non-normality were
obtained in [221, sec.3.1.2], where the concept of pseudospectrum is used; in there,
some interesting counter-intuitive convergence behaviors are also described. Overall,
the analysis of the decay in the solution spectrum is a largely open topic of research
in the non-normal case.

In addition to the application relevance, establishing conditions under which the
solution matrix has exponentially decaying eigenvalues provides theoretical motivation
for the good performance of projection methods in the large scale case; indeed, these
strategies aim at determining low rank approximations by a judicious choice of the
approximation space.

5.1. Lyapunov equation. Small scale computation. As for the Sylvester
equation, the closed form solutions described in section 4 could be used in theory. A
detailed account of early methods can be found in [91], together with some ad-hoc
algorithms appropriate when special forms of A (e.g., Schwarz, Companion or Jordan
forms) are available; see also [40] for an improved approach for the companion form.

The standard method for efficiently solving (5.1) when A has small dimensions,
does not essentially differ from those for the Sylvester equation discussed in previous
sections. In fact, due to the fact that B = A>, the computational cost of the reduction
to Schur form is halved in the Bartels-Stewart method [229].

A specifically designed algorithm was proposed by Hammarling, to exploit the
case when C is positive semidefinite. It was shown in [117] that if C = C1C

>
1 ≥ 0,

it is possible to determine the Cholesky factor of the solution X, that is L in X =
LL∗, without first determining X. The computation of the Cholesky factor has some
advantages when X is nonsingular but severely ill-conditioned, so that dealing with
L significantly improves the accuracy and robustness of computations with X; we
refer to [293] for a comparison between Hammarling’s and Bartel-Stewart methods.
A block variant of the Hammarling’s method for the discrete-time Lyapunov equation
is suggested in [161], which can dramatically improve the performance of the original
scalar (unpartitioned) algorithm on specific machine architectures, while preserving
the stability of the original method.

We also mention the possibility of a pre-processing, proposed both in the con-
tinuous and discrete-time equations, so as to transform the original symmetric prob-
lem onto a skew-symmetric one, so that the solution will also be skew-symmetric
(X = −X>), allowing for some memory savings; see [91, sec. 2.1.2] and references
therein.

A completely different approach exploits the fact that the solution to the Lya-
punov equation may be computed by means of matrix functions, in particular, by
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using the sign function. Although less general than Schur-form-based algorithms,
they allow one to handle larger problems, especially if the right-hand side is low-rank
or structured, and can be more easily adapted to a high performance computational
environment. The idea is to use well-established matrix iterations to obtain the matrix
sign function in a cheap manner, by fully exploiting the possible sparse format of the
matrix. The whole procedure is actually more general, and it applies to the quadratic
algebraic Riccati equation, of which the Lyapunov equation is the linear portion, ob-
tained by zeroing the second order term. Here we will follow the derivation proposed
in [18], see also [29], although the main iteration was introduced by Larin and Aliev
in [171] for the generalized Lyapunov equation. Let A = Xblkdiag(J+, J−)X−1 be
the Jordan decomposition of a given matrix A, where J+, J− represent the Jordan
matrices associated with the eigenvalues in the open planes C+ and in C−, respec-
tively. Then sign(A) = Xblkdiag(I,−I)X−1, where the dimensions of I, −I match
those of J+ and J−, respectively. For A stable, the solution to the Lyapunov equation
satisfies (cf., e.g., [216], [90])[

0 X
0 I

]
=

1

2

(
I + sign

([
A> C
0 −A

]))
=:

1

2
(I + sign (Z0)) . (5.3)

With this property, the following matrix iteration corresponds to applying the Newton
method to the nonlinear equation (signZ0)2 = I:

Zk+1 =
1

2
(Zk + Z−1

k ), k = 0, 1, . . . , (5.4)

yielding

signZ0 = lim
k→∞

Zk =

[
−I 2X
0 I

]
.

Although the iteration is globally and (asymptotically) quadratically convergent, the
basic iteration above may have slow initial convergence, therefore it is often accelerated
by using a parameterized procedure, that is Zk+1 = 1

2 (ckZk + (ckZk)−1), k = 0, 1, . . .,
for an appropriate selection of the parameter ck > 0 (see, e.g., [52]). A popular choice

is ck = |det(Zk)Z|− 1
n [52], [29]; see also [7] for a review of other choices.

5.2. Lyapunov equation. Large scale computation. For large scale prob-
lems, the solution to (5.1) is usually not determined exactly, but it is only approxi-
mated. A particularly important observation is that A and X have the same dimen-
sions, and that although A may be sparse, X is dense, in general. Many procedures
exist to numerically solve (5.1), and they all try to determine a memory saving and
computationally appealing approximation. This is achieved in most cases by looking
for a low rank approximation X̃ to the solution of the stable problem, that can be
written as X̃ = ZZ∗, so that only the tall matrix Z is actually computed and stored.
This is possible if, for instance, the right-hand side has low rank, since in that case
we also have X ≥ 0. Strategies to approximate the general right-hand side by low-
rank matrices have also been explored in the literature; cf., e.g., [271] [133]. In fact,
for C definite, low-rank solutions may be hard to find. For instance, the equation
AX + XA> = I with A symmetric admits the unique solution X = 1

2A
−1, which is

obviously full rank, with not necessarily exponentially decreasing eigenvalues.
To help fully grasp the relevance of the topic, we notice that a number of recent

PhD theses have been devoted to the theory and computational aspects of the large-
scale Lyapunov matrix equation, whose results have significantly advanced knowledge
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on the problem; among them, [202],[196],[190],[130],[293],[260],[176],[221]. The list
would expand if one were to also include closely related theses on model order reduc-
tion of linear dynamical systems.

We conclude this section by noticing that a systematic numerical comparison
of all iterative methods described in the following subsections on a variety of very
large problems (of size n � 104) is still lacking, although in our presentation some
guidelines are given about the settings in which each of the discussed method should
be preferred.

5.2.1. Projection-type methods. As in the case of the Sylvester equation, the
derivation of a projection method can be determined by imposing, e.g., the Galerkin
condition to the residual, with respect to some approximation space. In particular,
from equation (4.19) with k = j, Vk = Wj and C2 = C1, we obtain the following
projected small size Lyapunov equation:

V ∗k AVkY + YV ∗k A
>Vk = V ∗k C1(V ∗k C1)∗ (5.5)

whose solution matrix Yk gives Xk = VkYkV
∗
k ≈ X. To ensure that (5.5) admits a

unique solution, the matrix V ∗k AVk is assumed to be stable. Such sufficient condition
is met in exact precision arithmetic by requiring that A be passive, which is the usual
hypothesis when using projection methods. Such condition represents a limitation of
projection methods, since the original problem admits a unique solution even in case
of a stable but not necessarily passive A. On the other hand, these are sufficient con-
ditions: projection methods can work in practice without such assumption, although
may break down or show some erratic convergence behavior; see [181] for an analysis.

The actual solution does not need to be explicitly stored. In fact, since Yk is
positive semi-definite and numerically singular, it is possible to perform a truncated
decomposition of Yk as Yk = LL∗, so that only the slim factor Zk = VkL of the
solution Xk = ZkZ

∗
k needs to be stored.

It is interesting to observe that an apparently different (functional) approach,
based on the approximation to the matrix exponential and on (4.4), leads exactly
to the same approximation procedure. Indeed, the action of the matrix exponential
to a vector, exp(tA)C1, can be approximated in the space V as Vk exp(tHk)(V ∗k C1)
where Hk = V ∗k AVk, so that the analytic expression in (4.4) for the solution can be
approximated explicitly; this is in fact the way the Galerkin approximate solution was
originally obtained in [219] for a rank-one matrix C1; see also [90].

Proposition 5.2 ([219]). Let V be a subspace of Rn, and let V be such that
V = range(V ). Let also H be the projection and restriction of A onto V, and ym =
exp(tH)(V ∗C1). Then the matrix VYV ∗ with

Y =

∫ ∞
0

ym(t)ym(t)∗dt

is the Galerkin approximate solution to the Lyapunov equation in V.
The procedure above is very general, and the success of the approach, in terms of

computational cost, depends on the choice of the approximation space V. All choices
discussed in section 4.3 have been explored. For instance, the block Krylov subspace
K�
k (A,C1) was exploited in [139], and it was referred to as the Arnoldi method, after

the procedure used to build the block Krylov subspace. In [139], the following relation
was shown for the residual Rk = AXk + XkA

∗ + C1C
∗
1 ([139, Th. 2.1])

‖Rk‖F =
√

2‖(v∗k+1Avk)E∗kYk‖F , E∗k = [0m, . . . , 0m, Im],
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where vk+1 contains the next block of basis vectors. This relation represents a major
computational saving with respect to other procedures, since it allows one to avoid
the explicit and expensive computation of Rk, to be able to evaluate its norm.

Finally, in [139] it was also shown that the solution Xk is the exact solution to
the nearby problem

(A−∆)X + X(A−∆)∗ − C1C
∗
1 = 0

with ∆ = Vk+1(V ∗k+1AVk)V ∗k , ‖∆‖F = ‖V ∗k+1AVk‖F .
The asymptotic convergence of the Arnoldi method was recently analyzed in [234].

Here we report a sample of such analysis, which applies to A symmetric and positive
definite, and C1 of rank one and unit norm; the derived bound was shown in [234] to
provide an accurate worst-case convergence rate of the method.

Theorem 5.3. Let A be symmetric and positive definite, and let λmin be the
smallest eigenvalue of A. Let λ̂min, λ̂max be the extreme eigenvalues of A+λminI and
κ̂ = λ̂max/λ̂min. Let Xm be the Galerkin approximate solution to X in a subspace of
dimension m. Then

‖X−Xm‖ ≤
√
κ̂+ 1

λ̂min

√
κ̂

(√
κ̂− 1√
κ̂+ 1

)m
, (5.6)

where the matrix norm is the one induced by the vector 2-norm.
This result shows that the error norm is bounded by the same quantity as for

the Conjugate Gradient method applied to a standard linear system with coefficient
matrix A+ λminI.

