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Abstract. Krylov subspaces are a valuable tool for approximating the action of a matrix
function to a vector, when the matrix has large dimension. In this note we provide an error estimate
for the approximation of the function cosh(

√
λ) by generalizing a result obtained for the exponential

function.

1. Introduction. Matrix functions in the form f(L), where L is a square matrix
and f is a function such that f(L) is well defined, play an increasingly important
role in the approximation of the solution to evolution partial differential equations
and in certain control problems, see, e.g., [7, 9, 5] and references therein. In most
cases where the matrix L has large dimension n, the operation f(L)v is actually
required, where v is a vector. In this setting, approximations of f(L)v by subspace
projection turn out to be particularly appealing. Here we focus on the use of the
Krylov subspace Km(L, v) = span{v, Lv, . . . , Lm−1v} of size m, which has proven to
be particularly well suited for the approximation of functions such the exponential;
see, e.g., [3, 6, 8, 10, 11]. In the following we assume that L is symmetric and
positive definite. Let Vm be a matrix whose orthonormal columns span Km(L, v),
with v = Vme1‖v‖, and let Tm = V TmLVm. The approximation in the Krylov subspace
can be written as

Vmf(Tm)e1‖v‖ ≈ f(A)v,

where for m � n, the matrix function f(Tm) can be computed efficiently by means
of an eigendecomposition. In this note we are concerned with estimates for the error
norm ‖f(A)v−Vmf(Tm)e1‖v‖‖ when f(λ) = cosh(

√
λ), as a function of the subspace

dimension m. The approximation procedure will be effective if a sufficiently accurate
approximation is obtained for m much smaller than n. In a worst case scenario, we
show that such an effectiveness fully depends on the spectral interval of the matrix L.
In practice, convergence can be faster, but this depends on the eigenvalue distribution
within the spectral interval, and on the decomposition of v in terms of eigenvectors
of L. Without more detailed spectral information on the problem, the worst case
scenario may be considered the best possible estimate.

2. The error norm estimate. It was shown in [2] that the error norm for
approximating the exponential function in the Krylov subspace can be effectively
estimated. In this note we extend this result to the case of the hyperbolic cosine of
the scaled square root, defined as cosh(z1

√
λ) = 1

2 (exp(z1
√
λ) + exp(−z1

√
λ)), where

z1 is some positive constant. This result was used in [4].
Proposition 2.1. Let L be symmetric and positive definite, and λmin, λmax be

the extreme eigenvalues of L. For z1 > 0, let a = z1
√
λmax. Let Vm be such that

range(Vm) = Km(L, v), Tm = V TmLVm and β0 = ‖v‖. If m ≤ a/2, then for large a,
the error Em = cosh(z1

√
L)v − Vm cosh(z1

√
Tm)e1β0 satisfies

‖Em‖ ≈
a

2m
exp(−a((2m)2/(2a2) +O((2m/a)4)),
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where ≈ means that higher order terms are neglected.
Proof. The proof is based on similar results by Druskin & Knizhnerman [2]. For

z1 > 0 and τ = 2/
√
λmax, let B = I− τ2

2 L, and a := 2z1/τ = z1
√
λmax. We first show

that cosh(z1
√
L) can be expanded in Chebychev series as

cosh(z1
√
L) = I0(a) + 2

∞∑
k=1

(−1)kI2k(a)Tk(B),

where Tk is the Chebyshev polynomial of degree k, and Ij is the modified Bessel
function. With some abuse of notation, let θ be such that B = cos(2θ). We recall the
following expansion (see [1, n. 9.6.35, p. 376]):

ea sin θ = I0(a) + 2
∞∑
k=0

(−1)kI2k+1(a) sin ((2k + 1)θ) + 2
∞∑
k=1

(−1)kI2k(a) cos(2kθ).

Moreover, Ik(a) = (−1)kIk(−a) for k = 0, 1, . . .. Then we can write

cosh(a sin θ) =
1
2

(ea sin θ + e−a sin θ)

=
1
2

(I0(a) + I0(−a))

+
∞∑
k=0

(−1)kI2k+1(a) sin (2k + 1)θ +
∞∑
k=1

(−1)kI2k(a) cos(2kθ)

+
∞∑
k=0

(−1)kI2k+1(−a) sin (2k + 1)θ +
∞∑
k=1

(−1)kI2k(−a) cos(2kθ)

= I0(a) + 2
∞∑
k=1

(−1)kI2k(a) cos(2kθ).

Since θ = 1
2arcos(B), it follows that cos(2kθ) = Tk(B). Moreover, cosh(a sin θ) =

cosh(a
√

1− cos2 θ) = cosh(a
√

(I −B)/2). Using the fact that z1
√
L = a

√
(I −B)/2

the expansion follows.
We next prove the new estimate. Since ‖B‖ ≤ 1, we have ‖Tk(B)‖ ≤ 1. Therefore

‖ cosh(z1
√
L)v − Vm cosh(z1

√
Tm)e1β0‖ = ‖2

∞∑
k=m

(−1)kI2k(a)Tk(B)‖

≤ 2
∞∑
k=m

|I2k(a)|.

It was shown in Druskin & Knizhnerman ([2, proof of Th. 4]) that for 2m/a ≤ 1,

∞∑
k=m

|I2k(a)| ≤ c(a)
∞∑
k=m

exp(((2k)2 + a2)
1
2 − 2karsh(2k/a))

≤ c1(a)
a

2m
exp(−a((2m)2/(2a2) +O((2m/a)4)),

from which the result follows.
The proposition shows that convergence indeed depends on the norm of L1/2,

that is on the upper extreme of its spectral interval.
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