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Abstract. Having good estimates or even bounds for the error in com-
puting approximations to expressions of the form f(A)v is very impor-
tant in practical applications. In this paper we consider the case that
A is Hermitian and that f is a rational function. We assume that the
Lanczos method is used to compute approximations for f(A)v and we
show how to obtain a posteriori upper and lower bounds on the `2-norm
of the approximation error. These bounds are computed by minimizing
and maximizing a rational function whose coefficients depend on the it-
eration step. We use global optimization based on interval arithmetic
to obtain these bounds and include a number of experimental results
illustrating the quality of the error estimates.

1 Introduction

Today, matrix functions are used in a large number of application problems, and
the theoretical understanding of numerical methods for their computation is of
topical interest. We refer to the recent book of Higham [10] as a survey reference.
Usually, the function f(A) ∈ Rn×n of a matrix A ∈ Rn×n will be a full matrix
even when A is sparse. This prevents f(A) to be computed directly when n
becomes large, as it is common in many applications. Fortunately, though, it is
then usually sufficient to compute the action of the matrix function on a vector,
i.e., f(A)v for v ∈ Rn, which is the task we are considering in this paper.

A prominent example where such computations arise is in exponential inte-
grators. Here, the action of the matrix exponential exp(A)v or of ϕ(A)v with
ϕ(t) = (exp(t)− 1)/t must be computed. Exponential integrators have recently
emerged for numerically solving stiff or oscillatory systems of ordinary differen-
tial equations; see, e.g., [11], [8]. They can also be used for the integration of
the time-dependent Schrödinger equation in quantum mechanics in which case
one uses trigonometric functions rather than the exponential; see [7]. Another
example arises in lattice gauge theory where so-called chiral overlap fermions are
simulated using a Monte-Carlo approach. In each step one has to solve linear sys-
tems of the form (P + sign(A))x = b, where P is a permutation matrix and A is



the Wilson fermion matrix; see [4]. When solving (P + sign(A))x = b with an it-
erative method, each step will usually require the computation of (P +sign(A))p
and thus of sign(A)p for a vector p which changes at each iteration.

In general, for any square matrix A, the matrix function f(A) can be defined
for a sufficiently smooth function f by means of the Jordan canonical form of A;
see, e.g., [13]. In this paper we are only concerned with the situation where the
matrix A is Hermitian. Then f(A) is defined as soon as f is defined on spec(A),
the set of all eigenvalues of A. Many equivalent definitions for f(A) can be given.
One is to take f(A) = p(A) where p is the polynomial that interpolates f on
spec(A). Alternatively, let A = V ΛV ∗ denote the spectral decomposition of A
where the columns of the orthogonal matrix V represent eigenvectors of A and
the diagonal entries of the diagonal matrix Λ the corresponding eigenvalues λi.
Then we can put

f(A) = V f(Λ)V ∗ where f(Λ) = diag(f(λ1), . . . , f(λn)).

In the case of many functions such as the exponential, the sign, the square-
root and trigonometric functions, a particularly attractive approach for large
matrices is to use a rational function approximation

f(t) ≈ g(t) =
ps1(t)
ps(t)

,

where pi(t) are polynomials of degree i; see, e.g., [3], [20]. The built-in Matlab
([15]) function for the matrix exponential, for example, uses a Padé rational
approximation. Rational functions may be conveniently employed in a matrix
context by using a partial fraction expansion. Assuming that there are no mul-
tiple poles, we then have

g(t) =
ps1(t)
ps(t)

= ps2(t) +
s∑
i=1

ωi
1

t− σi
. (1)

Since the computation of ps2(A)b is trivial, we assume from now on that
ps2 = 0, and concentrate on the sum representing the fractional part. When
applied to a matrix A, this gives

z = g(A)v =
s∑
i=1

ωi(A− σiI)−1v =
s∑
i=1

ωixi. (2)