As already mentioned, the algorithmic steps to compute an approximate solu-
tion by projection remain unchanged when a different approximation space is used.
In [232] an efficient method based on the extended Krylov subspace EKk(A,C1) =
K�
k (A,C1) + K�

k (A−1, A−1C1) was introduced, for C1 of low rank. The proposed
algorithm is very similar to the Arnoldi method, and a recurrence is proposed to
derive the projection and restriction matrix V ∗k AVk, where the columns of Vk span
EKk(A,C1). In [232] the method was experimentally shown to be highly superior to
the Arnoldi method for sparse and large coefficient matrices, allowing the computa-
tion of an equally accurate solution with a significantly smaller dimensional subspace,
at lower computation costs. According to the experiments in [232], the method com-
pares rather well also with respect to the Alternating-Direction-Implicit method. A
recent asymptotic analysis in [157] theoretically confirmed these results, showing that
the Extended Krylov subspace method is expected to have higher convergence rate
than the Arnoldi method, and than ADI with a single pole.

More recently, a rational Krylov subspace method was employed as approxima-
tion space, which showed promising performance. As already mentioned, the general
rational Krylov subspace requires the selection of a series of shifts (poles), which can
either be computed a-priori or during the generation of the space. The a-priori pole
computation may require possibly high computational costs, following the same pro-
cedure as that used for other parameter-dependent methods such as ADI (see below).
On the other hand, it was shown in [78] that it is possible to employ a greedy al-
gorithm to compute the next pole on the fly, while the iteration proceeds, with no
extra O(n) computation. This is done by exploiting approximate spectral information
generated within the current approximation space. Numerical experiments reported
in [78] show that the method is superior to the Extended Krylov subspace when, for
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instance, the field of values of A is very close to the imaginary axis. On the other
hand, the computational cost of the general rational Krylov subspace method may be
much higher, since a new shifted linear system needs to be solved at each iteration.
However, the numerical experiments reported in [78] seem to ensure that the rational
approximation space dimension remains usually very low, so that few systems have
to be solved. The rational function idea is particularly appealing when C = C1C

>
1

has rank p larger than one. In that case, the extended Krylov subspace increases its
dimension by 2p vectors per iteration, making the whole procedure memory consum-
ing if convergence is not fast. In [79] a tangential procedure is proposed to expand
the block rational Krylov subspace at each iteration, so that only the most relevant
directions are retained. More precisely, small matrices d1, . . . , dk are determined so
that the following space is constructed

range([(A+ s1I)−1Bd1, (A+ s2I)−1Bd2, . . . , (A+ skI)−1Bdk]).

Numerical experiments reported in [79] show that this strategy is capable of success-
fully handling the presence of many columns in C1.

The Global Krylov subspace method for the Sylvester equation was applied to
the Lyapunov equation in [145], with natural simplifications due to the fact that one
single space needs to be generated; numerical experiments in [145] showed better per-
formance than the standard block Krylov subspace methods. We also refer to [123] for
a generalization to the simultaneous solution of a coupled pair of Lyapunov equations,
corresponding to the two Gramians of a dynamical system. This last problem was also
considered in [138]: the coupled block Arnoldi method and the nonsymmetric block
Lanczos recurrence were analyzed for simultaneously approximating both Gramians,
so as to obtain approximations to the linear transfer function of the system; see also
[140] for enhancements of the proposed approaches.

As for the equations in previous sections, the Galerkin condition for the residual
can be replaced by a Petrov-Galerkin condition. If the constraint space is AV, then
the resulting algorithm minimizes the residual in the Frobenius norm. This approach
was explored in [139] for the standard block Krylov subspace and in [133] for the rank-
one case. The projected problem entails the solution of a matrix linear least squares
problem, for which expensive procedures were proposed [139],[133]. More recently,
the minimal residual method was revisited and a more effective solver for the inner
problem was proposed [181].

5.2.2. ADI method. For B = A>, the ADI method of section 4.4.2 for the
Sylvester equation simplifies, leading to the following recursion with two half steps
(cf. [269]):

X0 = 0,

(A+ sjI)Xj− 1
2

= C1C
>
1 −Xj−1(A> − sjIn),

(A+ sjI)Xj = C1C
>
1 − (Xj− 1

2
)∗(A> − sjIn), j = 1, . . . , k.

Here the shifts {s1, s2, . . .} are complex, and are employed cyclically. If both A and
C1 are real, then the approximate solution will be real and symmetric, as long as
both complex conjugates are used as shifts when complex shifts arise [184]. This
implementation suffers from the fact that the whole matrix Xj needs to be stored,
limiting its applicability to low dimensional problems. A key idea to make the re-
cursion amenable to large dimension matrices is to keep the iterate in factored form.
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This idea was successfully explored by Penzl in [203] and was the basis for the soft-
ware package Lyapack [205]; see also [36]. The resulting low-rank ADI (LR-ADI) thus
determines a recurrence for the factor Zj of Xj = ZjZ

∗
j as

Zj+1 = [(A∗ − sjI)(A∗ + sjI)−1Zj ,
√
−2sj(A

∗ + sjI)−1C1], (5.7)

with Z1 =
√
−2s1(A∗ + s1I)−1C1. Therefore, the number of columns in the factor

Zj is enlarged by rank(C1) columns at each iteration. The success of the low-rank
approach is related to what Penzl called the low-rank phenomenon in the solution
X, namely the already mentioned fact that the eigenvalues of X tend to decay very
quickly towards machine precision, so that a low rank approximation appears to be
possible (cf. section 4.1).

The iteration matrix Zj is complex during the whole iteration, if some of the
shifts are complex. A way to overcome this problem and to maintain real arithmetic
throughout whenever A and C1 are real, is discussed in [203]; see also the more recent
contribution [26].

The iteration in (5.7) requires solving systems with right-hand sides Zj and C1

at each step j. A computational improvement to decrease the number of solves per
iteration was suggested in [175] (where the LR-ADI method was called CF-ADI, in
which CF stands for Cholesky Factor). In there, the columns were reordered so
that only the previous iterate requires solves with a shifted matrix. The resulting
recurrence is given by (cf. [175, Algorithm 2]):

zj =

√
−2sj+1√
−2pj

(I − (sj+1 + sj)(A+ sj+1I)−1)zj−1, Zj = [Zj−1, zj ], j = 2, 3, . . . ,

with z1 =
√
−2s1(A+ s1I)−1C1 and Z1 = z1.

Additional recent contributions were devoted to the improvement of the com-
putational costs per iteration. A strategy for reducing the number of solves was
proposed under the name of “modified” low-rank Smith method in [113]. The idea
is to compute the singular value decomposition of the iterate at each step and, given
a dropping tolerance, to replace the iterate with its best low-rank approximation. A
main ingredient is that the SVD is not recomputed from scratch; instead, it is up-
dated after each step to include the new information and then truncated to retain
only those singular values that lie above the specified tolerance. The use of the SVD
exploits the fact that if Z ≈ V ΣU∗ is a truncated SVD decomposition of Z, then
X = ZZ∗ ≈ V Σ2V ∗ is the truncated spectral decomposition of X, so that the low
rank factor can be readily maintained. In general, the procedure reduces the number
of system solves per iteration, in a way that depends on the linear independence of
the new iterate columns with respect to those of previous steps.

A bound for the difference between the traces of the solution X of Lyapunov
equation and its ADI approximation is proposed in [255], which shows that the right-
hand side of the Lyapunov equation can sometimes greatly influence the eigenvalue
decay rate of the solution.

Computation of the shifts. The selection of the ADI parameters and their number
have been a major topic of research for many years, since the performance of the
method, in terms of number of iterations, heavily depends on them.

Let A be stable. Assuming a zero starting approximate solution, from the general
ADI recurrence it follows that the error matrix associated with the ADI approximation
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XADI
k after k full iterations is given by (see also [203])

X−XADI
k = (r̄k(A)rk(−A)−1)Xr̄k(A)∗rk(−A)−∗, (5.8)

with8

rk(z) =

k∏
i=1

(si − z), r̄k(z) =

k∏
i=1

(s̄i − z).

This expression shows that for A diagonalizable, optimal parameters can be obtained
by solving the minimax problem

min
s1,...,sk∈C−

max
λ∈Λ(A)

k∏
j=1

∣∣∣∣λ− sjλ+ sj

∣∣∣∣ . (5.9)

The value of k is adjusted so that the set {s1, . . . , sk} is closed under conjugation in
the case A is real. For A having real spectrum, this minimax problem was solved
by Zolotaryov; if A is also symmetric, this leads to asymptotically optimal linear
convergence rate for the approximation. The optimal parameters are given as (see,
e.g., [268],[84])

sj = dn

[
(2j − 1)K

2t
,m

]
, j = 1, . . . , k

where dn is a Jacobian elliptic function, and K is the complete elliptic integral of
the first kind, of modulus m [1]. Generalizations to the case when the complex
spectrum lies in certain specified complex regions Ω were discussed in [84]. However,
it was only with the heuristic approach of Penzl in [203] that the computation of
suboptimal ADI parameters became a more manageable procedure. The proposed
strategy is performed as a pre-processing of the actual ADI computation: consider the
Krylov subspaces KkA(A, c), KkA−1 (A−1, c), and let V , W be such their orthonormal
columns span the two spaces, respectively. Let Ω+,Ω− be the regions containing the
eigenvalues of V >AV and of W>AW (the Ritz values). The key idea in [203] is to
replace the spectrum of A with the region Ω := Ω+∪Ω−, and then solve the minimax
problem (5.9). The set Ω may be regarded as a reasonable approximation to the
region of interest, the convex hull of the spectrum of A, and it can be more cheaply
computed, especially for small kA, kA−1 ; we refer to [203] and to the package [205] for
more technical details.

