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Reaction-diffusion PDEs

ut = ℓ(u) + f(u), u = u(x, y, t), (x, y) ∈ Ω ⊂ R
2, t ∈]0, T ],

with u(x, y, 0) = u0(x, y), and appropriate b.c. on Ω

ℓ: diffusion operator linear in u f : nonlinear reaction terms

Generalization to systems:






ut = ℓ1(u) + f1(u, v),

vt = ℓ2(v) + f2(u, v), with (x, y) ∈ Ω ⊂ R
2, t ∈]0, T ]

Applications:

chemistry, biology, ecology, and more recently in metal growth by electrodeposition,

tumor growth, biomedicine and cell motility

⇒ spatial patterns such as labyrinths, spots, stripes
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An application: reaction-diffusion PDEs

ut = ℓ(u) + f(u), u = u(x, y, t), (x, y) ∈ Ω ⊂ R
2, t ∈]0, T ],

with u(x, y, 0) = u0(x, y), and appropriate b.c. on Ω

ℓ: diffusion operator linear in u f : nonlinear reaction terms

Generalization to systems:






ut = ℓ1(u) + f1(u, v),

vt = ℓ2(v) + f2(u, v), with (x, y) ∈ Ω ⊂ R
2, t ∈]0, T ]

Application: mathematical description of morphogenesis by A.Turing

coupling between diffusion and nonlinear kinetics can lead to the so-called

diffusion-driven or Turing instability

⇒ spatial patterns such as labyrinths, spots, stripes
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Long term spatial patterns

Labyrinths, spots, stripes, etc.
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Numerical modelling issues







ut = ℓ1(u) + f1(u, v),

vt = ℓ2(v) + f2(u, v), with (x, y) ∈ Ω ⊂ R
2, t ∈]0, T ]

• Problem is stiff

– Use appropriate time discretizations

– Time stepping constraints

• Pattern visible only after long time period

(transient unstable phase)

• Pattern visible only if domain is well represented
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Space discretization of the reaction-diffusion PDE

ℓ: elliptic operator ⇒ ℓ(u) ≈ Au, so that

u̇ = Au+ f(u), u(0) = u0

Analogously:






u̇ = A1u+ f1(u,v), u(0) = u0,

v̇ = A2v + f2(u,v), v(0) = v0

Key fact: Ω simple domain, e.g., Ω = [0, ℓx]× [0, ℓy]. Therefore

A(i) = Iy ⊗ T1 + TT
2 ⊗ Ix ∈ R

NxNy×NxNy , i = 1, 2

⇒ Au = vec(T1U + UT2)
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Space discretization of the reaction-diffusion PDE
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Matrix-oriented formulation of reaction-diffusion PDEs

U̇ = T1U + UT2 + F (U), U(0) = U0

F (U) nonlinear vector function f(u) evaluated componentwise

vec(U0) = u0 initial condition

Analogously,






U̇ = T11U + UT12 + F1(U, V ), U(0) = U0,

V̇ = T21V + V T22 + F2(U, V ), V (0) = V0
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Time stepping Matrix-oriented methods

IMEX methods

1. First order Euler: un+1 − un = ht(Aun+1 + f(un)) so that

(I − htA)un+1 = un + htf(un), n = 0, . . . , Nt − 1

Matrix-oriented form: Un+1 − Un = ht(T1Un+1 + Un+1T2) + htF (Un),

so that

(I − htT1)Un+1 +Un+1(−htT2) = Un + htF (Un), n = 0, . . . , Nt − 1.

Second order SBDF, known as IMEX 2-SBDF method

3un+2−4un+1+un = 2htAun+2+2ht(2f(un+1)−f(un)), n = 0, 1, . . . , Nt

Matrix-oriented form: for n = 0, . . . , Nt − 2,

(3I − 2htT1)Un+2+Un+2 (−2htT2) = 4Un+1−Un+2ht(2F (Un+1)−F (Un))
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Time stepping Matrix-oriented methods

Exponential integrator

Exponential first order Euler method:

un+1 = ehtAun + htϕ1(htA)f(un)

ehtA: matrix exponential, ϕ1(z) = (ez − 1)/z first “phi” function

That is,

un+1 = ehtAun+htvn, where Avn = ehtAf(un)−f(un) n = 0, . . . , Nt−1.

———————————-

Matrix-oriented form: since ehtAu =
(

ehtT
T
2 ⊗ ehtT1

)

u = vec(ehtT1UehtT2 )

1. Compute E1 = ehtT1 , E2 = ehtT
T
2

2. For each n

Solve T1Vn +VnT2 = E1F (Un)ET
2

− F (Un) (1)

Compute Un+1 = E1UnET
2

+ htVn
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Time stepping Matrix-oriented methods

Computational issues:

• Dimensions of T1, T2 very modest

• T1, T2 quasi-symmetric (non-symmetry due to b.c.)

• T1, T2 do not depend on time step

♣ Matrix-oriented form all in spectral space (after eigenvector

transformation)
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A numerical example of system of RD-PDEs

Model describing an electrodeposition process for metal growth

f1(u, v) = ρ
(

A1(1− v)u−A2 u3 −B(v − α)
)

f2(u, v) = ρ (C(1 + k2u)(1− v)[1− γ(1− v)]−Dv(1 + k3u)(1 + γv)))

Turing pattern
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Schnackenberg model

f1(u, v) = γ(a− u+ u2v), f2(u, v) = γ(b− u2v)

Left plot: Turing pattern solution for γ = 1000 (Nx = 400)

Center plot: CPU times (sec), Nx = 100 variation of ht

Right plot: CPU times (sec), ht = 10−4, increasing values of

Nx = 50, 100, 200, 300, 400
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The three-dimensional case

u̇ = Au+ f(u), u(0) = u0 in Ω = [0, ℓx]× [0, ℓy]× [0, ℓz]

High computational costs

Typically:

A = Iz ⊗ Iy ⊗ T1 + Iz ⊗ TT
2 ⊗ Ix + TT

3 ⊗ Iy ⊗ Ix ∈ R
NxNyNz×NxNyNz

♣ Tensor versions of

• IMEX methods

• Exponential integrators

♣ DEIM-type projection
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Conclusions and Outlook

Large-scale linear matrix equations are a new computational tool

• Matrix-oriented versions lead to computational and numerical advantages

• Matrix equation challenges rely on strength and maturity of linear system

solvers

Outlook:

• Large scale Nonlinear time-dependent problems with DEIM

• 3D time-dependent problems require tensors

• Low-rank tensor equations require new thinking

Webpage: www.dm.unibo.it/˜simoncin

Reference: Maria Chiara D’Autilia, Ivonne Sgura and V. Simoncini

Matrix-oriented discretization methods for reaction-diffusion PDEs:

comparisons and applications. To appear in Computers and Mathematics with

Applications.
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