Since we assume the problem dimension to be large, the solutions xi to the
systems (A − σiI)xi = v must be approximated using an iterative technique.
The iterative method we consider here is the Lanczos method which will be
described in detail in section 2. Denoting x

(k)
i the k-th iterate for the system

(A− σiI)xi = v, we get an overall approximation to z = g(A)v as

z(k) =
s∑
i=1

ωix
(k)
i . (3)
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The aim of this paper is to present a method which obtains lower and upper
bounds for

‖g(A)v − z(k)‖, (4)

the Euclidean norm of the error of the Lanczos approximation. Such bounds are
important in computational practice because they can be used as a stopping
criterion for the Lanczos process. We obtain the bounds as global minima and
maxima of certain (one-dimensional) rational functions. For their computation
we use a global optimization algorithm based on interval arithmetic. Note that
the cost of this method does not depend on the matrix dimension n, but only
on the number s of poles in the rational function and the width of the spectrum
of A.

The rest of this paper is organized as follows: In section 2 we review some
important facts for the Lanczos process and the Lanczos approximations to
families of shifted linear systems as well as to rational matrix functions. Section 3
explains how to obtain a posteriori bounds on the error, and section 4 exposes
the global optimization algorithm based on interval arithmetic that we use to
compute these bounds. Finally, section 5 contains a full algorithmic description
of the Lanczos method including the computation of the error bounds as well as
several numerical results illustrating the quality of the error bounds.

2 The Lanczos approximation

Given a vector v such that ‖v‖ = 1 and a Hermitian matrix A, the Lanczos
process generates a sequence of orthonormal vectors that span the Krylov sub-
space Kk(A, v) = span{v,Av, . . . , Ak−1v}. As k grows, the subspaces are nested,
that is Kk(A, v) ⊆ Kk+1(A, v). Therefore, by denoting with {v(0), . . . , v(k−1)}
the generated orthonormal basis of Kk(A, v), with v(0) = v, the next vector v(k)

such that v(0), . . . , v(k) span Kk+1(A, v) is given as

v(k)βk+1 = Av(k−1) − αkv(k−1) − βkv(k−2).

The coefficients αk, βk, k = 1, 2, . . . are computed so that (v(j))∗v(i) = δj,i.
Setting Vk = [v(0), . . . , v(k−1)], the recurrence above can be written in compact
form as

AVk = VkTk + v(k)βk+1e
T
k , Tk =


α1 β2

β2 α2
. . .

. . . . . . βk
βk αk

 , (5)

where ek is the kth column of the identity matrix whose dimension will be clear
from the context. An approximation to the solution of the linear system Ax = v
may be obtained in Kk(A, v) as xk = Vkyk, where yk is obtained by imposing
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that the residual rk = v −AVkyk be orthogonal to the space, namely V ∗k rk = 0.
Assuming that Tk is nonsingular, explicitly writing this condition yields

yk = T−1
k e1,

where e1 = (1, 0 . . . , 0)T ∈ Rk.
In the context of solving shifted systems (A − σI)x = v, we will need the

following key features of the Lanczos procedure, see, e.g. [19],[24].

Lemma 1. With the notation above, and Tk(σ) the tridiagonal matrix from (5)
with A replaced by A− σI

1. For any σ ∈ C, Kk(A, v) = Kk(A− σI, v) and Tk(σ) = Tk − σI.
2. For the residual r(k)(σ) = v − (A− σI)Vkyk(σ) it holds

r(k)(σ) = (−1)kρ(k)(σ)v(k).

Denoting θ(k)ν , ν = 1, . . . , k the eigenvalues of Tk, we actually have

ρ(k)(σ) =
k∏
ν=1

1

1− σ/θ(k)ν

,

as well as
ρ(k)(σ) = (eTk Tk(σ)−1e1) · βk.

The first result shows that when solving systems that only differ for the shift-
ing parameter σ, approximations can be carried out in a single approximation
space. The second result says that the residuals associated with the shifted sys-
tems are all collinear to the next basis vector. Note that the Ritz values θν are
all real, since Tk = V ∗k AVk is Hermitian.