If the data are real, all ADI computation can be carried out in real arithmetic, even
if complex (conjugate) shifts are used [26]. In spite of the significant improvements in
the ADI optimal parameter estimation, however, the method remains quite sensitive
to the choice of these shifts, and performance can vary dramatically even for small
changes in kA, kA−1 ; see, e.g., the experiments in [232]. Adaptive strategies for pole
selections such as those derived for the rational Krylov subspace in [78] are hard
to obtain, since a basis for the generated space is not available. Nonetheless, these
considerations have led to the investigation of hybrid approaches, which are described
later in this section.

It was observed in [175] that the ADI method actually generates a (block) rational
Krylov subspace for the given vector of shifts sk = [s1, . . . , sk]. The connection

8Here and in the following s̄ is the complex conjugate of s.
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between the ADI method and the Galerkin rational Krylov subspace Kk(A,C1, sk) =
range((A − s1I)−1C1, . . . , (A − skI)−1C1}, can be made more precise, when the two
methods are used with the same parameters.

Theorem 5.4. ([80, Th.3.4]) Assume that the field of values of A and sj, j =
1, . . . , k lie in the same half complex plane, and that C1 has rank one. Let the columns
of V form an orthonormal basis of Kk(A,C1, sk), and let λj, j = 1, . . . , k be the
Ritz values of A onto Kk(A,C1, sk), that is λj are the eigenvalues of V ∗AV . Then
the ADI approximation coincides with the Galerkin approximate solution Xk with
Kk(A,C1, sk) if and only if sj = λj, j = 1, . . . , k (under a suitable index permutation
for the λj’s).

The condition sj = λj , j = 1, . . . , k is seldomly satisfied when the shifts are
obtained by either an adaptive procedure or by a Penzl-style pre-processing (however,
see [112] for an iterative process that approximates such a set of parameters, in the
context of optimal model order reduction). Moreover, the approximation error in the
Galerkin rational Krylov subspace approach may be bounded in terms of the same
bound used for ADI. Since for the latter the upper bound can be reached, these results
indicate that the projection onto a rational Krylov subspace provides better results
than ADI, in terms of number iterations, if the same shifts are used.

Hybrid ADI methods. It was observed in [30] that “The most criticized property
of the ADI iteration for solving Lyapunov equations is its demand for a set of good
shift parameters to ensure fast convergence. [...] Most of the [computationally cheap
parameters] are suboptimal in many cases and thus fast convergence can indeed not
be guaranteed. Additionally, if the convergence is slow, the low-rank Cholesky fac-
tors may grow without adding essential information in subsequent iteration steps.”
In [30] it was thus suggested to combine the subspace projection idea with the ADI
recurrence. The projection is performed onto the space spanned by the columns of
the current ADI factor, the idea being motivated by the fact the ADI solution factor
belongs to the rational Krylov subspace with the same shifts as ADI. The projection
is performed every k̂ ADI iterations by computing and orthonormal basis spanning
the range of the current factor, and the small size projected equation is solved by
means of a Schur-type method (cf. section 5.1). Since the number of columns grows
at each iteration, the cost of computing the orthonormal basis significantly increases.
To overcome this problem, the authors suggest to truncate the obtained projected
solution so that a small rank factor is retained for the next ADI iteration. More
technical implementation details can be found in [30]. The idea is very reminiscent
of a restarting process in the standard linear system framework, although here the
truncation is performed in a different fashion. To complete this parallel with linear
system solves, this procedure may be viewed as a hybrid restarted process, where a
rational function (here the ADI single step) is applied to the solution before restart;
cf., e.g., [195] for polynomial acceleration procedures of restarted methods in the lin-
ear system setting. The resulting process is called the Galerkin projection accelerated
LRCF-ADI (LRCF-ADI-GP). Note that although ADI does not require that A be
either positive or negative definite (that is its field of values in a half complex plane),
the extra projection step is ensured not to break down only under the additional defi-
niteness constraint. It is also interesting to observe that, without the truncation of the
projected solution, the procedure might be mathematically equivalent to the Galerkin
method in the Rational Krylov subspace obtained with the same shift parameters; a
formal proof still needs to be carried out.

We also mention the procedure proposed in [143], where the continuous Lyapunov
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equation is first transformed into a discrete (Smith) Lyapunov equation with rational
matrix functions as coefficient matrices, and then solved by means of the Global
Krylov subspace method. This may be viewed as a preconditioning strategy.

5.2.3. Spectral, sparse format and other methods. As for the Sylvester
equation, the Kronecker formulation can be used to restate the matrix equation as
the following very large linear system,

Ax := (Im ⊗A+A> ⊗ In)x = c, x = vec(X), c = vec(C) (5.10)

of size n2, if n is the size of A; see, e.g., [127] for an early attempt. For A symmetric
and positive definite, the convergence rate of CG applied to the Kronecker formulation
is driven by the condition number κ(A) = κ(A), whereas the convergence rate of the
Galerkin procedure directly applied to the original Lyapunov equation is driven by
κ(A + λminI) (cf. Theorem 5.3), which can be significantly smaller than κ(A). This
analysis justifies the better performance of projection methods applied to the matrix
equation. A second possibly stronger argument is given by memory requirements: the
Kronecker formulation requires n2-length vectors. Nonetheless, it was recently shown
in [190] that when solving (5.10) floating point operations can be carried out so as to
lower memory storage from O(n2) to O(n). Moreover, a standard Krylov subspace
method for (5.10) can take full advantage of the structure, since most matrix-vector
multiplications can be rewritten as matrix-matrix operations.

A possible way to overcome slow convergence is to choose an effective precondi-
tioning strategy, that can drastically improve the spectral properties of the coefficient
matrix A. Hochbruck and Starke used a Krylov subspace solver for the system (5.10),
and they investigated SSOR and ADI iteration (with a fixed number of iterations) as
operator-based preconditioners; see also [190] for some implementation aspects of pre-
conditioning strategies. More recently, a flexible GMRES approach was proposed in
[46], which allowed for a variable ADI preconditioning step. Very preliminary numer-
ical results report promising performance of the Kronecker formulation, while taking
into account the matrix structure. These approaches may have broader applications
for more general matrix equations; see the discussion in section 7.2.

A rather different approach consists of using an appropriately modified version
of the sign function iteration depicted in (5.3). As memory requirements are exces-
sive in its original form for large scale problems, two major amendments have been
explored (see, e.g., [16]): i) A sparsified version of A, so as to substantially reduce
the computation and storage of Z−1

k ; ii) For C = C1C
>
1 , a factored version of the

approximation X̃, so that only a full (low rank) factor need be iterated. The latter
problem was addressed in [29], where the following coupled iteration was proposed:

A0 = A, B0 = C1, Ak+1 =
1

2
(Ak +A−1

k ), Bk+1 =
1√
2

[Bk, A
−1
k Bk], k = 0, 1, . . . ,

giving Y = 1√
2

limk→∞Bk, with YY> = X. Note that the size of Bk is doubled

at each iteration, therefore a rank reduction is suggested in [29]. More recent de-
velopments include new algorithms that appear to be well suited for large problems
with dense and unstructured matrices [230]; the discussion in [230] in fact addresses
generalized Sylvester equation.

Item i), namely reducing the cost of dealing with the explicit inverse of large
matrices, may be addressed by exploiting data-sparse matrix representation and ap-
proximate arithmetic. In [18], but also in previous related works for the algebraic
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Riccati equation, the H-matrix format was used (cf. section 4.4.3). If InvH(A) de-
notes the inverse in the H-matrix format, then the coupled recurrence above can be
performed as

Ak+1 =
1

2
(Ak + InvH(Ak)), Bk+1 =

1√
2

[Bk, InvH(Ak)Bk], k = 0, 1, . . . ,

where the sum to obtain Ak+1 is intended in H-matrix format. More implementation
details can be found in [18]. According to the analysis performed in there, the error
induced by the new format can be controlled while performing the rank reduction of
Bk+1, so that the format errors do not grow unboundedly with k; these results are
in agreement with the general theory of H-matrices for Riccati equations, developed
in [105]. In [18], the derivation with H-matrix format is extended to the case of the
generalized Lyapunov equation (cf. section 7). Numerical experiments show that the
H-format allows the sign function iteration to be employed for medium size problems
(O(10000)), for which the dense algorithm requires too much memory allocation.
Finally, an example comparing a linear multigrid solver using H-format matrices with
ADI is reported in [103, sec. 7.6], showing that on that specific example the multigrid
approach is about ten times faster than ADI (implemented in the same framework),
although both methods scale linearly with the number of multigrid levels.

We conclude this section with strategies that are more explicitly based on invari-
ant subspaces. All considered methods assume that the maximum rank of a sufficiently
accurate approximate solution is either known or given.

The integral representation of X in (4.5) and the spectral decay of the spectrum of
X suggest various eigenvalue-based strategies. One such method focuses on approxi-
mating the leading invariant subspace of X. In [131] and [128] an Approximate Power
Iteration (API) approach was proposed, which aims to approximate the dominant
eigenvectors of X. The method is closely related to power iteration and the Lanczos
method for computing the extremal eigenpairs of a positive definite symmetric matrix,
and the authors report good convergence properties when the eigenvalues associated
with the sought after eigenvectors are away from zero and well separated from the
others, so that a good low-rank approximation of X can be determined. The method
works under the assumption that A is negative definite, as with projection methods.
The API method applies the power method to X, which is only known implicitly and
approximately by means of products of the type y = Xv through the solution of an
auxiliary Sylvester equation (cf. section 4.3). The numerical experiments reported in
[128] on actually quite small problems, seem to imply that API is a promising method
for the approximation of the leading eigenvectors of X, without the computation of X
itself. The approach is reminiscent of the implicitly restarted Arnoldi method [173],
although each iteration requires the solution of a Sylvester equation. A variant of this
approach was proposed in [264] to overcome misconvergence caused by the omission
of a term in the error matrix. Motivated by [128], an algorithm combining the power
method and (implicitly) the ADI iteration was proposed in [197]; we refer to [196] for
a more thorough presentation of these approaches.

With the same aim of approximating the leading invariant subspace of X of given
dimension, the procedure explored in [110] performs a refined numerical approxima-
tion by repeatedly integrating the dynamical system associated with the Lyapunov
equation, as the basis for an orthogonal power iteration.

A somewhat related approach was proposed in [237], and it exploits the popular
proper orthogonal decomposition (POD) approach employed in reduced order modeling
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of large-scale dynamical systems [28]. The idea is to collect a sample of m solutions
to the associated linear differential equation with different starting data, and for a
chosen k, form a rank-k approximate Lyapunov solution by using the eigenpairs of
the sample, obtained by the method of snapshots. The approach relies on the integral
representation of the Lyapunov solution, and according to the author, it is particularly
appropriate for infinite dimensional problems.

Finally, a novel very different approach was recently proposed by Vandereycken
and Vandewalle in [261] for A symmetric and positive definite; the method finds a
low-rank approximation to X by minimizing the function

f :Mk → R, X 7→ trace(XAX)− trace(XC)

on the manifold of symmetric and positive semidefinite matrices of rank k in Rn×n,
namely

min
X∈Mk

f(X).

Note that the minimization of f corresponds to the minimization of the error in the
energy norm, having used the Kronecker formulation of the Lyapunov equation. By
using the smoothness of Mk the problem is solved within a Riemann optimization
framework, which allows one to embed the rank constraint in the space, and solve
an unconstrained minimization problem by means of a Riemann trust-region method,
a second-order model based on the Hessian [2]. At convergence of the minimization
process, if the current solution rank is not sufficiently accurate, the process is restarted
basically from scratch. As a result, the method may be appealing when the optimal
rank is approximately known a-priori, otherwise the approach may not be competitive
with respect to other strategies discussed so far.

6. The Stein and discrete Lyapunov equations. The Stein and the discrete
Sylvester equations are the discrete-time counter part of the (continuous-time) equa-
tions discussed in the previous sections, and they naturally stem from a discrete-time
system; see, e.g., [4, sec.4.3]. Other relevant applications include for instance statistics
[155],[154], probability [10], spectral analysis [134]; these equations are also a compu-
tational tool in the design of control systems [120], or in the coprime matrix fraction
description of linear systems [290].

The Stein equation may be written as

X +AXB = C, (6.1)

where it is assumed that the eigenvalues of A and B are contained in the open unit
disk. The discrete-time Lyapunov equation is obtained by choosing B = −A>, in
which case, if a solution exists, it has to be symmetric. In the context of inertia
theory, for C ≥ 0 the discrete-time Lyapunov equation allows one to analyze the
connection between the eigenvalues location of the matrix A with respect to the unit
circle and the eigenvalue location of X with respect to the imaginary axis; see, [169,
sec.13.2], and also, e.g., [279],[174] for more specialized results.

Under the condition that λi(A)λj(B) 6= −1 for all i, j, the solution X exists and
is unique for any C (see, e.g., [168]), and this is highlighted by the Kronecker form of
(6.1), given as (I +B> ⊗A)x = c, where x = vec(X) and c = vec(C). Necessary and
sufficient conditions for the existence and uniqueness of the solution X were obtained
in [278] as a generalization of the property (4.2) for the Sylvester equation. Inertia
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and other transformation-based results for B = −A> can be derived in a natural
manner from those on the Lyapunov equation; see, e.g., [227],[228]. We also refer to
[167] for a solution expressed in terms of the companion form of the given matrices,
and [40] for related computational considerations.

For numerically solving the equation for, say, B nonsingular, one could think of
working with XB−1 + AX = CB−1 which is a continuous-time Sylvester equation,
and then adopt one of the solution methods from previous sections. In fact, (6.1) is
nothing but a generalized Sylvester equation as in (7.1) with special choices of the first
two coefficient matrices. For large B, the matrix B−1 should not be formed explicitly,
but its action used within iterative methods.

Forming B−1 explicitly is not recommended also in the small size case, whenever
B is ill-conditioned. Alternative transformations that bring the discrete equation to
standard form are given by (here for B = −A>, cf. [208])

ÃX̃ + X̃Ã> = C, with Ã = (A− I)−1(A+ I), X =
1

2
(Ã− I)>X̃(Ã− I),

and (cf. [12], [206], [152])

ÃX + XÃ> = C̃, with Ã = (A− I)(A+ I)−1, C̃ = 2(A> + I)−1C(A+ I)−1,

where it is assumed that the inversions are well defined. In general, however, the same
stability considerations as for methods using A−1 apply.

All these difficulties encourage solving the discrete equations (6.1) directly. A
Schur-form type method for small size coefficient matrices that directly deals with
(6.1) can be found, e.g., in [13], while a generalization of the “continuous-time” Ham-
marling method was proposed by Hammarling himself in [118].

In [263], Varga established a rank-two updating formula for the Cholesky factors
in Hammarling’s algorithm for solving the real, non-negative definite Stein equation.
As a generalization of his algorithm for the Lyapunov equation, a block variant of
the Hammarling’s method for the discrete-time Lyapunov equation is suggested in
[161]. We also mention a systolic algorithm with coefficient matrices in triangular
form [135].

In spite of the large similarity with the standard equation, directly attacking
(6.1) is an interesting problem in its own, especially for A and B of large dimensions
and with either of the two matrices singular. For a low rank C, projection methods
are applicable to solve (6.1), and an approximate solution X̃ = VkYW>k can be
determined, where the columns of Vk and Wk span approximation spaces associated
with A and B>, respectively. For instance, a global Krylov subspace approach was
proposed in [142, sec. 5],[148], and its implementation is a natural modification of
that used for the standard Sylvester equation. Similar derivations can be obtained
for other Krylov-based methods. For instance, the Extended Krylov subspace could
be easily adapted to the transformed matrix equation for low rank C, at the same
computational cost as for the standard Sylvester equation.

The discrete-time Lyapunov equation motivated the development of the Smith
method [239], which is at the basis of the modern ADI iteration for the Lyapunov
equation. For A d-stable, the unique solution to (6.1) can be written as X =∑∞
j=0A

jC(Aj)>, and it is symmetric and positive semi-definite, if C is. The (conver-
gent) Smith iteration is defined as

X0 = 0, Xk+1 = C +AXkA
>,
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with a closed form given by Xk =
∑k
j=1A

j−1C(Aj−1)>. Faster - quadratic - conver-
gence can be achieved with the squared Smith method, which becomes of interest in
the large scale case precisely for C of small rank [203]. The iteration is generically
given as

X = (A2k+1

)>XA2k+1

+

2k+1−1∑
i=0

(Ai)>HAi, X = − lim
k→∞

2k+1−1∑
i=0

(Ai)>CAi.

The resulting recursion is given by Hk+1 = Hk +A>k HkAk where Ak+1 = A2
k, so that

Ck → X as k → ∞. By exploiting the low rank of C = C0C
>
0 , Hk+1 = Ck+1C

>
k+1

with Ck+1 = [Ck, A
>
k Ck]. As a result, the number of columns of Ck+1 doubles at

each iteration, and Ck+1 is contained in a block Krylov subspace generated by A>

and C0. Recent advances to make this recurrence more effective both in terms of
computational costs and memory requirements include compressions, truncations and
restarts, with a tricky use of the underlying Krylov subspace [178],[177],[222],[33]. In
these references, estimates for the residual and error norms are also derived. Finally,
we point out an ADI acceleration strategy in [222] (for B = −A>) and in [33], which
significantly improves the convergence speed. In fact, a major breakthrough for the
Smith method consisted in combining its recurrence with the ADI idea, as developed
in [203].

All these approaches rely on the fact that often the solution X has (numerical)
rank much lower than n; indeed, in [33] it is shown for the Stein equation that if C
has rank p,

σkp+1(X)

σ1(X)
≤ ‖Ak‖‖Bk‖,

indicating that indeed the solution rank may be small. In [222] the following estimate
was derived for B = −A> and ‖A‖ < 1:

σkp+1(X)

σ1(X)
≤ ‖A‖2k

1− ‖A‖2
.

Other variants of the Smith iteration have been considered. For instance, in [291], for
r ≥ 2 an iteration of the type

Xk+1 =

r−1∑
j=0

AjkXkB
j
k, with Ak+1 = Ark, Bk+1 = Brk, k ≥ 0

was introduced. The performance of the method is yet to be tested. In general, a
computational comparison of all these approaches and variants is still lacking, though
it would be highly desirable.

A related matrix equation is the >-Stein equation, given by X = AX>B + C,
whose solvability conditions have been recently analyzed in [180]. More generally,
a broader class of matrix equations can be written as X = Af(X)B + C, where
f(X) = X>, f(X) = X̄ or f(X) = X∗, whose analysis and numerical solution can
be recast in terms of the Stein matrix equation [292]. This and more general forms of
linear equations are discussed in the next section.

7. Generalized linear equations.
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7.1. The Generalized Sylvester and Lyapunov equations. The term gen-
eralized refers to a very wide class of equations, which includes systems of matrix
equations, bilinear equations and problems where the coefficient matrices are rect-
angular. We start with the most common form of generalized Sylvester equation,
namely

AXD + EXB = C, (7.1)

which differs from (4.1) for the occurrence of coefficient matrices on both sides of the
unknown solution X.

If D and E are both nonsingular, left multiplication by E−1 and right multiplica-
tion by D−1 lead to a standard Sylvester equation, with the same solution matrix X.
In case either E or D are ill-conditioned, such a transformation may lead to severe
instabilities. This problem is common to other generalized equations we will encounter
later in this section, and it justifies the development of solution methods that stick to
the original form (7.1). The case of singular D and/or E is called projected Sylvester
equation, and it has an important role, for instance, in the solution of differential-
algebraic equations [166]; as already mentioned, we shall not discuss this setting in
this work.