3 Error bounds

The approach we propose here to bound the error between z = g(A)v and
its Lanczos approximation z(k) requires the a priori knowledge of an interval
enclosing the spectrum of A, i.e. we assume that we know `1, `2 such that
spec(A) ⊆ [`1, `2]. Our crucial observation starts from (3) which gives

g(A)v − z(k) =
s∑
i=1

ωi

(
(A− σiI)−1b− x(k)

i

)
=

s∑
i=1

ωi(A− σiI)−1r
(k)
i .

Since the x(k)
i arise from the Lanczos process, using Lemma 1 and the notation

ρ
(k)
i = ρ(k)(σi), gives

g(A)v − z(k) =
s∑
i=1

(−1)kρ(k)
i ωi(A− σiI)−1v(k). (6)

4



Herein, ‖v(k)‖ = 1. So the error can be expressed as the action of a rational
matrix function R(k)(A), namely

R(k)(A) =
s∑
i=1

(−1)kρ(k)
i ωi(A− σiI)−1 (7)

on the vector v(k). Some additional discussion of the partial fraction expansions
used is in order here. We are interested in matrix functions f(A) where f is
real on the real axis. It is thus natural that the rational function g which we
use to approximate f is real on the real line, too. Its partial fraction expansion
(1), however, might have complex poles which then come in complex conjugate
pairs σ, σ and corresponding complex conjugate coefficients ω, ω. This is the case
for instance when f is the exponential function and g is a Padé or Chebyshev
rational approximation. For computing our error bounds it will turn out useful
to have a real partial fraction expansion for the rational functions R(k) in these
cases. Note that from Lemma 1 we see that for complex conjugate poles σ the
factors ρ(k)

i in R(k) are complex conjugate, too. Putting the terms with real
coefficients first we thus have

(−1)k · R(k)(t) =
s′∑
i=1

ρ
(k)
i ωi
t− σi

+
s′′∑

i=s′+1

ρ(k)
i ωi
t− σi

+
ρ
(k)
i ωi
t− σi


=

s′∑
i=1

ρ
(k)
i ωi
t− σi

+
s′′∑

i=s′+1

γ
(k)
i t+ δ

(k)
i

(t− ηi)2 + µi
with (8)

γ
(k)
i = 2Re(ρ(k)

i ωi), δ
(k)
i = −2Re(ρ(k)

i ωiσi),
ηi = Re(σi), µi = |σi|2 − (Re(σi))2 > 0,

where the second line represents the real partial fraction expansion of R(k).
Note that we have s′′ = s′ if the complex and the real partial fraction expansion
coincide.

We now proceed by deriving bounds for the error using the rational functions
R(k). From standard norm estimates and using ‖v(k)‖ = 1 we get from (6)

‖g(A)v − z(k)‖ ≤ ‖R(k)(A)‖

and, in case that R(k)(A) is non-singular,

‖g(A)v − z(k)‖ ≥ ‖(R(k)(A))−1‖−1.

Since we assume A to be Hermitian and since R(k) is real, the matrix R(k)(A)
is Hermitian, too, so that

‖R(k)(A)‖ = max{|µ| : µ ∈ spec(R(k)(A))} = max{|R(k)(λ)| : λ ∈ spec(A)}

and

‖R(k)(A)−1‖−1 = min{|µ| : µ ∈ spec(R(k)(A))} = min{|R(k)(λ)| : λ ∈ spec(A)}.

5



In general, the quantities on the right hand side cannot be computed because the
spectrum of A is not known. However, assuming that we know bounds `1, `2 such
that spec(A) ⊂ [`1, `2] we can use the maximum and minimum over the whole
interval, a computable quantity, to get bounds for the error. We summarize this
next.

Theorem 1. For k = 1, 2, . . . define

ε(k) = min{|R(k)(λ)| : λ ∈ [`1, `2]}, E(k) = max{|R(k)(λ)| : λ ∈ [`1, `2]}. (9)

Then ε(k) ≤ ‖g(A)v − z(k)‖ ≤ E(k).