The following result ensures existence of a unique solution X to (7.1).

Theorem 7.1. ([267]) The matrix equation AXD + EXB = C has a unique
solution if and only if

(i) The pairs (A,E) and (D,−B) are regular pencils;

(ii) The spectra of (A,E) and (B,−D) are disjoint9.

We also refer to [201] for some estimator of the separation10 and the condition
number of the operator associated with (7.2), which is important to assess the accuracy
of the computed solution. For C positive semidefinite and (A,E) stable, in [201] a
generalization of the Hammarling method is also proposed.

A natural extension of the Bartels-Stewart method can be implemented for nu-
merically solving (7.2) when dimensions are small, and this was discussed in [94], [95],
[201], where the starting point is a QZ decomposition of the pencil (A,E), followed by
the solution of a sequence of small (1-by-1 or 2-by-2) generalized Sylvester equations,
which is performed by using their Kronecker form.

The large scale setting does not significantly differ from previous cases, as long as
E,D are not too ill-conditioned. The problem can be recast as a standard Sylvester
equation in E−1A and BD−1. In the case of rational Krylov subspace and ADI
methods, shifted systems can be solved with the coefficient matrix (E−1A + sI) =
E−1(A+ sE), and analogously for systems with BD−1.

We mention the specific application of global Krylov subspace methods (cf. sec-
tion 4.4), which are obtained by using the mappingM(X) = AXD+EXB, therefore
they can be applied in general to the equation

∑q
i=1AiXBi = C, as done in [48]; note

that this kind of approach can only be applied to medium size problems, as the ma-
trix formulation involves dense matrices. As a related issue, we recall once again that
there is a tight relation between global methods and the Kronecker form, providing a
good ground for the theoretical understanding of the performance of global methods.

9Here the notion of disjoint spectra ([267, formula (7)]) should be intended keeping in mind
the definition of “spectral set” in generalized eigenvalue problems, as defined for instance in [246,
Definition VI.1.1].

10Defined as sepp(A,E) = min‖X‖p=1 ‖A>XE + E>XA‖p, with p = 2, F .
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As particular case of the linear equation in (7.2), the generalized Lyapunov equa-
tion

AXE> + EXA> = C, (7.2)

has a special interest in control; see also more recent applications in stability analysis
[189]. The case E 6= I arises in a control problem, for instance, whenever a second or
higher order ordinary differential equation is discretized. A unique solution is ensured
if and only if Theorem 7.1 applies, that is all eigenvalues of the pencil (A,E) are
finite, and they do not have pairwise zero sum. As a consequence, a unique solution
is only obtained if one of the matrices A, E is nonsingular. In this case one can recast
equation (7.2) as a standard Lyapunov equation.

To avoid stability problems caused by a possible ill-conditioned E or A, it is
usually preferred to work with E and A implicitly. This is realized by performing a
simultaneous Schur decomposition of E and A, E = QSZ∗, A = QTZ∗, with S and
T (complex) upper triangular [191]. Plugging in this transformation, (5.2) becomes
QTZ∗XZS∗Q∗ +QSZ∗XZ∗T ∗Q∗ = C, that is

T X̂S∗ + SX̂T ∗ = Q∗CQ, X̂ = Z∗XZ.

The elements of X̂ can then be obtained by exploiting the structure of T and S [117].
A different approach adapts the matrix sign function iteration in (5.4) to this more

general context, and it is shown in [29] that it is applicable under the hypothesis that
the Lyapunov equation is stable, that is that the pencil (A,E) has all eigenvalues in the
open left complex half-plane. In the case of C in factorized form in (7.2), a recurrence
is proposed in [29] to generate an approximation to the Cholesky-type factor of the
resulting semidefinite solution X. Comparisons in terms of memory requirements and
floating point operations with respect to the generalized Hammarling method (see
[201]) are also reported in [29].

7.2. Bilinear, constrained, and other linear equations. Other generaliza-
tions of the Sylvester equation have attracted the attention of many researchers. In
some cases the standard procedure for their solution consists in solving a (sequence
of) related standard Sylvester equation(s), so that the computational core is the nu-
merical solution of the latter by means of some of the procedures discussed in previous
sections. We thus list here some of the possible generalizations more often encoun-
tered and employed in real applications. We start by considering the case when the
two coefficient matrices can be rectangular. This gives the following equation:

AX + YB = C, (7.3)

where X, Y are both unknown, and A, B and C are all rectangular matrices of
conforming dimensions. Equations of this type arise in control theory, for instance in
output regulation with internal stability, where the matrices are in fact polynomial
matrices (see, e.g., [277] and references therein). The following theorem is a first
result on the existence and uniqueness of the pair X, Y, and is reported as originally
stated in [217]; see also more recent advanced developments in [85].

Theorem 7.2. ([217]) The necessary and sufficient condition that the equation
AX−YB = C, where A,B, and C are m× r, s×n, and m×n matrices respectively
with elements in a field F , have a solution X,Y of order r×n and m× s respectively
and with elements in F is that the matrices[

A C
0 B

]
and

[
A 0
0 B

]
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be equivalent.
These are extensions of the analogous result for the standard Sylvester equation,

cf. (4.2) and [217], [132]. The two-sided version of (7.3) is given by

AXD + EYB = C,

and this is an example of more complex bilinear equations with several left-hand side
terms considered in the literature; see, e.g., [290] and references therein. A typical
setting is given by the following bilinear equation:

AXD + EXB = CY + F, (7.4)

where the pair (X,Y) is to be determined, and X occurs in two different terms.
Theoretical aspects are collected in [282], and also in [281], [283], where closed forms
for (X,Y) in the homogeneous (F = 0) and non-homogeneous cases are developed,
respectively. We refer to [288] for interesting explicit equivalence relations among
the homogeneous form of (7.4), and other linear generalized Sylvester equations; the
transformations employed are similar to those we have described in section 6 to trans-
form discrete-time equations into continuous-time equations. In [287],[289] general
parametric expressions for the solution matrices X and Y are also obtained, under
the hypothesis that D is full rank and F is the zero matrix.

The main objective in the aforementioned papers is in fact the solution of sys-
tems of bilinear matrix equations; see e.g. [151],[81], for which a recent perturbation
analysis can be found in [183]. These systems can arise, for instance, in the numerical
treatment of systems of stochastic partial differential equations; currently, a Kronecker
formulation is used to determine the numerical solution of the resulting large linear
system; see, e.g., [87]. Systems of linear matrix equations also arise in the spectral
computation of pencils [267], and we refer to [150] for solution methods for small size
problems, and for further discussion on the solvability conditions and applicability of
these systems. In [209] a necessary and sufficient condition is given for the matrix
equations {

A1X + YB1 = C1

A2X + YB2 = C2
(7.5)

to have a pair of common solutions X and Y. From a numerical standpoint, very
few alternatives have been explored so far, that go beyond a cleverly implemented
Kronecker formulation. The idea suggested in [81] amounts to “expanding” the two
equations into a single one of larger size, whose solution contains both X and Y
but requires the Jordan decomposition of some of the coefficient matrices; necessary
and sufficient conditions for determining such a unique solution are also obtained. A
similar framework is used in [74] where more than two unknown matrices are allowed,
and an approximate solution is obtained by means of a least squares approach. In
[151], a more stable generalized Schur method is proposed, which applies the QZ
algorithm to the pairs of coefficient matrices.

The number of linear matrix equations and unknown matrices can in fact be
quite large, as discussed for instance in [47]. Necessary and sufficient conditions for
the resulting systems to have a solution pair are studied in [273]. Computationally
speaking, this general case has only been treated so far by using the Kronecker formu-
lation, so that only very small problems have been tackled; but see [290], where the
problem of solving the set of matrix equations is recast as an optimization problem.



38 V. Simoncini

A special class of nonlinear problems is given by the following Sylvester-Observer
equation, which stems from the problem of determining a reduced order observer model
[75], [185]. Find matrices X,Y and Z such that

XA−YX = ZC,

[
X
C

]
invertible, (7.6)

where A and C are known matrices with C having few rows. A solution to (7.6)
exists for any choice of spectrum of Y, therefore this spectrum can be predetermined;
a choice that makes Y stable (eigenvalues in the left half complex plane) also ensures
convergence of the reduced order observer; we refer to [185] for more details on these
aspects. A possible way to address (7.6) is to choose Y and Z arbitrarily and then
solve for X the resulting Sylvester equation. Early approaches in this direction did
not lead to a numerically stable method. For small size matrices, the reduction to
Hessenberg form proposed by Van Dooren in [75] is still one of the most effective
methods for solving (7.6). The algorithm is based on a reduction to “staircase form”
of the pair (A,C), and on the determination of the solution X with a particular
structure in a different coordinate system. We also refer to [259] for a more detailed
survey on methods for dense matrices. More recently, other approaches have been
proposed: for instance, a block generalization of the method in [75] was proposed in
[56]; moreover, in [57] the authors proposed a block algorithm for determining a full
rank solution, and it seems to be most appropriate for large-scale problems with sparse
A. In this latter setting, a successful early method was proposed in [67]. The approach
first assumes that ZC is rank-one and exploits the resemblance between the observer-
Sylvester equation and the Arnoldi relation (4.16). As a by-product of the method,
the authors in [67] also derive an algorithm for solving the partial-pole-assignment
problem for large and sparse A, which is generalized in [69] to higher rank of ZC; see
also [71] for alternative algorithmic approaches. The authors in [54] propose a new
strategy for a-priori choosing the eigenvalues of Y that makes the algorithm in [67]
more efficient. From a control theory point of view, the possibility to determine a
reduced order model is also important in the derivation of stable closed-loop systems,
giving rise to a well exercised eigenvalue assignment problem. We refer to, e.g., [70],
for a brief survey on this and other related problems.

Within the Sylvester-observer equation, we can formulate the problem in a slightly
different manner, namely by means of a constraint (see, e.g., [248],[256],[192]), and it
can be stated as follows (cf., e.g., [11]): Given A ∈ Rn×n stable, B ∈ Rn×p, C ∈ Rm×n
and F ∈ R(n−m)×(n−m), find Y ∈ R(n−m)×m and X ∈ R(n−m)×n such that

XA− FX = YC, with XB = 0, (7.7)

so that [X;C] is full rank.
The problem may be viewed as a homogeneous system of linear matrix equations,

generalization of (7.5), with two terms in X as in (7.4), and C1 = 0, C2 = 0; however,
there is no need to expand it by means of the Kronecker product. In [11] the authors
provide necessary and sufficient conditions for a solution to (7.7) to exist, and propose
an algorithm for its computation in the small-scale case. The main ingredients are a
QR factorization and the solution of a standard Sylvester equation. In [96] a modifi-
cation of this method was presented, to handle the case of almost singular Sylvester
equations. The large scale case has been recently addressed in [226] by generalizing
the method in [11]. We also refer to [58] for an approach that handles a “regional
pole-placement constraint” on F in (7.7) for a descriptor system, and to [66] and its
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references for further theoretical properties. Somewhat similar difficulties arise when
dealing with projected Lyapunov equations, as discussed in [182].

Going back to a single unknown matrix, other “generalized” Lyapunov equations
more in the spirit of (1.2) include extra linear terms:

AX + XA∗ +NXN∗ + C1C
∗
1 = 0, (7.8)

and they stem, for instance, from complex systems of the form:

ẋ(t) = (A+ iu(t)N)x(t) + iB1u(t), x(0) = x0, y(t) = C∗1x(t),

see, e.g., [119],[223]. We refer to [107] for sufficient conditions on the existence of
the controllability and observability Gramians; more complex forms involve more
structured matrices N , see, e.g., [24],[62]. In fact, more terms of the type NjXN

∗
j , j =

1, 2, . . . could arise to fulfill more general model requests. The one above is an example
of linear jump systems (see [187]), in which the linear coefficient matrices depend on a
Markovian random process, giving rise to systems of matrix equations with the extra
term, accounting for the probabilistic nature of the problem. Polynomial and infinite
dimension systems are also of interest, see, e.g., [284] and [64], respectively, and their
references. In addition to a robust Kronecker-form based iteration reviewed in [65,
sec.3.1-4], Damm in [65] proposed a regular splitting for the numerical solution of
(7.8), yielding the following iterative scheme:

AXk+1 + Xk+1A
∗ = −NXkN

∗ − C1C
∗
1 , X0 = 0,

which entails the solution of a sequence of standard Lyapunov equations. Convergence
to X is obtained if the spectrum of A is sufficiently away from the imaginary axis. We
refer to [65, sec. 4], where the generalized case of the Lyapunov operator is also treated.
In the recent article [32] a thorough discussion and contextualization of the algebraic
problem in stochastic model order reduction can be found. In [24], various methods
for the Lyapunov equation, such as ADI and projection techniques, are adapted to
the setting of (7.8), including sparse format approaches for the Kronecker formulation;
reported experimental results on large problems seem to favor this latter approach,
with the caveat of tuning the sparsity and accuracy parameters, as described in section
5.2.3.

An approach that may be appropriate for large scale problems is implicitly sug-
gested in [8]. In the context of model order reduction, the following approximation
space is introduced:

range(V ) = range

{
r⋃

k=1

range{V (k)}

}
, (7.9)

with range(V (1)) := Kq(A
−1, A−1C1) and

range(V (k)) := Kq(A
−1, A−1NV (k−1)), k = 2, . . . , r.

Using a Galerkin approximation onto range(V ), the equation (7.8) can be reduced and
solved with a direct procedure; a possible implementation of this idea was recently
performed in [31]. Another approach for solving multilinear systems in Kronecker form
was analyzed in [165], for which a tensor-based form for the approximate solution is
considered. Such strategy is well suited in the approximation of parameterized linear
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systems, as they arise for instance in certain discretization strategies for the numerical
solution of stochastic partial differential equations [6]. Data sparse methods associated
with the Kronecker formulation may provide a possible successful venue for attacking
the general linear multi-term matrix equation (1.2); to the best of our knowledge, no
attempts have been made in this direction so far for really large problems.

7.3. Sylvester-like and Lyapunov-like equations. Sylvester and Lyapunov-
like linear matrix equations of the form ([49], [41])

BX + f(X)A = C, A∗X + f(X)A = C, B,A,X ∈ Cm×n, (7.10)

with f(X) = X̄, f(X) = X>, f(X) = X∗, or their “discrete-time” variants (cf.
section 6) are less common; but see, for instance, [164] for an occurrence in structured
eigenvalue computation. The homogeneous case (C = 0) has been recently analyzed in
[253], where a complete description of the solution in terms of the Kronecker canonical
form of A + λf(B) is derived, whenever information on this latter pencil is known.
These equations have attracted increasing interest in the past few years, with recent
contributions on the necessary and sufficient conditions for the solvability of this
equation, for any right-hand side matrix C [136]; a different proof of this result that
also induces a numerical method is proposed in [266]. As a sample of this type of
result, in [53, Lemma 5.10] for f(X) = X>, it is proved that a unique solution X
exists if and only if the pencil A− λB> is regular and if its spectrum is >-reciprocal
free, with possibly the only exception of the unit eigenvalue, which should be simple.

In [251], an algorithm that relies on the generalized Schur decomposition of the
pair (A, f(B)) (via the QZ algorithm) is proposed to determine X for small A and B.
For f(X) = X> this can be briefly summarized as follows:

1) Decompose A = URV and B> = USV , with U , V unitary and R, S upper
triangular;

2) Compute E = V CV >;
3) Solve S>W +W>R = E element-by-element;
4) Form X = ŪWV̄ .
The solution of the equation in step 3) is also treated in detail in [251]. The

numerical solution in the large scale case is currently an open problem.
In [285] a closed-form solution to the equation for f(X) = X̄ is considered, to-

gether with the set of all possible solutions for (7.4) and for the bilinear problem
AX̄ + BY = XF . Chiang, Duan, Feng, Wu and their collaborators have thoroughly
investigated these formulations and their role in control applications.

A particular extension of this class of problems is given by polynomial equations.
Consider a polynomial matrix R(ξ) = R0 +R1ξ+ · · ·+R`ξ

` in the unknown ξ, where
Ri are constant square matrices and such that det(R(ξ)) is not identically zero, and
let Z be a square polynomial matrix satisfying Z(ξ) = Z(−ξ)>. The equation

R(−ξ)>X(ξ) + X(−ξ)>R(ξ) = Z(ξ),

in the square polynomial matrix X is called the polynomial Sylvester equation. This
special equation plays a role in the computation of integrals of quadratic functions of
the variables of a system and their derivatives (see [249],[250]), and in the stability
theory for high-order differential equations. In [200] the authors focus on the case
when the right-hand side has the form Z(ξ) = Q(−ξ)>ΣQ(ξ), where Q is a real
rectangular polynomial matrix in ξ such that QR−1 is a matrix of strictly proper
rational functions and Σ is a diagonal, signature matrix. An iterative solution method
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inspired by the method of Faddeev for the computation of the matrix resolvents is also
derived. More general equations include polynomial Diophantine matrix equations in
the form D(ξ)X(ξ) +N(ξ)Y(ξ) = F (ξ); in [120] closed form solutions are presented,
which could be used to numerically solve small size equations. In the large scale
setting, this problem is computationally unresolved.

Finally, a special mention deserves the homogeneous version of the Sylvester-like
equation previously discussed with B = A,

AX> + XA = 0. (7.11)

For each fixed complex matrix A, the solution space to this latter equation is a Lie
algebra equipped with Lie bracket [X,Y ] := XY −Y X. We refer to the recent articles
[252], [93] and their references for more details.

8. Software and high performance computation. Reliable software for solv-
ing matrix equations has been available for long time, due to its fundamental role in
control applications; in particular, the SLICE Library was made available already in
1986. Early in the 1990’ the SLICOT library (http://www.slicot.org/,[257]) re-
placed SLICE, and since then a large number of additions and improvements have been
included; see, e.g., [238], [35]. Most recent versions of Matlab [188] also rely on calls
to SLICOT routines within the control-related Toolboxes. SLICOT includes a large
variety of codes for model reduction and nonlinear problems on sequential and parallel
architectures; as a workhorse, both the Bartels-Stewart algorithm and the Hessenberg-
Schur algorithm are implemented. The Bartels-Stewart algorithm for triangular ma-
trices is also included as a standard in LAPACK. Functions solving the Lyapunov
equation are also available in other computational environments, such as Mathemat-
ica [280]. Related projects have lead to the developments of additional codes. Specif-
ically oriented to linear matrix equations in the Matlab framework, the lyapack set
of routines developed by Penzl in [205] has been particularly successful as a possible
implementation of the ADI method for large scale Lyapunov equations, relying on pre-
processing for the computation of quasi-optimal parameters. These routines were in-
cluded in the NICONET Project repository (http://www.icm.tu-bs.de/NICONET/).
The MESS set11 by Saak, Mena and Benner is the successor to the lyapack package,
with the aim of fully exploiting the capabilities of newer releases of Matlab. In addi-
tion, MESS allows for the solution to a larger variety of matrix equations associated
with the differential Riccati equation. A rather detailed list of routines for solving
control-related matrix equations is provided in the book by Sima [229] and in the
more recent book by Datta [68].

A number of benchmark problems have been made available for testing purposes.
In addition to those available in the NICONET website, a variety of datasets is avail-
able in the Oberwolfach collection, accompanied by a well documented description of
the originating application problems [61]; see also the description in [163].