To solve the global optimization problems defining ε(k) and E(k) we suggest
to use a simple branch and bound method based on interval arithmetic which
will be described in detail in the following section.

4 A branch and bound method based on interval
arithmetic

We start by introducing some additional notation. (Compact) intervals on the
real line are denote in boldface, as x = [x,x]. The midpoint (x + x)/2 of the
interval x is denoted as mid(x), and diam(x) = x − x is its diameter. The
arithmetic operations +,−, ∗, / on intervals are defined in a set theoretic manner
as usually; their result is thus again a compact interval (see, e.g. [1], [14], [18]).
The absolute value |x| is defined as the range of | · | over the interval. As with the
arithmetic operations, it can be computed just from the endpoints of x, since

|x| =
{

[0,max{|x|, |x|}] if 0 ∈ x
[min{|x|, |x|},max{|x|, |x|}] otherwise .

With these definitions, given the real partial fraction expansion of the rational
function R(k) from (8) and an interval x ⊂ R which does not contain any real
pole σi of R(k), the interval arithmetic evaluation of |R(k)| is defined as

|R(k)(x)| =

∣∣∣∣∣∣
s′∑
i=1

ρ
(k)
i ωi

x− σi
+

s′′∑
i=s′+1

γ
(k)
i x + δ

(k)
i

(x− ηi)2 + µi

∣∣∣∣∣∣ .
By the inclusion property of interval arithmetic, the interval |R(k)(x)| contains
the range of |R(k)| over the interval x which we denote by Range(|R(k)|,x). Since
|R(k)| satisfies a Lipschitz condition, we have that the difference diam(|R(k)(x)|)−
diam(Range(|R(k)|,x)) tends to zero when diam(x) tends to zero; see, e.g., [1]
or [18]. Note also that interval arithmetic evaluations are inclusion isotone, i.e.
y ⊂ x⇒ |R(k)(y)| ⊆ |R(k)(y)|.

For simplicity, we now use the generic notation f for the function |R(k)|.
Given that we have an interval arithmetic evaluation of f at hand, we use a
simple standard branch-and-bound strategy to obtain the global maximum, see
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[9], [14] ,[22]. It relies on three ideas. The first is that if we keep on subdividing
into ever smaller intervals, the interval arithmetic evaluations will tend towards
the range of f . The second is that a global maximizer cannot lie in a subinterval x
of [`1, `2] for which f(x), the right end point of the interval arithmetic evaluation
of f at x, is less than the largest known value of f . The third is that lower and
upper bounds for the global maximum of f may be easily updated by using
computed function values and the right end points of the interval arithmetic
evaluations, respectively. Technically, we will maintain a set of subintervals as a
heap H containing pairs (x, f̃). Here, each x is a subinterval of the initial interval
[`1, `2] and f̃ = f(x), thus representing an upper bound for the maximum of f
over that interval. The heap H is ordered with respect to the key f̃ , so that if
we retrieve the topmost element from the heap we always get the one with the
largest value of f̃ .

We keep track of two values f∗ and f̂ representing the best known values
for which f̂ ≤ E ≤ f∗, where E = maxx∈[`1,`2] f(x). In each step we remove the
entry (x, f̃) with largest f̃ from H. The value of f∗ is updated to be f̃ . Then we
bisect x into two intervals x1 and x2 and update f̂ using the values of f at the
midpoints of x1 and x2. We also compute f(xi) giving us f̃ for both intervals xi.
Only if f̃ is larger than f̂ will the corresponding pair be inserted into the heap
H. This is because otherwise xi does not contain a global maximizer, and, by
inclusion isotonicity, any subinterval of xi will not contribute to further improve
f̂ or f∗.

We stop the bisection process once the difference between f∗ and f̂ is small
enough. The following algorithm Maximize gives the details.

Algorithm Maximize

Input: expression for function f : [`1, `2] ⊂ R→ R+
0 , relative accuracy α

Output: upper bound f∗ for global maximum E
x = [`1, `2], f = f(x), f̃ = f
insert ([`1, `2], f̃) into empty heap H

f∗ = f̃ , f̂ = f(mid(x))
while |(f∗ − f̂)/f∗| > α do

remove top element (x, f̃) from heap H {has largest f̃}
f∗ = f̃ {improved upper bound for maximum}
bisect x = x1 ∪ x2

for i = 1, 2 do
f = f(xi), f̃ = f
if f̃ > f̂ then {xi may contain maximizer}

insert (xi, f̃) in heap H

f̂ = max{f̂ , f(mid(xi))} {update largest function value}
end if

end for
end while
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Upon termination, this algorithm will have determined f∗ as an upper bound
for E with relative accuracy α, since |(f∗ − f̂)/f∗| ≤ α and f̂ ≤ E ≤ f∗ imply
|(f∗ − E)/f∗| ≤ α.

Algorithm Maximize can be modified in a straightforward manner to deliver
a lower bound for the minimum of f over the interval [`1, `2].

5 The Lanczos algorithm with error bounds

We are now in a position to describe the Lanczos method to approximate g(A)v
in full detail, including the convergence test based on the error bound from
Theorem 1, and its computation using the global optimization algorithm just
described. In exact arithmetic this algorithm is guaranteed to yield an approxi-
mation for g(A)b with the chosen accuracy. In floating point arithmetic no such
guarantee can be given since the crucial relation

(A− σiI)x(k)
i = (−1)kρ(k)

i v(k)

will not be fulfilled exactly with the computed quantities. Nevertheless, we con-
sider our approach to be highly useful also in the floating point context since it
produces a cheaply computable and, as numerical experiments will show, quite
accurate stopping criterion.
Algorithm pfe-Lanczos.

Choose tol, maxit {for stopping test}
β = 0, v0 = b, v−1 = 0, ρ(0)

i = 1 for i = 1, . . . , s
for k = 1, . . . ,maxit do {iteration}
q = Avk−1 − βvk−2, α = v∗k−1q, tk,k = α {Lanczos coeff’s and vectors}
ṽ = q − αvk−1

β = (ṽ∗ṽ)1/2, vk = ṽ/β, tk+1,k = β, tk,k+1 = β
yi = (Tk − σiIk)−1e1, i = 1, . . . , s {get projected solutions}
ρ
(k)
i = eTkyitk+1,k, i = 1, . . . , s {factors for residuals}

Compute upper bound
(
E(k)

)∗
for E(k) with algorithm Maximize

{bounds from Theorem 1}
if
(
E(k)

)∗
< tol then {iteration converged}

zk =
s∑
i=1

ωiyi, xk =
k−1∑
i=0

(zk)i+1vi, stop {approximate solution}

end if
end for
We remark that underflow may occur for some of the numbers ρ(k)

i if the
convergence for the corresponding systems is much faster than for others. It is
therefore reasonable to incorporate a strategy to remove ‘converged’ systems
from further computation and to set ρ(k)

i = 0 for all subsequent iterations, see
[6].

As already mentioned, in the presence of two complex conjugate poles, all
quantities to be computed for the two poles are just complex conjugates of each
other. Therefore, these computations have to be done for one of the poles only.
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Finally, let us mention that there exists an alternative implementation of
the Lanczos method which applies the conjugate gradient method to all s shifts
simultaneously. Its advantage over Algorithm pfe-Lanczos is that it requires
storage only proportional to s, the number of poles, but not to the number of
iterations performed. We refer to [6] for details.

6 Numerical experiments

In this section we report on the results of our numerical experiments. They were
all programmed in Matlab with interval arithmetic provided through the Intlab
toolbox; see [23]. In all experiments the accuracy parameter α in Maximize was
taken to be 0.1.