Refined implementations of structured linear equations have been proposed for
high performance computations. In particular, the efficient solution of triangular
and quasi-triangular Sylvester equations has been discussed in [212], [207]. A high
performance library for triangular Sylvester-type matrix equations (continuous and
discrete-time) is also available at http://www8.cs.umu.se/~isak/recsy/, while a
parallel SCALAPACK-style version of this software, called SCASY, is available at
http://www8.cs.umu.se/~granat/scasy.html. Some of the SLICOT routines are

11Available at http://www.en.mpi-magdeburg.mpg.de/mpcsc/mitarbeiter/saak/Software/mess.php?lang=en
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overloaded in these libraries; see [146],[147],[101] for more information on the imple-
mentation on parallel architecture.

In [130] an early parallel algorithm was developed to solve medium size (0 < n ≤
1000) Lyapunov problems with a banded and negative definite matrix A; experiments
with a shared memory multiprocessor machine (Alliant FX-8) can also be found. The
approach is similar in spirit to classical iterative linear system methods such as Jacobi
and Gauss-Seidel. More recently, specialized parallel algorithms for Lyapunov, Stein
and other generalized matrix equations for different modern architectures have been
presented by a number of authors; see, e.g., [211] within the Cray T3E, [37],[38]
employing a cluster of PCs, [25] within hybrid CPU-GPU platforms. The use of
approaches based either on the square Smith iteration or on iterative techniques for
the matrix sign function, as opposed to the Schur decomposition, is key to obtain
good parallel performance.

Systems of matrix equations were implemented in a parallel environment in [47]
and references therein. A parallel algorithm for the small scale solution to the multi-
input Sylvester-observer equation (cf. section 7.2) was proposed in [45], and tested
on two shared-memory vector machines.

9. Concluding remarks. The solution of linear matrix equations has always
attracted the attention of the engineering and scientific communities. The reliability
of efficient core numerical algebra methods has made the solution of these matrix
equations increasingly popular in application problem modelling. A good under-
standing of the theoretical tools and of the variety of numerical methods available
for Sylvester-type equations provides a solid ground for attacking more general - non-
linear, multiterm or multifunctional - matrix equations, as the recent developments
described in previous sections seem to indicate.

We have limited our presentation mainly to linear problems. Non-linear matrix
equations have a crucial and ever increasing role in many applications: for instance,
the popular algebraic Riccati equation (see [168]) has a leading position in control
applications and is an important tool in eigenvalue problems; we refer to [43] for a
very recent presentation of the rich literature on computational methods. Other fully
nonlinear equations include, e.g, equations of the type X +A>F (X)A = Q, where F
is a properly defined nonlinear function of X; see, e.g., [213] and references therein.
Linear matrix equations with special properties arise when dealing with periodic dy-
namical systems. These problems give rise to periodic counterparts of the equations
we have analyzed, such as Lyapunov and Sylvester equations. Corresponding Schur
forms can be used for their solution, and necessary and sufficient conditions for a
periodic discrete-time system to be equivalent to a time-invariant systems are known;
for more details on both the theoretical and algorithmic aspects, mainly on small size
problems, we refer, e.g., to the contributions of R. Byers, P. Van Dooren, J. Sreedhar,
A. Varga on the subject.
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[46] Matthias Bollhöfer and André K. Eppler. A structure preserving FGMRES method for
solving large Lyapunov equations. In M. Günther, A. Bartel, M. Brunk, S. Schoeps,
and M. Striebel, editors, Progress in Industrial Mathematics at ECMI 2010, Mathe-
matics in Industry,, volume 17, pages 131–136, 2012. [30]

[47] I. Borno. Parallel computation of the solutions of coupled algebraic Lyapunov equa-
tions. Automatica, 31(9):1345–1347, September 1995. [37, 42]

[48] A. Bouhamidi and K. Jbilou. A note on the numerical approximate solutions for gen-
eralized Sylvester matrix equations with applications. Applied Math. Comp., 206:687–
694, 2008. [35]

[49] H. W. Braden. The equations ATX ± XTA = B. SIAM J. Matrix Anal. Appl.,
20(2):295–302, 1998. [40]

[50] Sanjoy Brahma and Biswa Datta. An optimization approach for minimum norm and
robust partial quadratic eigenvalue assignment problems for vibrating structures. Jour-
nal of Sound and Vibration, 324(3-5):471–489, 2009. [5]

[51] R. Byers. A LINPACK-style condition estimator for the equation AX + XBT = C.
IEEE Trans. Automat. Control, AC-29:926–928, 1984. [9]

[52] R. Byers. Solving the algebraic Riccati equation with the matrix sign function. Linear
Algebra Appl., 85:267–279, 1987. [23]

[53] R. Byers and D. Kressner. Structured condition numbers for invariant subspaces.
SIAM J. Matrix Anal. Appl., 28(2):326–347, 2006. [40]

[54] D. Calvetti, B. Lewis, and L. Reichel. On the solution of large Sylvester-observer
equations. Numer. Linear Algebra Appl., 8:435–451, 2001. [38]

[55] D. Calvetti and L. Reichel. Application of ADI iterative methods to the restoration of
noisy images. SIAM J. Matrix Anal. Appl., 17(1):165–186, January 1996. [5]

[56] J. Carvalho and B. A. Datta. A block algorithm for the Sylvester-observer equation
arising in state-estimation. In Proceedings IEEE International Conference on Decision
and Control, pages 3898–3903, Orlando, 2001. [38]



46 V. Simoncini

[57] J. Carvalho, K. Datta, and Yoopyo Hong. A new block algorithm for full-rank solu-
tion of the Sylvester-observer equation. Automatic Control, IEEE Transactions on,
48(12):2223–2228, Dec. 2003. [38]

[58] Eugenio B. Castelan and Vilemar Gomes da Silva. On the solution of a Sylvester
equation appearing in descriptor systems control theory. Systems & Control Letters,
54:109–117, February 2005. [38]

[59] Chong Chen and Dan Schonfeld. Pose estimation from multiple cameras based on
Sylvester’s equation. Computer Vision and Image Understanding, 114(6):652–666,
June 2010. [5, 6]

[60] Chong Chen, Dan Schonfeld, Junlan Yang, and Magdi Mohamed. Pose estimation
from video sequences based on Sylvester’s equation. In SPIE Proceedings of Electronic
Imaging, Conference on Visual Communications and Image Processing, San Jose, CA,
2007. SPIE’07. [5]

[61] Benchmark Collection. Oberwolfach model reduction benchmark collection, 2003.
http://www.imtek.de/simulation/benchmark. [41]

[62] Marisa Condon and Rossen Ivanov. Nonlinear systems - algebraic Gramians and model
reduction. Compel, 24(1):202–219, 2005. [5, 39]

[63] M. J. Corless and A. E. Frazho. Linear systems and control - An operator perspective.
Pure and Applied Mathematics. Marcel Dekker, New York - Basel, 2003. [4]

[64] O. L. V. Costa and C. S. Kubrusly. Lyapunov equation for infinite-dimensional discrete
bilinear systems. Systems & Control Letters, 17(1):71–77, July 1991. [39]

[65] T. Damm. Direct methods and ADI-preconditioned Krylov subspace methods for
generalized Lyapunov equations. Num. Lin. Alg. with Appl., 15:853–871, 2008. Special
issue on Matrix equations. [39]

[66] M. Darouach. Solution to Sylvester equation associated to linear descriptor systems.
Systems & Control Letters, 55(10):835–838, October 2006. [38]

[67] B. N. Datta and Y. Saad. Arnoldi methods for large Sylvester-like observer matrix
equations, and an associated algorithm for partial spectrum assignment. Lin. Alg.
Appl., 154–156:225–244, 1991. [38]

[68] Biswa Nath Datta. Numerical methods for linear control systems: design and analysis.
Elsevier, Academic Press, 2004. [41]

[69] Biswa Nath Datta and Chandanie Hetti. Generalized Arnoldi methods for the
Sylvester-observer equation and the multi-input pole placement problem. In Pro-
ceedings of the 36th Conference on Decision & Control, pages 4379–4383, San Diego,
California USA, December 1997. [38]

[70] B.N. Datta. Linear and numerical linear algebra in control theory: Some research
problems. Lin. Alg. Appl., 197–198:755–790, 1994. [4, 38]

[71] B.N. Datta, M. Heyouni, and K. Jbilou. The global Arnoldi process for solving the
Sylvester-observer equation. Computational and Applied Mathematics, 29(3):527–544,
2010. [38]

[72] E. de Souza and S. P. Bhattacharyya. Controllability, Observability and the Solution
of AX −XB = C. Lin. Alg. Appl., 39:167–188, 1981. [7, 8]

[73] J. Demmel. Three methods for refining estimates of invariant subspaces. Computing,
38:43–57, 1987. [5]

[74] Feng Ding and Tongwen Chen. Iterative least-squares solutions of coupled Sylvester
matrix equations. Systems & Control Letters, 54(2):95–107, February 2005. [37]

[75] P. Van Dooren. Reduced order observers: a new algorithm and proof. System and
Control Letters, 4:243–251, 1984. [38]



Computational methods for linear matrix equations 47

[76] V. Druskin and L. Knizhnerman. Extended Krylov subspaces: approximation of the
matrix square root and related functions. SIAM J. Matrix Anal. Appl., 19(3):755–771,
1998. [17]

[77] V. Druskin, L. Knizhnerman, and M. Zaslavsky. Solution of large scale evolutionary
problems using rational Krylov subspace optimized shifts. SIAM J. Sci. Comput.,
31(5):3760–3780, 2009. [18]

[78] V. Druskin and V. Simoncini. Adaptive rational Krylov subspaces for large-scale dy-
namical systems. Systems and Control Letters, 60:546–560, 2011. [25, 26, 28]