Example 1. We consider the Zolotarev rational function approximation to the in-
verse square root function on a positive interval [a1, a2], namely g̃(A)b ≈ A−1/2v.
We refer to [20, Chapter 4] for details on the Zolotarev approximation, which is
a rational function with all simple poles lying on the negative real axis. We took
[a1, a2] = [1, 1000] and used the Zolotarev approximation with s = 12 poles. The
matrix A was taken to be a 200 × 200 diagonal matrix A with diagonal entries
equispaced in the interval [1, 1000] so that `1 = 1, `2 = 1000; v was taken as
the normalized vector of all ones. With these parameters, the accuracy of the
Zolotarev approximation turns out to be of the order of 10−7.

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Inverse square root

 

 

error
bound

Fig. 1. Error and error bound for the inverse square root

Numerical results are given in Figure 1. The dotted curve represents the
norm of the error. This error can be computed easily for this example, since, A
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being diagonal, the exact value of g(A)v can be computed directly. The solid line
represents the error bound. We see that the error bound very well captures the
convergence behaviour of the Lanczos method, while being roughly two orders
of magnitude too pessimistic during the whole iteration process. We also see
that by basing a stopping criterion upon the error bound bound we will perform
about 10 ‘unnecessary’ iterations for which the true error is already as small as
desired while the error bound has yet to catch up.

Example 2. Our second experiment is with data stemming from an applica-
tion in Quantum Chromodynamics; see [2]. We consider the approximation of
sign(Q)b, where Q is the Hermitian Wilson fermion matrix which is highly in-
definite. We took Q = P (I − 4

3κcD), where κc = 0.15717, the configuration
matrix D is available in the QCD collection of the matrix market [17] (matrix
conf5.4-00l8x8-2000.mtx), while P is the so-called γ5-matrix, a permutation
matrix which symmetrizes D. The dimension of Q is approximately 50 000 and
b is a random vector.

We first compute two numbers 0 < a1 < a2 such that spec(Q) ⊂ [−a2,−a1]∪
[a1, a2]. We then approximate sign(t) on [−a2,−a1]∪ [a1, a2] using the Zolotarev
rational approximation Z for the inverse square root on [a2

1, a
2
2]. To be specific, we

approximate sign(Q)b as Z(Q2) ·Qv. Note that this means that we perform the
Lanczos process using the matrix Q2, not Q. Let us mention that g(t) = Z(t2) · t
is an `∞ best approximation to the sign function on [−a2,−a1] ∪ [a1, a2]; see
[20]. The number of poles s was chosen such that the `∞-error was less than
10−7, that is s = 11. To speed up computation, it pays off to compute q
eigenvalues of Q which are smallest in modulus, λ1, . . . , λq, say, beforehand
using a Lanczos procedure for Q2. Denoting by Π the orthogonal projector
along the space spanned by the corresponding eigenvectors wi, i = 1, . . . , q,
we then work with the matrix ΠQΠ and the vector Πb. In this manner, we
effectively shrink the eigenvalue intervals for Q, so that we need fewer poles
for an accurate Zolotarev approximation and, in addition, the linear systems
to be solved converge more rapidly. The vector sign(Q)b can be retrieved as
sign(ΠQΠ)Πb + sign(diag(λ1, . . . , λq)) · (I −Π)b. In our computation we took
q = 30, and the bounds `1, `2 for the the spectrum of the matrix (ΠQΠ)2 were
taken to be its smallest and largest nonzero eigenvalue, respectively.

Figure 2 shows the convergence curve and the error bound. Note that this
time we compare with an ‘exact’ solution that has been computed beforehand by
the Lanczos method. We see that the bounds for the error nicely reproduce the
convergence behaviour and that they are about one order of magnitude larger
than the true error.