[79] V. Druskin, V. Simoncini, and M. Zaslavsky. Adaptive tangential interpolation in
rational Krylov subspaces for MIMO model reduction data. Technical report, Dipar-
timento di Matematica, Università di Bologna, November 2012. [26]
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[155] André Klein and Peter Spreij. On the solution of Stein’s equation and Fisher’s infor-
mation matrix of an ARMAX process. Linear Algebra and its Applications, 396:1–34,
2005. [6, 32]

[156] L. Knizhnerman and V. Simoncini. A new investigation of the extended Krylov sub-
space method for matrix function evaluations. Numerical Linear Algebra with Appli-
cations, 17(4):615–638, 2010. [18]

[157] L. Knizhnerman and V. Simoncini. Convergence analysis of the Extended Krylov
Subspace Method for the Lyapunov equation. Numerische Mathematik, 118(3):567–
586, 2011. [25]

[158] N. Komaroff. Simultaneous eigenvalue lower bounds for the Lyapunov matrix equation.
IEEE Trans. on Autom. Control, 33(1):126–128, 1988. [21]

[159] M. Konstantinov, D. Gu, V. Mehrmann, and P. Petkov. Perturbation theory for matrix
equations. Studies in Computational Mathematics 9. Elsevier, 2003. [3, 9]

[160] Krener, A. J. Reduced Order Models for Nonlinear Control Systems. In A. Astolfi
and L. Marconi, editors, Analysis and Design of Nonlinear Control Systems. Springer
Verlag, 2007. In Honor of Alberto Isidori. [5]

[161] D. Kressner. Block variants of Hammarling’s method for solving Lyapunov equations.
ACM Trans. Math. Software, 34(1):1–15, 2008. [22, 33]

[162] Daniel Kressner. Memory-efficient Krylov subspace techniques for solving large-scale
Lyapunov equations. In IEEE International Symposium on Computer-Aided Control
Systems, pages 613–618, San Antonio, 2008. [18]

[163] Daniel Kressner, Volker Mehrmann, and Thilo Penzl. CTLEX - a collection of bench-
mark examples for continuous-time Lyapunov equations. SLICOT Working Note 1999-
6, May 1999. [41]
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[255] Ninoslav Truhar and Krešimir Veselić. Bounds on the trace of a solution to the Lya-
punov equation with a general stable matrix. Systems & Control Letters, 56(7-8):493–
503, July 2007. [27]

[256] C.-C. Tsui. A new approach to robust observer design. Internat. J. Control, 47:745–
751, 1988. [38]

[257] A. van den Boom, A. Brown, F. Dumortier, A. Geurts, S. Hammarling, R. Kool,
M. Vanbegin, P. Van Dooren, and S. Van Huffel. SLICOT, a subroutine library
for control and system theory. In Preprints IFAC Symp. on CADCS, pages 89–94,
Swansea, UK, July 1991. [11, 41]

[258] P. van Dooren. Structured linear algebra problems in digital signal processing. In
Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, NATO
Series F, pages 361–384. Springer, 1991. [4]

[259] P. van Dooren and M. Verhaegen. Condensed forms for efficient time-invariant Kalman
filtering. SIAM J. Sci. Statist. Comput., 9(3):516–530, May 1988. [38]

[260] Bart Vandereycken. Riemannian and multilevel optimization for rank-constrained ma-
trix problems. PhD thesis, Arenberg Doctoral School of Science, Engineering & Tech-
nology, Katholieke Universiteit Leuven, December 2010. [24]

[261] Bart Vandereycken and Stefan Vandewalle. A Riemannian optimization approach for
computing low-rank solutions of Lyapunov equations. SIAM J. Matrix Anal. Appl.,
31(5):2553–2579, 2010. [32]

[262] J.M. Varah. On the separation of two matrices. SIAM J. Numer. Anal., 16(2):216–222,
1979. [9, 16]

[263] Andras Varga. A note on Hammarling’s algorithm for the discrete Lyapunov equation.
Systems & Control Letters, 15(3):273–275, Sept. 1990. [33]

[264] D. Vasilyev and J. White. A more reliable reduction algorithm for behavior model
extraction. In Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, pages 813–820, 2005. [31]

[265] Dmitry Missiuro Vasilyev. Theoretical and practical aspects of linear and nonlinear
model order reduction techniques. PhD thesis, Department of Electrical Engineering
and Computer Science, MIT, 2008. [5]

[266] Yu. O. Vorontsov and Kh. D. Ikramov. A numerical algorithm for solving the matrix
equation AX + XTB = C. Computational Mathematics and Mathematical Physics,
51(5):691698, 2011. [40]

[267] K. w. E. Chu. The solution of the matrix equations AXB − CXD = E and (Y A −
DZ, Y C −BZ) = (E,F ). Lin. Alg. Appl., 93:93–105, 1987. [35, 37]



Computational methods for linear matrix equations 57

[268] E. L. Wachspress. Iterative solution of elliptic systems. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1966. [12, 28]

[269] E. L. Wachspress. Iterative Solution of the Lyapunov Matrix Equations. Appl. Math.
Lett., 1(1):87–90, 1988. [26]

[270] Eugene L. Wachspress. Extended application of Alternating Direction Implicit itera-
tion model Problem theory. Journal of the Society for Industrial and Applied Mathe-
matics, 11(4):994–1016, 1963. [6]

[271] Eugene L. Wachspress. Trail to a Lyapunov equation solver. Computers and Mathe-
matics with Applications, 55:1653–1659, 2008. [23]

[272] F. Wan. An in-core finite difference method for separable boundary value problems on
a rectangle. Studies in Appl. Math., 52:103–113, 1973. [12]

[273] Qing-Wen Wang, Jian-Hua Sun, and Shang-Zhi Li. Consistency for bi(skew)symmetric
solutions to systems of generalized Sylvester equations over a finite central algebra.
Lin. Alg. Appl., 353:169182, 2002. [37]

[274] David. S. Watkins. The matrix eigenvalue problem. SIAM, Philadelphia, 2007. [12]

[275] H. K. Wimmer. Linear matrix equations, controllability and observability, and the
rank of solutions. SIAM J. Matrix Anal., 9(4):570–578, 1988. [8]

[276] H. K. Wimmer. Explicit solutions of the matrix equation
∑
AiXDi = C. SIAM J.

Matrix Anal. Appl., 13:1123–1130, 1992. [8]

[277] H. K. Wimmer. The generalized Sylvester equation in polynomial matrices. IEEE
Trans. Automat. Control, 41:1372–1376, 1996. [36]

[278] H.K. Wimmer. The matrix equation X − AXB = C and an analogue of Roth’s
theorem. Lin. Alg. Appl., 109:145–147, 1988. [32]

[279] H.K. Wimmer and A.D. Ziebur. Remarks on inertia theorems for matrices. Czechoslo-
cak Math. J., 25:556–561, 1975. [32]

[280] Inc. Wolfram Research. Mathematica. Wolfram Research, Inc., Champaign, Illinois,
8.0 edition, 2010. [41]

[281] A.-G. Wu, G.-R. Duan, and B. Zhou. Solution to generalized Sylvester matrix equa-
tions. IEEE Transactions on Automatic Control, 53(3):811–815, 2008. [37]

[282] A.-G. Wu, J. Hu, and G.-R. Duan. Solutions to the matrix equation AX−EXF = BY .
Computers and Mathematics with Applications, 58(10):1891–1900, 2009. [37]

[283] A.-G. Wu, Y. Sun, and G. Feng. Closed-form solution to the non-homogeneous gen-
eralised Sylvester matrix equation. Control Theory & Applications, IET, 4(10):1914 –
1921, October 2010. [37]

[284] Ai-Guo Wu, Guang-Ren Duan, and Yu Xue. Kronecker maps and Sylvester-polynomial
matrix equations. IEEE Transactions on Automatic Control, 52(5), May 2007. [39]

[285] Ai-Guo Wu, Gang Feng, Guang-Ren Duan, and Wei-Jun Wu. Closed-form solutions to
Sylvester-conjugate matrix equations. Computers and Mathematics with Applications,
60:95–111, 2010. [40]

[286] B. Zhou, G.-R. Duan, and Z.-Y. Li. A Stein matrix equation approach for computing
coprime matrix fraction description. Control Theory & Applications, IET, 3(6):691–
700, 2009. [5]

[287] Bin Zhou and Guang-Ren Duan. Solutions to generalized Sylvester matrix equation by
Schur decomposition. International Journal of Systems Science, 38(5):369–375, May
2007. [37]

[288] Bin Zhou and Guang-Ren Duan. On equivalence and explicit solutions of a class of
matrix equations. Mathematical and Computer Modelling, 50:1409–1420, 2009. [37]



58 V. Simoncini

[289] Bin Zhou and Guang-Ren Duan. Parametric solutions to the generalized discrete
Sylvester matrix equation MXN −X = TY and their applications. IMA Journal of
Mathematical Control and Information, 26(1):59–78, 2009. [37]

[290] Bin Zhou, Guang-Ren Duan, and Zhao-Yan Li. Gradient based iterative algorithm
for solving coupled matrix equations. Systems & Control Letters, 58(5):327–333, May
2009. [32, 37]

[291] Bin Zhou, James Lam, and Guang-Ren Duan. On Smith-type iterative algorithms for
the Stein matrix equation. Applied Mathematics Letters, 22:1038–1044, 2009. [34]

[292] Bin Zhou, James Lam, and Guang-Ren Duan. Toward Solution of Matrix Equation
X = Af(X)B + C. Technical report, arXiv:1211.0346, 2012. [34]

[293] Yunkai Zhou. Numerical methods for large scale matrix equations with applications in
LTI system model reduction. PhD thesis, Rice University, Houston, Texas, May 2002.
[22, 24]

[294] Yunkai Zhou and D. C. Sorensen. Approximate implicit subspace iteration with al-
ternating directions for LTI system model reduction. Numer. Linear Algebra Appl.,
15:873–886, 2008. [5]