Example 3. In this example we consider the Chebyshev rational approximation
g(A)b to the exponential function exp(−A)b. The coefficients of the two polyno-
mials of the same degree appearing in g have been tabulated in [5] for several
different degrees. It is known that the error associated with this approximation is
maxt>0 | exp(−t)− g(t)| = O(10−s), where s is the degree of the polynomials in
the rational function. In this case, the poles σi and the coefficients ωi in the par-
tial fraction expansion are complex, therefore pairing of the conjugate complex
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Fig. 2. Error and error bound for the sign function of the QCD matrix

terms in the partial fraction expansion should be carried out when computing
the error bound, as discussed in (8). For our example we took A to be the stan-
dard 5 point discretization of the two-dimensional Laplacian on an equidistant
grid of size 41 × 41. This results in a matrix of dimension 1600 × 1600 with
eigenvalues 412 · (8 − 4 cos2(π/41 · i) − 4 cos2(π/41 · j)), i, j = 1, . . . , 40, so that
we took [`1, `2] = 412 · [1, 8]. The convergence history is given in the left plot
of Figure 3. We note that there is an initial stagnation phase, where during the
first 40 iterations almost no progress is made. This stagnation phase is reflected
in the error bound. Throughout the whole iteration, the error bound is about
three orders of magnitude larger than the true error. However, since convergence
tends to be quite fast after the initial stagnation phase, we again do not perform
prohibitively many additional iterations if we base our stopping criterion upon
the upper bound.

To speed up the convergence of the Lanczos process when the number of
iterations becomes excessive, acceleration procedures have been devised. Here we
consider the Shift-and-Invert Lanczos (SI-Lanczos), as proposed in [12] and [16].
For a given real parameter µ > 0, the procedure determines an approximation to
f(A)b within the Krylov subspace Kk((I−µA)−1, b). This space is generated by
a Lanczos recurrence, and requires a solve with (I − µA) at each iteration. This
procedure is therefore effective only if one can solve these systems efficiently, e.g.
using a multigrid method or a sparse direct solver.

For f a rational function, SI-Lanczos corresponds to approximating each
system solution (A − σiI)−1b in the partial fraction expansion by projecting
the problem onto Kk((I − µA)−1, b) and then imposing the Galerkin condition
([21, Proposition 3.1]). More precisely, let Â = (I−µA)−1, σ̂i = 1/(σiµ−1) and
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Fig. 3. Exponential function. Left: Standard Lanczos method. Right: SI-Lanczos
method.

multiply both sides of (A−σiI)x = b by Â. Since Â·(A−σiI) = 1−µσi

µ

(
Â− σ̂iI

)
,

for i = 1, . . . , s, SI-Lanczos solves the systems

(
Â− σ̂iI

)
x̂ = b̂, with x̂ =

1− µσi
µ

x, b̂ = Âb. (10)

The linear systems in (10) have precisely the same shifted structure as those in
the previous sections. Let x̂(k)

i be the Galerkin solution to system i in Kk(Â, b̂),
and let x(k)

i = µ
1−µσi

x̂
(k)
i be the corresponding approximate solution to the orig-

inal system (A− σiI)x = b; see (10). Then

g(A)b−
s∑
i=1

ωix
(k)
i =

s∑
i=1

ωi(xi − x(k)
i )

=
s∑
i=1

µωi
1− µσi

(x̂i − x̂(k)
i ) ≡

s∑
i=1

ω̂i(x̂i − x̂(k)
i ).

The procedure described in section 4 may thus be used to bound the error in the
form given by the last expression. The right plot of Figure 3 contains the results
for this approach, again for the 2D Laplacian on a 41 × 41 grid. Here we used
s = 14 and µ = −1/maxi |σi| (cf. [21]), so that now the interval [`1, `2] is given
by `1 = 1/(1 − µa2), `2 = 1/(1 − µa1), where [a1, a2] = 412[1, 8] is the interval
containing spec(A).

As expected, the number of iterations to achieve a given accuracy is reduced
substantially. A stagnation phase is no longer present, and it is very remarkable
that now the bound on the error has a tendency to get closer to the true error
as the iteration proceeds.

12



References

1. G. Alefeld and J. Herzberger, Introduction to Interval Computation, Aca-
demic Press, 1983.

2. G. Arnold, N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, T. Lip-
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